~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Gautam Bhatia
Student ID: x22171118

School of Computing
National College of Ireland

Supervisor: Rejwanul Haque

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Gautam Bhatia
Student ID: x22171118
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Rejwanul Haque
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: 1117
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Gautam Bhatia

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Gautam Bhatia
x22171118

1 Introduction

This manual provides step-by-step information for configuring the food recognition and
recipe retrieval assistant. The system is designed to help international students and users
who don’t know how to prepare the meal. By using image recognition models like CLIP
and MobileNetV2, this system identifies food ingredients and potential allergens. This
guide will walk you through the necessary steps to setup the environment and configure
the system.

2 Environmental Setup

This section describes a list of all the tools and software that were used to complete the
project successfully.

2.1 Hardware Requirements

The hardware specs used for this project were a 64-bit windows 11 operating system and
8GB of RAM. The processor used was an intel i5 (11th Gen). This figure shows the
details of the hardware specifications used.

2.2 Software Requirements

This section outlines the necessary software requirements needed to develop and run the
food recognition and recipe assistant. Ensure that your system meets these software
requirements. First is python programming language that was used for the development
of this project. It is important to have python installed to run scripts and manage the
app. For IDE author used visual studio because it is lightweight and better support with
python programming language.

3 Virtual Environment

The ‘food_recipe_env* virtual environment was created for this research. The following
steps were taken to create and activate the environment in Visual Studio:

1. Opened the Command Prompt (CMD) by entering "cmd” in the Windows search

bar, and then used the ‘cd‘ command to change the directory to ‘D:\MSC DATA\Research

of Computing Sem 3°.

2. Created the virtual environment using the command ‘python -m venv food_recipe_env".

3. Activated the virtual environment in Visual Studio by running the command ‘venv\Scripts
\activate’.

| Command Prompt

Microsoft Windows [Version 10.0.22631.3880]
(c) Microsoft Corporation. All rights reserved.

C:\Users\gautam>cd. .
:\Users>cd. .
:\>D:
:\>cd MSC DATA
:\MSC DATA>cd Research of computing Sem 3

D:\MSC DATA\Research of Computing Sem 3>food_recipe_env\Scripts\activate

(food_recipe_env) D:\MSC DATA\Research of Computing Sem 3>

Figure 1: Virtual Environment Setup

4 Importing Libraries

There are some libraries that need to be installed from ’pip’ command. To install the
libraries we used this command ’pip (library name) at the terminal of visual studio. Here
are the all libraries author used to build this project.

import pandas as pd

import os

from sklearn.model selection import train_test split

from tensorflow.keras.preprocessing.image import ImageDataGenerator # type: ignore
from tensorflow.keras.models import Sequential # type: ignore

from tensorflow.keras.layers import GlobalAveragePooling2D, Dense,Dropout # type: ignore
from tensorflow.keras.applications import MobileNetv2 # type: ignore

from tensorflow.keras.optimizers import Adam # type: ignore

import matplotlib.pyplot as plt

import numpy as np

from tensorflow.keras.preprocessing import image # type: ignore

from tensorflow.keras.models import load model # type: ignore

Figure 2: Importing libraries for MobileNetV2

import pandas as pd

import torch

from transformers import CLIPProcessor, CLIPModel

from PIL import Image

from sklearn.metrics import confusion_matrix, classification_report, top_k_accuracy_score
from sklearn.model_selection import train_test_split

from tqdm import tqdm

impeort matplotlib.pyplet as plt

import seaborn as sns

Figure 3: Importing libraries for CLIP

5 Datasets

The data selected with the Indian food images and Food-101 datasets from Kaggle. The
data of Indian food images dataset contains 4000 images with 80 different categories
and Food-101 dataset contains of 1,01,000 images with 101 food classes.Then I combined
the both dataset and extract the image paths and labels in the csv format and shuffle
the dataset and display the combined dataset. see this figure that load the dataset and
combined it.

Indian Food Images Dataset

indian_food_path = 'dataset\Indian Food Images\Indian Food Images'
indian_food_labels = os.listdir({indian_food_path)

indian_food = pd.DataFrame(columns=['img_path’', ‘label’'])

for label in indian_food_labels:
img_dir_path = os.path.join(indian_food_path, label)
for img in os.listdir(img_dir_path):
img_path = os.path.join(img dir_path, img)
indian_food.loc[indian_food.shape[@]] = [img_path, label]

Food181 Dataset using metadata
food101_images_path = 'D:\\MSC DATA\\Research of Computing Sem 3\\food recipe env\\dataset\\food-181%\food-181\\images’
food1@1_meta_path = 'dztaset\\food-1@1\\food-181\\meta"

fo0d101 = pd.DataFrame(columns=['img_path', 'label’'])

Read the train and test metadata files
with open(os.path.join(food1@1_meta_path, 'train.txt'), 'r') as file:
train_files = file.readlines()

with open(os.path.join(food101 meta_path, 'test.txt'), 'r°) as file:
test_files = file.readlines()

Combine train and test files into a single list
all_files = train_files + test files

Extract image paths and labels
for file in all files:
file = file.strip()
label = file.split('/')[8]
img_path = os.path.join(food1@1_images_path, f'(file}.jpg’)
if os.path.isfile(img_path):
f00d101.1oc[food101.shape[@]] = [img path, label]

Combine both datasets
food_combined = pd.concat([indian_foed, foedl@l], ignore_index=True)

Shuffle the dataset
food_combined = food_combined.sample{frac=1).reset_index(drop=True)

Display the combined dataset
b ", food_combined.shape[@])
print(“Number of labels”, food_combined['label’].nunigue())

Number of images 185808
Number of labels 181

Figure 4: Loading Datasets

6 Splitting Dataset

Now in this section author split the dataset into training, validation and testing ratio
this step is important to train model on your specific dataset. The dataset was divide
into three parts 80% for training, 10% for validation and 10% for testing.

7 Data Augmentation

train_generator, val_generator, and test_generator are created to feed the model with the
augmented and rescaled images during training and evaluation.

food_combined = pd.read_csv('Food_181&Indian_Food.csv')

train_ratio =
val_ratio = 8.10
test_ratio = @.10

train_data, test_data = train_test_split(food_combined, test_size=val_ratio + test_ratio, random_states=42)
vel_data, test_data = train_test_split(test_data, test_sizestest_ratio / (val_ratio + test_ratio), random_state=42)

print("Train data shape:", train_data.shape)
print("Validation data shape:”, val_data.shape)
print("Test data shape:", test_data.shape)

Train data shape: (34288, 3)
Validation data shape: (18588, 3)
Test data shape: (18528, 3)

Figure 5: Splitting the Datasets

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=2@,
width_shift_range=0.2,
height_shift_range=a.2,
shear_range=8.2,
zoom_range=8.2,
horizontal_flip=True,
fill_mode="nearest’

val_dstagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator{rescale=1./255)

train_generator = train_dstagen.flow_from_dataframe(
train_data,

y_col
target_size=(224, 224),
batch_size=32,
class_mode="sparse’

)

val_generator = val_datagen.flow_from_dataframe(
val_data,
¥_col="img_path’,

y_col="label",
target_size=(224, 224},
batch_size=32,
class_mode="'sparse"’

)

test_generator = test_datagen.flow_from_dataframe(
test_data,
x_col="img_path',
y_col="label",

target_size=(224, 224},
batch_size=32,
class_mode="sparse’,
shuffle=False

Found 84888 validated image filenames belonging to 181 classes.
Found 18588 validated image filenames belonging to 181 classes
Found 19580 validated image filenames belonging to 181 classes

Figure 6: Data Augmentation

8 Building Model for Training

A base model using MobileNetV2 |MobileNet (n.d.) (pre-trained on ImageNet) is created
with the top layers removed (include_top=False), meaning the classification layer is ex-
cluded. A custom model is built on top of the base model, including a Global Average
Pooling layer and fully connected (Dense) layers. The model is compiled using the Adam
optimizer and sparse categorical cross-entropy loss, and then trained using the training
and validation data. After training for 10 epochs, the model’s performance is evaluated
on the test set.

base_model = MobileNetV2({weights='imagenet’, include_top=False, input_shape=(224, 224, 3))
hase_model.trainable = False

epochs = 18

model = Sequential()

model.add{base_model}

model.add (GlobalAveragePooling2D())

model .add (Dense(512, activation="relu')}

model .add {Dense{food_combined] "label’].nunique(), activation='"softmax'))
model.compile{optimizer="adam’,loss="sparse_categorical_crossentropy’, metrics=['accuracy’'])
model . summary ()

Figure 7: MobileNetV2 Architecture

history = model.fit(

train_generator,
steps_per_epoch=train_generator.n // 64,
epochs=epochs,
validation_data-val_generator,
validation_steps=val generator.n // 64

Epoch 1/10

WARNING: tensorlow:From ¢:\Users name tf.ragged. RaggedTensorValue is use t.compat.vl.ragged. RaggedTensorValue instead

WARNING: tensorfLow:From 384: The name tf .executing esgerly_outside functions is deprecated. Plesse use ©f.compat.vl.exscuting esgerly outside functions instesd

131271312 [=
Epoch 2/10
1312/1312 [=
Epoch 3/10

- 22155 2s/step - lessi 2.7524 - accuracy: val_less: 2.1789 - val_accuracy: 9.4632
- 20985 2c/step - loss: 2.2262 - accuracy: .4439 - val_loss: 1.9514 - val_accuracy: 0.4951
- 31925 2s/step - loss: 2.1968 - accuracy: @.4718 - val_loss: 1.9553 - val_accuracy: 0.5059

- 45695 3s/step - loss: 2.8231 - accuracy: 8.4897 - val_loss: 1.9421 - va 5154

- 38215 3s/step - loss: 1.9630 - accuracy: .5017 - val_loss: 1.9598 - val.
Epoch 6/10

1312/1312 [=
Epoch 7/10
1312/1312 [=
Epoch 8/10
1312/1312 [=
Epoch 9/10
1312/1312 [=
Epoch 10/10
1312/1312 [=

- 25185 2s/step - loss: 1.9484 - accuracy: 0.5851 - val_loss: 1.9280 - val_accuracy: 0.5116

- 2281s 2s/step - loss: 1.8910 - accuracy: .5159 - val_loss: 1.873 - val_accuracy: 0.5354

- 21995 2s/step - loss: 1.8616 - accuracy: 8.5253 - val_loss: 1.9168 - val_acc

- 22885 2s/step - loss: 1.8428 - accuracy: 8.5298 - val_loss: 1.9810 - val

- 29955 2s/step - loss: 1.5131 - accuracy: 8.5355 - vsl_loss: 1.9894 - val_accuracy: 9.5320

Figure 8: Model Training

test_loss, test_acc = model.evaluate{test_generator)
print(f"Test accuracy: {test_scc}")

329/329 [ss==s=s==s=ss=====s===s============] - 5845 Is/step - loss: 1.9418% - accuracy: @.523@
Test accuracy: B.5230476260185242

Figure 9: Model Testing

9 Fine-Tuning with Additional Training

Additionally, author tried to change some parameters or add some parameters to increase
the accuracy of the model. The base model is further fine-tuned with a larger model that
includes additional layers and dropout for regularization and fit the model to see the

performance.

base_model = MobileletV(weights='imsgenst’, include_top=l
base_model. trainable
epochs = 20
optimizer = Adam(learning rate=2.@
model_1 = Sequential()
mode1_1.add(base_model)
model_1.add(GlobalAveragePooling2D
model_1.add(Dense (1022, activatio
model_1.add(Dropout(8.3))
mode1_1.add(Dense (food_combined[*1abel"].nunique(), activatio
mode1_1.compile (optimizer-optimizer,loss="sparse_categorical
model_1.suamary ()

e, input_shape=(224, 224, 3

False

softmax'))

rossentropy’, metric

‘accuracy’

WARNING: tensorflow: From C:\Users\gautam\snaconda3iLio The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.vl.executing eagerly outside functions instead.
WARNING: tensorflowsFrom :\Users\gautam\anacondad keras\src\layers\normalizstion\batch normalization.py:979: The mame t.nn.fused batch_norm is deprecated. Please use tf.compat.vl.nn.fused batch_norm instesd.
Model: "sequential”
Layer (type) Output Shape Param #
lenetv2_1.80_224 (Func (None, 7, 7, 1288) 2257384
nal)
global_average_pooling2d ((None, 1288) [
GlobalaversgePooling2d)
dense (Dense) (None, 1024) 1311788
dropout (Dropout) (Nonz, 1024) e
dense_1 (Dense) (None, 181) 185525
Total params: 3755253 (14.33 MB)
Trainable params: 1497269 (5.71 MB)
history = model_1.Fit(

train_generator,

Steps_per_epoch=train_generator.n // 64,

epochs=epochs,

validation_data=val_generator,

validation_steps=val_generator.n // &4
Epoch 1720
WARNING: tensor Flow: Fron sautamanacondas kagesikeras name tf.ragged. RaggedTensorvalue is Geprecated. Please use tf.compat.vl.ragzed.RaggedTensorValue instesd
WARNING: tensor Flow: From ¢:\Users\gautam\anaconda3\L kages\keras\sro\engine\base laver 54: The name tf.executing eagerly_outside_functions is deprecated. Please use tf.compat.vl.executing eagerly outsie functions instead.

1148/1148 - 38845 33/, - loss: 3.4975 - : 2.5014 - val_accuracy: 0.4198
Epoch 2/20

1148/1148 - 22625 23/ - loss: 2.5088 - t2.1600 - val_accuracy: 0.4751

- 27815 2s/step - loss: 2.3747 - 0.4249 - :2.8599 - val_accuracy: 0.4937

- 29755 33/step - loss: 2.2296 - 0.4436 - : 1.9814 - val_accuracy: 9.5033

- 27385 25/, - loss: 2.1523 - 2.4851 - : 1.9859 - val_accuracy: 9.5184

- 24585 2s/step - loss: 2.0845 - 0.4813 - : 1.8829 - val_accuracy: 0.5256

- 27835 25/step - loss: 2.6256 - accuracy: 8.4932 - 1.8460 - val_accuracy: 0.5354

- 39435 35/step - loss: 1.9681 - accuracy: 8.5045 - : 1.8352 - val_accuracy: 9.5399

- 21295 25/step - loss: 1.9439 - accuracy: 8.5074 - 1.7894 - val_accuracy: 9.5477

- 18335 25/step - less: 1.8936 - accuracy: 2.5204 - i 1.7865 - val_accuracy: 9.5476

- loss: 1.6934 - 0.5835 - osst 1.7239 - val_accuracy: 8.5649

- loss: 1.6787 - ©.5639 - val_loss: 1.6882 - val_sccuracy: 8.5673

Output is truncated. View a

Adjust cell output set

11: Model training

10 Saving Model

The trained model is saved as (DishPrediction.h5),(food_recognition_model_epochs_20.h5)
Training and validation accuracy/loss over the epochs are plotted to visualize the model’s
performance.

11 Prediction Function

After loading the model of dish prediction.H5 the code includes a prediction function
predict_dish that preprocesses an image, makes a prediction using the trained model, and
returns the predicted class. get_class_name maps the predicted class index to the actual
class name.

model = load_model('Models\DishPrediction.h5")

def preprocess_image(img_path):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img to_array(img)|
img_array = np.expand_dims(img_array, axis=8)
img_array = img_array / 255.8
return img_array

def predict_dish(img path, model):
img_array = preprocess_image(img_path)
predictions = model.predict(img array)
predicted class = np.argmax(predictions, axis=1)
return predicted class[@]

def get_class_name(class_index, label map):
return label_map[class_index]

food_combined= 'Food_181&Indian Food.csv'
food_combined = pd.read_csv(food combined)

labels = sorted(food_combined['label].unique())

label map = {index: label for index, label in enumerate(labels)}

ing_path = ‘dataset\prediction images\escargots.jpeg’

predicted_class_index = predict_dish(img_path, model)
predicted_class_name = get_class_name(predicted_class_index, label map)

print(f"The predicted dish is: {predicted class_name}")

1/1 [==========
The predicted dish is: escargots

- 25 2s/step

Figure 12: Model Prediction

12 CLIP Model

After importing the libraries and loading the clip model and processor to implement our
project, the code checks the device configuration and loads the pre-trained model (’clip-
vit-base-patch32’) |CLIP (n.d.). This model is responsible for processing both images and
text.

13 Loading and splitting the dataset

Then load the dataset, which is food_combined, which contains image paths and their
corresponding dish labels and dish_ingredients, which contains dish labels and their in-
gredients. The food_combined dataset is split into training and testing using 80-20so the
train shape is 94,500 and the test shape is 10,500, after splitting the dataset next step is
to create label maps and preprocess the data for applying the model.

Device configuration

i device = "cuda” if torch.cuda.is_available() else "cpu

Load the CLIP model and processor
clip model = CLIPModel.from pretrained("openai/clip-vit-base-patch32”)

clip_processor = CLIPProcessor.from_pretrained(“openai/clip-vit-base-patch32”)

clip_model. to(device)

WARNING: tensorflow: From c:\Users\gautam\anaconda3\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. |

CLIPModel(
(text_model): CLIPTextTransformer(
(embeddings): CLIPTextEmbeddings(
(token_embedding): Embedding(49468, 512)
(position_embedding): Embedding(77, 512)
)
(encoder): CLIPEncoder(
(layers): Modulelist(
(@-11): 12 x CLIPEncoderLayer(
(self_attn): CLIPAttention(
(k_proj): Linear(in_features=512, out_features=512, bias=True)
(v_proj): Linear(in_features=512, out_features=512, bias=True)
(q_proj): Linear(in_features=512, out_features=512, bias=True)
(out_proj): Linear(in_features=512, out_features=512, bias=True)

)
(layer_norml): Layerorm((512,), eps=1e-85, elementwise_affine=True)
(mlp): CLIPMLP(
(activation fn): QuickGELUActivation()
(fcl): Linear(in features=512, out_features-2048, bias=True)
(c2): Linear(in_features=2048, out_features=512, bias=True)

)
(layer_norm2): LayerNorm((512,), eps=le-85, elementwise_affine=True)

(post_layernorn): LayerNorm((768,), eps=le-85, elementuise_affine=True)

)
(visual_projection)
(text_projection)

Linear(in_features=768, out_features=512, bias=False)
Linear(in features=512, out features=512, bias=False)

Figure 13: Loaded CLIP model and processor

Load the dataset
food_combined = pd.read_csv('Food_1@1&Indian_Food.csv')

dish_ingredients = pd.read_csv('dish_ingredients.csv’)

Define train, validation, and test ratios
train_ratio = 8.8@
test_ratio = @.10

train_data, test_data = train_test_split(food_combined, test_size=test ratio, random_state=42)

print(“Train data shape:", train_data.shape)|
print(“Test data shape:”, test_data.shape)

Train data shape: (94500, 3)
Test data shape: (1050, 3)

Figure 14: Loading and splitting the dataset

14 Label and preprocess the data

The unique dish labels are mapped to indices ("label_map’) for easy handling of the model
prediction and then the ’preprocess_image _for_clip’ function loads and preprocesses an
image for the CLIP model. It makes sure that the image is in RGB format and handles
the errors if the image cannot be opened.

Load labels and map to indices
labels = sorted(dish_ingredients['label’].unique())
label map = {label: index for index, label in enumerate(labels)}

Inverse mapping to get label names from indices
index_to_label = {index: label for label, index in label_map.items()}

Figure 15: Label Map

def preprocess_image_for_clip(img_path):
try
img = Image.open(img_path).convert("RGB")
return img
except Exception as e:
print(f"Error opening image {img path}: {e}")
return None
def predict dish with_clip(img, model, processor, index to_label):
1if img is None:
return None, None

Prepare text input: list of labels (strings)
text_labels = list(index_to label.values())

Process text and image with processor
inputs = processer(text=text_labels, images=img, return_tensors="pt”, padding=True)

Make predictions

with torch.no_grad():
outputs = model(**inputs.to(device))
logits_per_image - outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)

Get predicted class index
predicted class_index = probs.argmax().item()

return predicted_class_index, probs

Figure 16: Preprocess the images

15 Dish prediction with CLIP

This function takes an image, processes it with the CLIP model to predict the dish, and
then prepares text inputs by listing all possible dish labels using the processor to handle
both text labels and the image, then passes the processed inputs to the CLIP model to get
prediction probabilities. This prediction function will predict our dish name, ingredients,
and allergen information. The model was tested on the image of a pizza that I made at
home. I took a snapshot of the pizza and then uploaded it to my model. I saw that the
CLIP model accurately predicted the pizza ingredients and allergen information.

img_path = 'dataset\prediction images\Homemade_pizza.jpg’

Make prediction

predicted_class_index_clip = predict_dish with_clip(ing path, clip model, clip processor, index_to_label)

Retrieve the predicted class name
predicted_class_name_clip = index_to_label[predicted_class_index_clip]

print(f"The predicted dish using CLIP is: {predicted_class_name_clip}")

List of allergens

allergens = [
“peanut”, "milk", "soy”, “wheat”, “tree nut", “shellfish",
“sesame”, "gluten”, "mustard”, "celery”, "sulfite"
corn”, "legumes”, “meat”, "poultry”, “fruits",
“yeast”, "garlic”, “onion”

1

‘Fish", "egg",

"lupin”, “mollusk”,
‘vegetables”, "dairy”,

Get ingredients for the predicted dish
predicted_ = dish_ing [dish_:

= *label'] == predicted_class_name_clip]["ingredients’].values[0]
Check for allergens

predicted_allergens = [allergen for allergen in allergens if allergen in predicted_ingredients]

print(f"Ingredients: {predicted_ingredients}")

print(f"Potential allergens: {predicted_allergens}")

Unused or unrecognized kwargs: padding.
The predicted dish using CLIP is: pizza

Ingredients: 500 g bread flour(3 3/4 cups), 2 1/2 tsp Dry Yeast instant or active (10 grams), 3/4 tsp Table Salt(5 grams), 3/4 tsp Sugar, plus a pinch (about 3 grams), 1 1/2 cup water at room temperatur
Potential allergens: [onion]

Figure 17: Dish prediction

16 Model Evaluation

This function evaluates the model on the test set by iterating through each test image,
making predictions and comparing them with the true labels. It then collects predictions
and true labels figured into the confusion matrix and shows the classification report for
understanding the model performance, as well as calculating the top-5 accuracy, which

checks if the correct label is among the top 5 predicted probabilities.

def evaluate_model(test_data, model, processor, index_to_label):
predictions = []
true_labels = []
all_probs = []

for _, row in tqdm(test_data.iterrows(), total=test_data.shape[@]):
img_path = row['img_path']
‘true_label = row['label’]
Predict the label
img = preprocess_image_for_clip(img_path)
predicted class_index, probs = predict_dish_with_clip(img, model, processor, index_to_label)
if predicted class_index is not None:
predicted_label = index_to_label[predicted_class_index]

Collect predictions and true labels
predictions.append(predicted_label)
true_labels. append(true_label)
all_probs.append(probs. cpu() .numpy() . flatten())
Compute confusion matrix
cm = confusion matrix(true labels, predictions, labels=list(index to_label.values()))
Classification report

report = classification_report(true_labels, predictions, target_names=list(index_to_label.values()))

Top-5 accuracy
all_probs = torch.tensor(all_probs)

top5_accuracy = top_k_accuracy_score(true_labels, all probs, k=5, labels=list(index to_label.values()))

return cm, report, top5_accuracy

Figure 18: Model Evaluation Function

10

def plot_confusion matrix(cm, labels):
plt.figure(figsize=(19, 8))
sns.heatmap(cm, annot=True, fmt='d’, cmap='Blues', xticklabels=labels, yticklabels=labels
plt.xlabel('Predicted Label’)
plt.ylabel('True Label")
plt.title(’Confusion Matrix')
plt. show()

Evaluate the model

cm, report, topS_accuracy = evaluate_model(test_data, clip_model, clip processor, index_to label)
print(f'Top-5 accuracy on test set: {top5_accuracy:.2f}")

print(“Classification Report:")

print(report)

Plot the confusion matrix
plot_confusion_matrix(cm, list(index_to_label.values()))

Figure 19: Evaluation metrics

References

CLIP (n.d.). Hugging Face. Available at: https://huggingface.co/docs/
transformers/en/model_doc/clip.

MobileNet (n.d.). Keras Documentation. Available at: https://keras.io/api/
applications/mobilenet/.

11

https://huggingface.co/docs/transformers/en/model_doc/clip
https://huggingface.co/docs/transformers/en/model_doc/clip
https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/mobilenet/

	Introduction
	Environmental Setup
	Hardware Requirements
	Software Requirements

	Virtual Environment
	 Importing Libraries
	Datasets
	Splitting Dataset
	Data Augmentation
	Building Model for Training
	Fine-Tuning with Additional Training
	Saving Model
	Prediction Function
	CLIP Model
	Loading and splitting the dataset
	Label and preprocess the data
	Dish prediction with CLIP
	Model Evaluation

