
Configuration Manual

MSc Research Project

Data Analytics

Gautam Bhatia
Student ID: x22171118

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Gautam Bhatia

Student ID: x22171118

Programme: Data Analytics

Year: 2018

Module: MSc Research Project

Supervisor: Rejwanul Haque

Submission Due Date: 20/12/2018

Project Title: Configuration Manual

Word Count: 1117

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Gautam Bhatia

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Gautam Bhatia
x22171118

1 Introduction

This manual provides step-by-step information for configuring the food recognition and
recipe retrieval assistant. The system is designed to help international students and users
who don’t know how to prepare the meal. By using image recognition models like CLIP
and MobileNetV2, this system identifies food ingredients and potential allergens. This
guide will walk you through the necessary steps to setup the environment and configure
the system.

2 Environmental Setup

This section describes a list of all the tools and software that were used to complete the
project successfully.

2.1 Hardware Requirements

The hardware specs used for this project were a 64-bit windows 11 operating system and
8GB of RAM. The processor used was an intel i5 (11th Gen). This figure shows the
details of the hardware specifications used.

2.2 Software Requirements

This section outlines the necessary software requirements needed to develop and run the
food recognition and recipe assistant. Ensure that your system meets these software
requirements. First is python programming language that was used for the development
of this project. It is important to have python installed to run scripts and manage the
app. For IDE author used visual studio because it is lightweight and better support with
python programming language.

3 Virtual Environment

The ‘food recipe env‘ virtual environment was created for this research. The following
steps were taken to create and activate the environment in Visual Studio:

1. Opened the Command Prompt (CMD) by entering ”cmd” in the Windows search
bar, and then used the ‘cd‘ command to change the directory to ‘D:\MSCDATA\Research
of Computing Sem 3‘.

1



2. Created the virtual environment using the command ‘python -m venv food recipe env‘.

3. Activated the virtual environment in Visual Studio by running the command ‘venv\Scripts
\activate‘.

Figure 1: Virtual Environment Setup

4 Importing Libraries

There are some libraries that need to be installed from ’pip’ command. To install the
libraries we used this command ’pip (library name) at the terminal of visual studio. Here
are the all libraries author used to build this project.

Figure 2: Importing libraries for MobileNetV2

Figure 3: Importing libraries for CLIP

2



5 Datasets

The data selected with the Indian food images and Food-101 datasets from Kaggle. The
data of Indian food images dataset contains 4000 images with 80 different categories
and Food-101 dataset contains of 1,01,000 images with 101 food classes.Then I combined
the both dataset and extract the image paths and labels in the csv format and shuffle
the dataset and display the combined dataset. see this figure that load the dataset and
combined it.

Figure 4: Loading Datasets

6 Splitting Dataset

Now in this section author split the dataset into training, validation and testing ratio
this step is important to train model on your specific dataset. The dataset was divide
into three parts 80% for training, 10% for validation and 10% for testing.

7 Data Augmentation

train generator, val generator, and test generator are created to feed the model with the
augmented and rescaled images during training and evaluation.

3



Figure 5: Splitting the Datasets

Figure 6: Data Augmentation

4



8 Building Model for Training

A base model using MobileNetV2 MobileNet (n.d.) (pre-trained on ImageNet) is created
with the top layers removed (include top=False), meaning the classification layer is ex-
cluded. A custom model is built on top of the base model, including a Global Average
Pooling layer and fully connected (Dense) layers. The model is compiled using the Adam
optimizer and sparse categorical cross-entropy loss, and then trained using the training
and validation data. After training for 10 epochs, the model’s performance is evaluated
on the test set.

Figure 7: MobileNetV2 Architecture

Figure 8: Model Training

Figure 9: Model Testing

5



9 Fine-Tuning with Additional Training

Additionally, author tried to change some parameters or add some parameters to increase
the accuracy of the model. The base model is further fine-tuned with a larger model that
includes additional layers and dropout for regularization and fit the model to see the
performance.

Figure 10: Fine-Tuning

Figure 11: Model training

6



10 Saving Model

The trained model is saved as (DishPrediction.h5),(food recognition model epochs 20.h5)
Training and validation accuracy/loss over the epochs are plotted to visualize the model’s
performance.

11 Prediction Function

After loading the model of dish prediction.H5 the code includes a prediction function
predict dish that preprocesses an image, makes a prediction using the trained model, and
returns the predicted class. get class name maps the predicted class index to the actual
class name.

Figure 12: Model Prediction

12 CLIP Model

After importing the libraries and loading the clip model and processor to implement our
project, the code checks the device configuration and loads the pre-trained model (’clip-
vit-base-patch32’) CLIP (n.d.). This model is responsible for processing both images and
text.

13 Loading and splitting the dataset

Then load the dataset, which is food combined, which contains image paths and their
corresponding dish labels and dish ingredients, which contains dish labels and their in-
gredients. The food combined dataset is split into training and testing using 80–20so the
train shape is 94,500 and the test shape is 10,500, after splitting the dataset next step is
to create label maps and preprocess the data for applying the model.

7



Figure 13: Loaded CLIP model and processor

Figure 14: Loading and splitting the dataset

8



14 Label and preprocess the data

The unique dish labels are mapped to indices (’label map’) for easy handling of the model
prediction and then the ’preprocess image for clip’ function loads and preprocesses an
image for the CLIP model. It makes sure that the image is in RGB format and handles
the errors if the image cannot be opened.

Figure 15: Label Map

Figure 16: Preprocess the images

15 Dish prediction with CLIP

This function takes an image, processes it with the CLIP model to predict the dish, and
then prepares text inputs by listing all possible dish labels using the processor to handle
both text labels and the image, then passes the processed inputs to the CLIP model to get
prediction probabilities. This prediction function will predict our dish name, ingredients,
and allergen information. The model was tested on the image of a pizza that I made at
home. I took a snapshot of the pizza and then uploaded it to my model. I saw that the
CLIP model accurately predicted the pizza ingredients and allergen information.

9



Figure 17: Dish prediction

16 Model Evaluation

This function evaluates the model on the test set by iterating through each test image,
making predictions and comparing them with the true labels. It then collects predictions
and true labels figured into the confusion matrix and shows the classification report for
understanding the model performance, as well as calculating the top-5 accuracy, which
checks if the correct label is among the top 5 predicted probabilities.

Figure 18: Model Evaluation Function

10



Figure 19: Evaluation metrics

References

CLIP (n.d.). Hugging Face. Available at: https://huggingface.co/docs/

transformers/en/model_doc/clip.

MobileNet (n.d.). Keras Documentation. Available at: https://keras.io/api/

applications/mobilenet/.

11

https://huggingface.co/docs/transformers/en/model_doc/clip
https://huggingface.co/docs/transformers/en/model_doc/clip
https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/mobilenet/

	Introduction
	Environmental Setup
	Hardware Requirements
	Software Requirements

	Virtual Environment
	 Importing Libraries
	Datasets
	Splitting Dataset
	Data Augmentation
	Building Model for Training
	Fine-Tuning with Additional Training
	Saving Model
	Prediction Function
	CLIP Model
	Loading and splitting the dataset
	Label and preprocess the data
	Dish prediction with CLIP
	Model Evaluation

