\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Samradni Ranganath Bharadwaj
Student ID: X22214801

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

‘-
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Samradni Ranganath Bharadwaj
Student ID: X22214801
Programme: MSc in Data Analytics Year: 2023-2024
Module: MSc Research Project
Lecturer: Dr. Catherine Mulwa
Submission Due
Date: 12t August 2024
Project Title: Detecting the Genes that have High Probability of Causing

Kawasaki Disease
Word Count: 661 Page Count: 5

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Samradni Ranganath Bharadwaj

Date: 12™ August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Samradni Ranganath Bharadwaj
Student ID: X22214801

1 Introduction

This confirguration manual for ‘Detecting Genes that have High Probability of Causing
Kawasaki Disease’. This is a guide on the system requirements, establishing libraries and
running the code. The information is dedicated to the setting-up procedures and code steps
required to develop a predictive model.

2 System Specification

Model Name Asus Zenbook 14

Operating System Microsoft Windows 11 Home Single Language

Version 10.0.22631 Build 22631

Processor Intel® Core™ i5-1035G1 CPU @ 1.00GHz, 1190 Mhz, 4 Core(s),
8 Logical Processor

Storage 475 GB

RAM 8 GB

Table 1: Specifications of Systems

3 Software Used

In this project, python was the main the programming language. The python version that was

used in building this project was 3.11.5 version. The python was accesed from the Anaconda
Jupyter Environment. It is the updated version, therefore has new and updated libraries in it.
The anaconda notebook’s version is 23.7.4 and the jupyter noterbook’s version is 6.5.4. This
setup is updated and there are no errors while running the code.

4 Research Project Developement

4.1 Importing Libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans, DBSCAN

from sklearn.decomposition import PCA

from scipy.stats import f_oneway

from sklearn.manifold import TSNE

from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings("ignore™)
warnings.filterwarnings("ignore”, category=Deprecationiarning)

Figure 1: Importing Libraries

Various python libraries shown in Figure 1 are necessary and were imported to support the
steps that will be performed to achieve the solution for the research questions. As python is
the principal language mainly because of the availability of numerous libraries to handle data
like Pandas for efficient handling of complex data, Matplotlib and Seaborn for
visualization ,sklearn.cluster for the clustering algorithms like K Means Clustering and
DBSCAN that are implemented. sklearn.decomposition for implementing Principal
Component Analysis, sklearn.manifold for t-SNE and sklearn.preprocessing for
StandardScalar to standardize the features.

4.2 Uploading Files

dfl = pd.read_csv('genes 49.csv’)
print("First few rows of df1:"}
print(dfl.head())

Get the number of rows and columns in the dataset

num_rows, num_columns = dfl.shape

print(f"The dataset contains {num_rows} rows and {num_columns} columns.")
print("\nShape of original df1:", dfl.shape)

First few rows of dfi:

NO. PTAFR PYGL APOBEC3G LYBE SIRPA ITGB3 IGFIR \
KD1 @.448189 -8.138133 -06.566592 6.018539 -8.148853 -8.655902 -8.523488
KD2 @.855643 874221 ©.523488 -8.359842 481421 -8.167625 ©.888987
KD3 -©.262518 1.026176 -06.6168592 -1.733881 588484 0©6.000688 ©.655902
KD4 @.111459 ©.466787 -8.523488 1.125364 .874221 -8.726531 ©.285354
KD5 ©.837085 -8.566582 -06.855643 0.4608707 .186456 1.237878 ©.350842

W n e @
[xn]
D m OO ®

Figure 2: Loading df1 file

df2 = pd.read_csv('GSE178491 KD.csv')
print("\nFirst few rows of df2:")
print(df2.head())

print(”\nShape of original df2:", df2.shape)

First few rows of df2:

ensembl_gene_id genename KD1 KD2 KD3 KD4 KD5 \
8 ENSGBo6obeeeeal TSPANG 34.896 116.867 115.952 45.801 78.799
1 ENSGegeoeceeeas THNMD .08 2.080 e.0ee 9.008 g.gee
2 ENSGBOB06eee419 DPM1 399.999 287.783 389.639 167.999 168.068
3 ENSGoecoeeseds7 SCYL3 902.864 1068.757 0976.89@ 765.988 0998.315
4 ENSGO@oeseee46® Clorfll2 214.298 249,866 259.163 163.136 379.572

Figure 3: Loading df2 file

As shown in Figure 2 and Figure 3, the files were imported in jupyter to perform future steps.
After importing these files, the shape for the dataset was checked by checking the first 5 rows
and columns.

4.3 Data Cleaning

Display the count of NA or NaN values in each column
print("Count of NA or NaN values in each column:")
print(dfl.isna().sum())

Display the total number of duplicate rows
print("Total number of duplicate rows:", dfl.duplicated().sum())

Remove rows with NA or NaN values
dfl_cleaned = dfl.dropna()

Remove duplicate rows
dfl_cleaned = dfl_cleaned.drop_duplicates()

Display the first few rows of the cleaned dataframe
print("\nFirst few rows of dfl (cleaned):")
print(dfl_cleaned.head())

Display the shape of the cleaned dataframe
print("Shape of cleaned df1:", dfl_cleaned.shape)

Figure 4: Data Cleaning of DF1

Display the count of NA or NaN values in each caolumn
print("Count of NA or NaN values in each column:™)
print(df2.isna().sum())

Display the total number of duplicate rows
print("Total number of duplicate rows:", df2.duplicated().sum())

Remove rows with NA or NaN values
df2_cleaned = df2.dropna()

Remove duplicate rows
df2_cleaned = df2_cleaned.drop_duplicates()

Display the first few rows of the cleaned dataframe
print{"\nFirst few rows of dfl (cleaned):")
print(df2_cleaned.head())

Display the shape of the cleamed dataframe
print(“”Shape of cleaned df2:", df2_cleaned.shape)

Figure 5: Data Cleaning of DF2

The Figure 4 and Figure 5 depict the data cleaning steps. Intitally they were checked for
missing and duplicate values and then the missing and duplicate values were removed to
ensure that the data is clean and accurate to make predictions on. After cleaning the dataset,
they were again check and for this the first 5 rows were chosen to see if the data is clean and
then the shape of the dataset was checked.

After performing these steps various visualizations were performed to understand the data.

4.4 Modelling

DF1 Model Building

Clustering using KMeans

num_clusters = 3 # Set the number of clusters

kmeans = KMeans({n_clusters=num_clusters, random state=8)

dfl cleaned['Cluster'] = kmeans.fit predict(dfl cleaned.iloc[:, 1:])

Visualizing the clusters using PCA

pca = PCA(n_components=2)

principal_components = pca.fit_transform(dfl_cleaned.iloc[:, 1:-1])
dfl_cleaned['PC1'] = principal compenents[:, @]

dfl_cleaned['PC2'] = principal components[:, 1]

plt.figure(figsize=(18, 7))

sns.scatterplot(data=dfl_cleaned, x="PCl", y="PC2", hue='Cluster’, palette="viridis')
plt.title('PCA of Genes Data with KMeans Clusters')

plt.show()

Figure 6: Model Implementation on df1l

The Figure 6 shows that KMeans Clustering was implemented on dfl where the data was
divided in 3 clusters. Later PCA was implemented to reduce the dimensions.

ANOVA to see if clusters are significantly different

anova_results = {}

for column in dfl cleaned.columns[1:-3]: # Exclude non-gene columns
groups = [dfl cleaned[dfl_cleaned[Cluster'] == cluster][column] for cluster in range(num_clusters)]
anova_results[column] = f_oneway(*groups)

Display ANOVA results
significant_genes = {gene: p_value for gene, (_, p_wvalue) in anova_results.items() if p_walue < @.85}
print("Significant genes after ANOVA (p-value < 8.85):")
for gene, p value in significant_genes.items():
print(f"{gene}: {p_value}")

Figure 7: Anova on dfl

The Figure 7 depicts the implementation of Anova on dfl to check if there is statistical
significant difference between the data.

DF2

Extract features and Labels for clustering
X = df2.iloc[:, 2:] # Features
genes = df2_cleaned['genename’'] # Gene names

Standardize the features
scaler = StandardScaler()
X _scaled = scaler.fit transform(X)

Perform PCA for dimensionality reduction
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)

Plot PCA results

plt.figure(figsize=(18, 7))
sns.scatterplot(x=X_pcal[:, @], y=X_pca[:, 1])
plt.title(PCA of Gene Expression Data’)
plt.xlabel('PC1")

plt.ylabel{ 'PC2’)

plt.show()

Figure 8: Feature extract for clustering on df2

Clustering with KMeans
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)

Plot the clusters

plt.figure(figsize=(18, 7))

sns.scatterplot(x=X_pcal[:, @], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')
plt.title('KMeans Clusters of Gene Expression Data')

plt.xlabel('PC1")

plt.ylabel('PC2")

plt.show()

Figure 9: KMeans implemented on df2

KMeans was implemented on df2 to make the clusters of the data and Anova was
implemented to check the statistical difference in the data.

Unsupervised Learning: DBSCAN
dbscan = DBSCAN(eps=3, min_samples=2)
dbscan_labels = dbscan.fit predict(X_scaled)

Plot DBSCAN clusters using PCA

plt.figure(figsize=(16, 7))

sns.scatterplot(x=X pca[:, 8], y=X pca[:, 1], hue=dbscan_labels, palette='viridis")
plt.title('DBSCAN Clusters of Gene Expression Data’)

plt.xlabel('PC1')

plt.ylabel('PC2")

plt. show()

Figure 10: Implementation of DBSCAN

On df2, multiple models and techniques were implemented and DBSCAN is one of them.
DBSCAN seperates the low density data and that is why it is an ideal fit for the dataset as it
has dense gene data and to trace the noise data is difficult. DBSCAN does that work perfectly.
t-SNE is implemented to visually depict the noise data as compare to good data.

References

Gupta, P. and Bagchi, A., 2024. Introduction to Pandas. In Essentials of Python for Artificial
Intelligence and Machine Learning (pp. 161-196). Cham: Springer Nature Switzerland.

	1Introduction
	2 System Specification
	3Software Used
	4Research Project Developement
	4.1Importing Libraries
	4.2Uploading Files
	4.3Data Cleaning
	4.4Modelling

	References

