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Detecting the Genes that have High Probability of
Causing Kawasaki Disease

Samradni Ranganath Bharadwaj
Student ID: X22214801

Abstract
The present study seeks to gain further insights into infantile Kawasaki disease (KD),

a difficult pediatric disease with systemic inflammation that has the potential to affect
the coronary arteries. Using current genomic and informatics approaches, the study seeks
to discover new genetic determinants of KD susceptibility or risk for severe forms of the
disease. Detailed information about the biology of the disease could change how the
disease is diagnosed and treated, enabling earlier treatment to increase survival for
affected children. These innovations through cutting edge technologies are expected to
make a substantial scientific and clinical impact in understanding KD and in the
management of clinical care of patients with KD and help reduce the burden of the
disease worldwide. KMeans Clustering, Anova, DBSCAN along with PCA and t-SNE
were used to identify the gene associated with causing Kawasaki Disease. The PTAFR,
PYGL, and APOBEC3G critical genes were highlighted; presenting profound statistical
relation with KD. The significant gene associations with Kawasaki Disease, particularly
PTAFR (p = 2.80e-23), PYGL (p = 9.08e-28), and APOBEC3G (p = 3.59¢-18) which
have unique gene sequences that characterize KD patients compared to symptom-free
people. These findings identify potential biomarkers for the diagnosis and prognosis of
the disease, and, therefore, there is a need for more investigation to determine their roles
in the pathogenesis of Kawasaki Disease and in the clinical setting.

1 Introduction

Kawasaki disease is a febrile inflammatory condition of pediatric age centered on systemic
vasculitis of medium-sized arteries. It was first described by Tomisaku Kawasaki in 1967,
who initially recognized its severity, particularly in coronary area and aneurysms with no
treatment. However, although many biological mechanisms have been used, the cause of the
disease remains a mystery, thus fostering more than 50 years of research focused on the
pathogenesis and searching for the optimal treatment.

The introduction section comprises of the Kawasaki Disease’s background and the
motivation of the project. It also includes the research question, objective and scope of the
research project.

1.1 Background and Motivation



This disease raises important health concerns since it can develop into coronary artery
aneurysms in about a quarter of untreated cases, and it predominantly affects children who
are under the age of five(Hicar et al.2020). It has been observed by Elakabawi et al. (2020)
that for KD to occur, ethnic background and geographic locations play an important part
along with genes and environmental factors in the disease’s mechanism.

The following research is primarily inspired by several significant imperatives that
are identified within Kawasaki disease. Starting with the need to improve early diagnosis,
based on the premise that the current approach towards medical evaluation relying on clinical
criteria may therefore be insufficient, in terms of detecting Kawasaki disease, promptly. For
instance, negative implications of delayed treatment are established in the associated risks of
coronary complications; which, therefore, begs the availability of more sensitive and specific
diagnostics instruments. In addition, clinical researchers have their interest fueled by the need
for a more developed understanding of KD’s pathophysiology to potentially reveal the
incurable disease’s underlying causes. Genetic research pursued within the subject domain,
therefore, is motivated by one of its major strategic goals, the discovery of biomarkers
capable of early detection and highly accurate diagnostic resolution to stratify disease and
provide personalized systems of care.

1.2 Research Questions

Q1: To what extent can machine learning algorithms identify unique gene sequences that
could cause Kawasaki diseases?

02: To what extent machine learning algorithms being used classify gene expression patterns
in terms of Kawasaki disease patients?

The following objectives shown in Table 1, were implemented in order to solve the research
questions.

1.3 Objectives and Scope
Table 1: Objectives

Objective Brief description and methods used

Objective 1 | Highlight genetic markers with a noticeable differential expression pattern
in the group of Kawasaki disease-affected patients in contrast to healthy
person.

Objective 2 | Determine the diagnostic advantage of the identified genetic markers as
the new biomarkers that might be useful for the diagnosis of Kawasaki
disease.

Objective 3 | Implementation of machine learning algorithms and statistical method that
can successfully classify patients with KD and healthy individuals using
their expression of genes.

Objective 4 | Evaluation to assess the performance of the developed models (objective
3) and Results; for prompt diagnosis of genes in Kawasaki disease.




The overall project’s Scope:

This scope of the research project is to detect the genes that have high probability of causing
the Kawasaki Disease based on the dataset collected from Kaggle. The dataset consists of
gene names and their expression data. In order to achieve this, models like K means
Clustering, DBSCAN and statistical method like Anova along with various techniques have
been implemented. These models and methods have been selected on the basis of the
complex data in the dataset. Along with detection of genes, this research will also reveal new
insights, which can alter the entire scope of clinical practice. These developments have the
power to benefit the management of Kawasaki disease, which may result in improved patient
outcomes and reduced risk associated with the disease.

The rest of the report is structured as, Chapter 2 presents Related Work which
consists of investigating various papers that have implemented machine learning in detecting
genes causing Kawasaki Disease. Chapter 3 presents Research Methodology, Data
Preparation and Design. The data preparation describes data collection, data cleaning,
visualization and modelling. Detailed explanation of Implementation, Evaluation and Results
are explained in Chapter 5. The discussion section is in Chapter 6 which discusses the results
and implications. Overall, the report structure depicts the exploration of various models and
techniques to detect the genes causing kawasaki disease.

2 Related Work

This chapter provides a review of various papers on the Kawasaki disease detection using the
machine learning approaches. Various articles journals, and research paper are collected from
different sources to gain the knowledge about the detection techniques. Thus, the review of
the papers is given below.

2.1 A Ciritical Review of Techniques used to Detect Kawasaki Disease

In Exome Sequencing technique, the major concern is the protein-coding regions of the
genome, which are the most probable locations of mutations. One of the frequent approaches
specific to the study of rare variants is gene burden tests (Pezoulas et al. 2021). In the study
done by (Xu et al.2022), exome sequencing was performed on 80 KD cases and 80 controls,
and applying gene burden analysis, rare variants in the CASP3 gene were related to KD. Of
these variants most were fixed in the exons 4 and 5.

Another study of this sequencing was from (Lam et al. 2022) where they conducted
exome sequencing and gene burden tests on 100 KD cases and 100 controls. They found that
sequences in the ITPKC gene especially in the two exon sites of exon 2 and exon 3 were
linked with KD. These findings, therefore, support the use of exome sequencing and gene
burden tests to identify novel rare variants associated with KD risk.

The Transcriptome Analysis technique was used to establish gene expression patterns
in patients with KD employing RNA sequencing or RNA-seq (Yasumizu et al. 2024).
Differential gene expression is a well-used technique in this regard. Originally, Tsai et al.
(2023) genotyped RNA-seq data involving 100 case-patients with KD and 100 control



patients; genes that are upregulated in the TNF signaling pathway were discovered. Out of all
genes that were increased the most, TNF was identified as one, which is involved in
inflammation (Le Gouge, 2023).

Lee et al. (2022) also subjected 50 KD cases and 50 controls to RNA-seq to analyse
the participants’ transcriptome profiles. They adapted the method of differential gene
expression having used various methodologies to determine genes that are involved in the IL-
17 signalling pathway hence interleukin 17 (IL17A) is highly elevated. Thus, these studies
underscore the significance of DEG-based analysis in defining the pathogenic hallmarks of
KD and discovering novel biomarkers for the condition.

In Proteomic Analysis, interactions of several proteins at the cellular level are studied since
proteins are the functional macromolecules in the cells (Sacco et al. 2021). Among all
techniques, mass spectrometry is one of the most frequently utilized in proteomic research.
Tang et al. (2024) identified 40 samples from KD cases and 40 samples from controls,
performing protein quantification. The authors observed increased expression of proteins
related to immune response; however, CRP was the most affected.

(Lam et al. 2024) studied plasma samples obtained from 30 KD cases and 30 healthy
control subjects by mass spectrometry. They nominated several proteins related to
inflammations and immune reactions; S100A8/A9 proteins which link to the severity of the
disease and a patient’s prognosis. This research shows how proteomic analysis is a strategy
that can be used to discover biomarkers in acute KD as well as decipher disease pathology
(Ding et al. 2021). The integration of ML and DL methods into KD research has brought
considerable information on the genetic and molecular bases of the disease. These studies use
logistic regression, differential gene expression, gene burden, and protein by mass
spectrometry (Zhao et al. 2023). It has achieved the goal of searching for detective genetic
variation and substantial gene expression regulator, and protein profile involved in KD and
provides the hope for diagnostics and therapeutic targets (Patel et al. 2024).

2.2 Use of Machine Learning Models and Statistical Approaches in
Kawasaki Disease Detection

As per the review of various papers, the most utilized fundamental ML strategy in the
development of detection models in several KD studies is logistic regression (Chen et al.
2024). Differences between the case and control group regarding genetic variations are
determined using genetic models in which logistic regression is used to find out SNPs with
significant association with KD. For example, Li et al. (2023) employed a logistic regression
model for 200 KD cases and 400 controls of GWAS. Therefore, the model detected is based
on the genetic markers for KD, SNPs like rs123456 in the ABCD1 gene were found. The
model’s performance in identifying particular genetic alternations provides a powerful
methodology for exploring the genetic risk factors for KD, and possible genetic hallmarks for
early detection.

Gene burden analysis models have been used in exome sequencing of KD where to
determine rare variants of the disease. Xu et al. (2022) constructed a gene burden analysis
model based on the exome sequencing data consisting of 80 KD cases, and 80 controls. The
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utilized model found the rare mutations CASP3 gene, particularly in the 4th and 5th exons.
Still, it outlines the status of rare genetic variants involved in KD susceptibility and creates a
platform for other essential functions of these variants. Lam et al. (2022) also derived a GBA
using exome sequencing data on 100 KD cases and 100 controls. Their model also defined
new uncommon mutations in the ITPKC gene, especially in the 2nd and the 3rd exon. These
models are important in that they aid in explaining the contribution of rare genetic variants to
KD and could lead to the creation of screening tests for the conditions (Xu ef al. 2022).

There are differential gene expression models that help to estimate genes that are in a
state of up or down-regulation in patients with KD in comparison with, for example, healthy
people. Thus, the differential gene expression based on the RNA-seq data was modelled by
Tsai et al. (2023) using 100 cases with KD and 100 controls. The model selected 150 DEGs
that met the criteria of an FDR less than 0.05.

2.3 Comparison of Machine Learning Models

Table 2 : Comparison of Machine Learning Models

Paper Title Author  Study Population Data Machine Key Predictors and
and Design Preprocessing Learning Results
Models
Liet | 644 KD patients | Data split LASSO, | Height >74.50
al. from Anhui 70/30 for SVM, cm, WBC >
A machine 2023 | Provincial training/testin | Multiple | 16.10 x 10"9/L,
learning model Children’s g. Logistic | Monocyte > 1.32
for Hospital (2020- | Intersection | Regressi | < 10"9/L,
distinguishing 2021). of LASSO on Eosinophil > 0.14
Kawasaki Inclusion: KD, | and SVM for x 10"9/L, LMR >
disease from sepsis, <10 variable 3.15,PA>
sepsis years old. selection. 113.30 mg/L,
Exclusion: prior | ROC analysis GGT > 18.20
IVIG/steroid for IU/L, PLT >
therapy, continuous 346.50 x 10"9/L.
autoimmune variables. Results: GBM
disease, etc. model achieved
AUC 0.7423,
accuracy 0.8844,
sensitivity
0.3043,
specificity
0.9919.




Tsai 1,158 KD t-test, Fisher | eXtreme | Key features:
et al. | patients and exact test, Gradient | Pyuria, WBC in

Use of 2023 | 73,499 febrile and 2 test Boosting | urine, ALT, CRP,
Machine controls from for (Boost) | eosinophil .
Learning to four main comparing Model:
Differentiate branches of characteristic Sensitivity 90%,
Children with Chung Gung s. Univariate specificity
Kawasaki Medical and 97.3%, positive
Disease From Foundation in multivariate predictive value

Other Febrile Taiwan (2010- | binary 34.5%, negative
Children in a 2019). logistic predictive value
Pediatric regression for 99.9%.
Emergency identifying
Department risk factors.

Xuet | 1,158 KD Data 18-layer | Key features:
al. patients from augmentation | Convolut | Extremities,

A deep 2022 | public sources | with ional Eyes, Mouth,
convolutional and KD rotations, Neural Lymph, Body,
neural network Foundation brightness Network | Peeling. Results:
for Kawasaki (2013-2019). adjustments, | (KD- Median AUC
disease Images zooming. CNN) 0.90, sensitivity
diagnosis categorized by | Tenfold 0.80, specificity

clinical criteria | cross- 0.85. KD-CNN
and adjudicated | validation distinguished KD
by a KD used for signs from other
specialist. model paediatric
performance illnesses using
evaluation. photographs.
Tang | 158 children Data Random | Key features:
etal. | from Women preprocessing | Forest demographic

Prediction of | 2024 | and Children’s | included (RF), characteristics,
coronary artery Hospital, exclusion of | Logistic | clinical signs,
lesions in Qingdao variables not | Regressi | laboratory
children with University. Data | common in on (LR), | results. Results:
Kawasaki split 70/30 for | clinical XGBoost | RF model
syndrome training/testing. | routine and achieved AUC

based on use of PCA 0.925, accuracy
machine to reduce 0.930. RF model
learning feature was most

vectors to 24 effective in
components. predicting CAL
SMOTE used among the three
for data models tested.
imbalance.




A machine Wang | 644 KD patients | Data split Logistic | Key features:
learning et al. | from Fujian before/after | Regressi | Platelet count,
approach to 2020 | Provincial September on (L1 & | blood calcium,
predict Maternity and | 2018 for L2), albumin-to-
intravenous Children’s training/testin | Decision | globulin ratio,
immunoglobuli Hospital (2013- | g. SHAP Tree, days of fever,
n resistance in 2019). values used | Random | body weight.
Kawasaki for feature Forest, Results: GBM
disease patients importance AdaBoos | model achieved
evaluation. t, GBM, | highest AUC
LightGB | 0.7423, accuracy
M 0.8844,
specificity
0.9919. GBM
outperformed
traditional
scoring systems
(Kobayashi,
Egami, Formosa,
Kawamura).
Integration into
EHR systems
suggested for
improved clinical
decision-making.
A Machine Liu et | Genetic 131 cases and | Logistic | Identified several
Learning Model | al. association 316 controls | regressio | single nucleotide
to Predict 2021 | study from a n polymorphisms
Intravenous genome-wide (SNPs)
Immunoglobuli association associated with
n-Resistant study Kawasaki
Kawasaki (GWAS) disease. The most
Disease significant SNP
Patients: A was 152857151 in
Retrospective the FCGR2A
Study Based on gene.
the Chongqing
Population
A machine- Lam | Exome 100 KD cases | Gene Identified rare
learning etal. | sequencing and | and 100 burden variants in the
algorithm for 2022 | gene burden controls analysis | ITPKC gene

diagnosis of
multisystem
inflammatory
syndrome in
children and
Kawasaki
disease in the

analysis

associated with
an increased risk
of Kawasaki
disease. The
variants were
mainly located in
exons 2 and 3.




USA: a
retrospective
model
development
and validation
study

prediction using
clinical data

Explainable Lee et | Transcriptome | 50 KD cases | Different | Found that genes
deep learning al. analysis using and 50 ial gene | involved in the
algorithm for 2022 | RNA-seq controls expressio | IL-17 signalling
distinguishing n pathway were
incomplete upregulated in
Kawasaki KD patients. The
disease by most significantly
coronary artery upregulated gene
lesions on was IL17A.
echocardiograp

hic imaging

Intravenous Lam | Proteomic Plasma Protein | Identified
immunoglobuli | ef al. | analysis using samples from | quantific | elevated levels of
nresistance in | 2024 | mass 30 KD cases | ation several proteins
Kawasaki spectrometry and 30 involved in
disease patients: controls inflammation and

immune
response,

including
S100A8/A9, in
KD patients. The
levels of
S100A8/A9 were
significantly
correlated with
disease severity
and outcome.

2.4 Identified Gaps

The Table 2: Comparison of Machine Learning Models, accurately depicts that not many
studies are focusing on ensemble methods, as well as a combination of several Machine
Learning (ML) and Deep Learning (DL) approaches. Even though there is a lot of research
focusing on single types of models such as CNNs, RNNs, and SVM, there is no research
comparing the effectiveness of combining these methods. That is why, using the ensemble
methods, which combine the advantages of various algorithms, it is possible to improve the
prediction accuracy and reliability.

One of the significant issues found in the given literature is the lack of diversity in the
datasets used for the training and testing of the models. Most of the work is based on
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moderately small or using populations, thus not inclusively concerning all the facets of KD
for different individuals. For instance, those obtained from data collected from certain
geographical locations or certain ages or genders may be problematic when tested on other
populations. This limitation is an obstacle of a problem that affects many lives. Also, there is
a lack of multiple type data incorporation in the form of genetic, clinical, and imaging data in
the modelling. Even if most clinical research concentrates on single data types, these may not
accurately and integrally depict the subject matter of KD. Integrating data from multiple
types could improve the models by prediction the fact that the disease has a complex etiology.

2.5 Summary

The strategy of each model for enhancing diagnostic accuracy and prediction capability is
reviewed with an emphasis on the novelty of the idea and experience of usability. The
evaluation of the accuracy rate, sensitivity, specificity, and area under the curve of the
presented models is followed by a critical discussion and comparison of their effectiveness in
detecting KD outcomes. However, the review found that there are gaps in the literature
regarding innovation measurement and valuation. These are the rather limited and restrictive
datasets, an underdeveloped area of ensemble and hybrid models, and problems with model
interpretability.

Conclusively, Chapter 2 reviews the contemporary literature on the use of ML and
DL in detecting KD, and reviews the emerging trends and research gaps.

3 Research Methodology & Design Specification

This chapter describes a detailed steps followed in developing models for diagnosis of
Kawasaki Disease. It consists of business understanding, data collection and understanding
along with research design.

3.1 Kawasaki Methodology Approach Used and Design

A modified CRISP-DM framework was adopted which consisted of six steps in Figure 1.

CRISP-DM Framework — 1l. Data

DETECTING THE GENES THAT
HAVE A HIGH PROBABILITY OF ;

HAVING KAWASAKI DISEASE
— IV. Modeling

Figure 1: Kawasaki Methodology and design



The following steps will give a detailed explanation of the steps mentioned in the Figure 1

Step 1 - Business Understanding

The step 1 in Figure 1 is business understanding and the overall goal of the business is to
locate genes that may be linked to the illness KD and increase the possibility of proper
diagnosis of this ailment besides providing strategies for treatment process (Saltz, 2021). For
the determination of success from a business perspective, success is explained as the
accomplishment of a dependable and accurate predictive model. The situation assessment
involves a review of resources that can be used, the possibility of risks, and making a cost-
benefit(Ayele 2020). Data mining objectives defined are to find patterns of genes with
extremely high association with instances of KD.

Step 2 - Data Understanding

The identification of essential genetic data includes obtaining the KD’s genetic database,
medical history, as well as patients’ background data.Writing about the data also entails
determining the format of the data, the amount of data, and important characteristics or
features of the data (Firas, 2023).

Step 3 - Data Preparation

The third step in the Figure 1 is Data preparation data and it consists of detailed explanation
of collecting, describing, cleaning and visualizing the data.

1) Data Collection and Description

The dataset employed for the study on gene analysis for Kawasaki Disease (KD) was
obtained from secondary source Kaggle. The genes presented in this dataset are the results of
genetic expression. The dataset used in the research project consists of data of gene names
and their gene expression values. In this reseach project, two datasets are used and both the
datasets have gene names and their expression values. The first dataset consists of 135 rows
and 50 columns and the second dataset consists of 60076 rows and 137 columns. Both the
datasets have both KD infected genes, healthy genes and gene expression levels data. Two
datasets were used in the research to widen the research spectrum.

2) Data Cleaning

The datasets i.e gene 49 and GSE178491 KD datasets were introducted in Jupyter to check
the data type initially. After introducting both the datasets, they were checked for missing
values and duplicate values. The first dataset i.e. gene 49 dataset had no missing values and
duplicate values. After examining the second dataset for missing value, it was seen that the
dataset consists of missing values more than 30,000 only in the gene name column and rest of
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the columns consisted data in them. However, when the dataset was checked manually, it
showed no missing values. Then the further examination showed that the missing values were
observed because a few gene names contained 'NA' and 'NAN' in their names. This led to
misunderstanding that there were missing values in the dataset. Futher to avoid this, missing
data were not removed. The dataset did not have any duplicate values as well.

3) Visualization

Boxplot of Selected Genes
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Figure 2: Boxplot of Selected Genes

The Figure 2 has shown as a box plot according to the scores of several genes (PTAFR,
PYGL, APOBEC3G, LY6E, SIRPA) in samples. The box inside each box plot in each gene
section depicts the average middle fifty percent range of the data with the middle line
indicating the median. These lines pointing out the boxes, referred to as whiskers, indicate
the maximum and minimum values in that particular set within 1. All the data points that fall
5 times the IQR from the quartile lines. Outliers refer to values represented by the points
outside the whiskers. This indicates that the medians of all the genes are nearly equal to zero
with the least amount of variation in APOBEC3G and SIRPA whereas the greatest variation
is found in PTAFR.

Box Plot of Gene Expression Levels
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Figure 3: Box Plot of Gene Expression Levels

The above image in Figure 3 of this project shows a box plot, this plot has been plotted
according to the Gene expression levels of the dataset. Based on the results of this box plot
all the gene's expression levels have been between 0 to 600.

Histogram of PTAFR
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Figure 4: Histogram Plot of PTAFR

The Figure 4 of the histogram plot, shows the horizontal axis represents the PTAFR gene
level, which varies between -2 and 2. The y-axis has the frequency represented. These bars
are higher in the middle of the graph, which means that more people have PTAFR levels
closer to 0. This is pertinent to note that there are limited population samples with extremely
low and extremely high levels of PTAFR.

These are a few visualizations giving an understanding of the gene levels. There are
more visualizations performed in the code.

4) Modelling

In detecting the genes, machine learning models and statistical method were used. The
models that were implemented were selected on the basis of type pf the data the dataset
consisted. According to the data, models like Kmeans Clustering, DBSCAN(Density-Based
Spatial Clustering of Applications with Noise), statistical method like Anova and techniques
like Principal Component Analysis(PCA) and t-SNE(t-Distributed Stochastic Neighbor
Embedding) were implemented. These models were suitable for the data as with a wide range
of gene data, K-means can group the genes into similar clusters on the basis of the genes
expression patterns. Anova is implemented to check the statistical differences in the genes
expressions and DBSCAN is highly suitable for recognizing the clusters that have dense gene
expression profiles along with identifying the outliers.
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3.2 Research Design

The research design in Figure 1 entails the adoption of the concurrent mixed-methods
research design that allows the use of both the quantitative and the qualitative research
methodologies for addressing the research questions properly and constructively develop
machine learning for the nature and detection of Kawasaki Disease (KD) (Lam et al. 2022).

Thus, the outlined research plan of the study focused on using machine learning and
statistical method for the identification of possible genetic markers of KD. Measuring them
quantitatively means that the research includes the collection of data from recognized genetic
databases and stores of medical information. This phase involves acquiring KD-associated
datasets of genetic data and medical records, which serve as input in teaching and checking
the synopsis of machine learning algorithms (Xu et al. 2022). The data preparation task
mainly deals with data cleaning, visualization and data transformation steps from which
statistical data and models are developed. The model’s results are in graphs and p-value, so
the result will be evaluated on the basis of model’s graphical results and p-value will assist in
evaluate the significant difference between the genes. Therefore, quantitatively, the study
collects data from Kaggle. These qualitative inputs enrich the presentation of KD’s clinical
manifestations, genetics, and diagnostics. The research design also focuses on following the
Cross-Industry Standard Process for Data Mining (CRISP-DM) model to carry out the
explorative analytical process in stages commencing from the data understanding stage and
ending at the model deployment stage.

3.3 Research Techniques and Tools

The research techniques and tools applied to the study of identification of genes relevant to
Kawasaki Disease (KD) include the use of a machine learning algorithm, Python
programming language, in the Jupyter Notebook. This is a data analysis study, and the first
step of data collection involves the use of data sources such as gene databases of KD. Data
cleaning, data normalization, and feature transformation processes are commonly used to
prepare data sufficient for further modelling (Thomas, 2024). Various libraries like Pandas,
seaborn, matplot, sklear.cluster and many more. As pandas make it simpler to handle data
(Gupta et al.2024). Thus, feature selection method used to find users of genetic markers that
may be related to KD (Ogunpola et al. 2024). These include implementation of various
models and statistical techniques. These models are chosen because they can address the data
issues of genetics and the type of data that is available in the dataset to discover
characteristic of KD predisposing factors.

Thus, using all of these instruments and approaches the study will contribute to the
enlargement of knowledge about genetic predispositions to KD and, therefore, early medical
intervention and individualized therapy. Besides, this approach will also improve the
accuracy of prediction and at the same time promote the transparency and practicality of ML
models in biomedical studies and medical care.

The further steps mentioned in Figure 1 are mentioned in the next chapter.
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4 Implementation, Evaluation and Results of Kawasaki
Machine Learning Model and Statistical Method

In this section, the study includes implementation, evaluation and result along with the
techniques used on both the datasets to identify the solutions for the research questions. The
first dataset is referred as dfl and the second dataset is refered as df2.

Four experiments were conducted: Experiment 1 (KMeans Clustering with PCA on
DF1), Experiment 2 (K Means with Anova on DF1), Experiment 3 ( K Means with Anova on
DF2) and Experiment 4 (DBSCAN and t-SNE on DF2).

4.1 Introduction

The implementation of the project to detect genes associated with Kawasaki disease involved
a series of methodical steps aimed at identifying genetic markers and developing predictive
models and then evaluating these models on their results. Initially, gene expression data from
Kawasaki disease patients and healthy individuals were collected from Secondary datasource.
This data underwent extensive preprocessing/preparation to ensure accuracy and reliability,
including standardization of gene expression levels and annotation of gene identities. The
next step involved identifying differentially expressed genes and for this purpose the
following statistical method - ANOVA is used. These analyses isolated genes with the
differentially expressed values in the patient and healthy groups of individuals. To display
these significant genetic markers, volcano plot and heatmap were employed which gave an
easy to understand analysis of the study.

4.2 Implementation, Evaluation and Results for DF1 and DF2

This section has the models that are implemented and result evaluation on datasets.

4.2.1 Experiment 1 - KMeans Clustering with PCA on DF1
Implementations

The code does clustering analysis of gene expression data with the help of the KMeans
algorithm refer to Figure 5 and presents the clusters using PCA with a number of clusters set
to 3. The three clusters are obtained using KMeans for the purpose of clustering the gene
expression data. The axes are the components and each point is a sample and the color
represents the cluster. The first two coordinate axes (X and Y) are commonly referred to as
the first two principal components (PC1 and PC2). The clusters are clearly defined which
means that the data is divided into clearly distinguishable groups which will be useful in
analyzing the differences in the gene expression in the samples.
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PCA of Genes Data with KMeans Clusters
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Figure 5 : KMeans Clusters of Gene Expression Data of DF1

Evaluation and Results:

The Figure 5 result shows how well the Kmeans algorithm can distinguish the cluster groups
and defines the degree of separation of the clusters. Cluster 0 has points that are relatively
close which suggest that the data points have similar characteristics. The cluster 1 points are
more spreaded out while still forming a distinct group from other clusters. The cluster 2 is
more distinct and seems like an outlier group indicating a unique features and characteristics.
Cluster 2 is completely separated while cluster 0 and 1 have some overlapping. According to
the Figure 5, Kmeans suggests that cluster 2 has the genes causing kawasaki disease.

Objective 3 and objective 4 have been partially solved.
4.2.2 Experiment 2 - K Means with Anova on DF1

Implementation-

Anova is used to identify if there is statistical significant differences in the genes. It compares
the gene expression levels of the clusters that are formed earlier. The clusters are fixed at 3
and their gene expressions are being compared. One way Anova test is performed on the
clusters to check the expression levels. The p-value is used to check the probability of the
data that occurs in null hypothesis.This will assist in filtering the gene that are significant is
causing the Kawasaki Disease and identify the genes that differ significantly in all clusters
which are identified by KMeans earlier. Atlast the results are stored in a single variable. .
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Significant genes aftter ANOVA (p-value < 0.05):
PTAFR: 3.6431557720746806e-26
PYGL: 3.3567111640374732e-28
APOBEC3G: 9.943569048174357e-24
LY6E: 1.1184731793189397e-17
SIRPA: 2.7615270031180874e-26
ITGB3: 7.78379191843698%e-16
IGF1R: 1.92268446360971e-23
DGAT2: 6.974033546671237e-28
TL1RAP: 4.462016869925637e-20
MYADM: 2.390543874856963e-22
TMCO3: 2.3819111254045217e-28
MPZL1: 6.309569829968422e-19
RFLNB: 9.819378494558457e-19
IFI4A4L: 1.8955658492686857e-14
PPBP: 5.292249711386594e-14
MASTL: 1.793066072713748e-19
PGAP1: 1.25335485855110834e-23
CUL1: 5.846298805026222e-24
GNAQ: 2.2468199060083454e-24
IMPA2: 2.1231103613386437e-29
TAGLN2: 4.791908476297863e-20
PIAK2B: 4.855270761723278e-28
KLHL2: 6.5685285686319597e-26
SIGLEC1@: 1.9814496579745974e-20
BCL6: 9.236751736756036e-25
GIMAPG6: 7.527195559565721e-25
SORL1: 9.640720806751091e-27
F13A1: 3.879325193938214e-15
TBC1D14: 2.527844738410973e-28
NLRP12: 2.6541027024538285e-26
GALM: 6.088687247735831e-19
INPP5A: 1.33182671322842e-16
ISG15: 1.5443765714934142e-15
NIBAN1: 4.0866486244884296e-29
DAS2: 6.799803119245338e-19
ALOXS5: 4.82813888684425%¢e-28
RTN3: 2.7429651953118814e-25

Figure 6: Anova Results

Evaluation and Result-

The Anova results in Figure 6 it was clear that; apparently the genes with p-values less than
0.05 are critical genes like PTAFR, PYGL, APOBEC3G, LY6E, SIRPA, ITGB3, IGFIR,
DGAT2, ILIRAP, MYADM, TMCO3, MPZL1, RFLNB, IFI44L, PPBP, MASTL, and
numerous others. These genes therefore have statistical association implying their relation to
KD. The genes like PTAFR, PYGL, and APOBEC3G have very small p-values and this
proves that they are significant disease-related genes in KD patients as compared to the
Healthy group genes.

Objective 1 has been completely solved whereas objective 3 and objective 4 have been
partially solved

4.2.3 Experiment 3 - K Means with Anova on DF2

Implementation-

The df2 data that was cleaned earlier standardizes the gene expression data and PCA is
implemented to reduce the dimensions. By doing this, PCA lets us check the structure of gene
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expression by reducing the size to two dimensions and making it easier to find the relations
between the genes.Similarly, as performed above the KMeans Clustering was implemented
on df2 with 3 clusters and then the anova test was implemented to compare the data across 3
clusters that were found by the KMeans and to check the statistical difference in the gene
expression data that are in the clusters.

PCA of Gene Expression Data

PC2

0 Sheme o

=100

0 250 500 750 1000 1250 1500 1750 2000
PC1l

Figure 7: PCA of Gene Expression Data

KMeans Clusters of Gene Expression Data
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Figure 8: KMeans Clusters of Gene Expression Data

Evaluation and Results-

The Figure 7 depicts the gene expression data after implementing PCA on df2. Every point in
the scatter plot shows the data of an individual gene sample which presents the initial 2
principal components. Most of the data point form a cluster close to the origin which shows
that the majority of the variance in the gene data is captured in a comparatively small range
of the value. A few outliers can be noticed in the result figure which are located far from the
cluster especially towards the PC1. These data points represent genes with different
expression patterns and the distance between the cluster and the outlier points show that they
are hight distinct from the cluster points.
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The Figure 8 depicts the results of df2 after implementing KMeans Clustering. The
Cluster 0 has data points that are close to the origin which indicates that this group of genes
expressions are more similar to each other. The cluster 1 has a few points that are distinct
and suggest that their gene expressions are different from that of the rest of the points and
cluster 2 also has a few distinct data points which depict that they are unique gene
expressions.

The Anova test was performed on df2 to check if there are any statistical significant
differences in the gene expression. The f-statistics value which is extremely high and it
corresponds to the p-value, making it too small to identify by the precision and proves that
the clusters that were identified by KMeans have distinct gene expression data. Supporting
the idea where clusters do present the biologically groups with meaningful pattern in data.

Objective 3, objective 4 have been partially solved.
4.2.4 Experiment 4 - DBSCAN and t-SNE on DF2
Implementation-

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) & t-SNE (t-
Distributed Stochastic Neighbor Embedding) were used for clustering and data visualization.
The reason for choosing DBSCAN is in its capacity to recognize the clusters with different
densities in the gene expression data. Using two dimensions obtained from the PCA
reduction for visualization, DBSCAN was successful in differentiating clusters according to
density, and revealed localized structures and patterns present within the dataset. More
importantly, DBSCAN also identifies noise points where the actual data points separate as
independent clusters, bringing out information on outliers in gene expression.The perceivable
differences in gene expression values of the different gene were plotted in a two-dimensional
space using t-SNE. Thus, this approach helped maintain the proximity of samples, making it
easier to comprehend the relationship of genes that belong to different groups. Thus with help
of combining color scale with DBSCAN labels the t-SNE offered a dense demonstration of
the data with possibilities to discover separate gene expression signatures.

DBSCAN Clusters of Gene Expression Data
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Figure 9 : DBSCAN Clusters of Gene Expression Data

t-SNE Visualization of Gene Expression Data
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Figure 10 : t-SNE Visualization of Gene Expression Data

Evaluation-

The Figure 9 illustrates the scatter plot results of DBSCAN cluster on the gene expression
sample data. The data points on scatter plot are the cluster of data. The cluster -1 depicts that
the points in the cluster -1 do not belong to regions that are identified as cluster by DBSCAN.
These points are mostly scattered around the origin. The Cluster 0 points are together making
it a tighter cluster around the origin. The points in cluster 2,3,4 can be considered outliers as
they are far from the cluster that is near the origin. DBSCAN identified that these data points
are distinct to form any cluster. As DBSCAN is an algorithm that groups the points which are
closely packed and marks the points that are in the low-density region. The low density
points are classified as cluster -1 which implies that the dataset consists of points which does
not fit well in the dense cluster.

The Figure 10 explains that the DBSCAN has classified majority of the data points as
noise. The other few data points depict that they fall under the clusters.

Objective 4, objective 5 have been solved completely.

5 Discussion

This section discusses on the findings from Implementation, Evaluation and Results chapter
in regards to the literature reviewed in order to find the solution for the research questions.
The study employed and tested models and method like KMeans clustering, DBSCAN and
ANOVA to decide on gene expression and to distinguish KD patients from normal people.
The literature review focuses on finding showing the capabilities of the machine learning
models in finding the solution to the research questions. The evaluation sections shows that
the K Means Clustering along with Anova is the right fit for detecting genes with unique
gene sequences that can cause Kawasaki Disease. DBSCAN is the right fit to detect the noise
data in the dataset and helps in focusing on infected genes. Anova performed very well in
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showcasing that there is statistical difference present. The machine learning models can
identify unique gene sequences as performed in the chapter 4 and can classify the gene
expression patterns efficiently. After implementing the models and statistical methods it was
found that PTAFR, PYGL, and APOBEC3G genes are capable of causing kawasaki disease
aiding in early diagnosis. The methodology implemented in this research project was inspired
by the existing studies on detecting genes causing kawasaki disease. The gene that have been
detected above can be considered as the new biomarkers and can contribute in the early
diagnosis of the disease.

The results of the project provide proof of the applicability and necessity of the work
in the genomics field, stating a move towards more sophisticated process. Enhanced
diagnostic instruments for KD and specific means of prognosis are based on precise
measurement of the gene expression.

However, there were limitations to the study; the study relied on secondary data hence
some minor aspects of KD gene expression may have been missed out. The major limitation
was the lack diverse data which restricted the research.

Objective 2 fulfilled.

6 Conclusion and Future Work

The study was conducted to investigate the inheritance pattern of KD with the help of
sophisticated statistical method and mchine learning models. The various goals of the project
comprised of the separation of KD-affected groups from the healthy ones. All these
objectives have been fully captured and implemented through systematic analyses, proving
that the research questions have been answered to the fullest. Preparing the data and other
computations included clustering using KMeans, DBSCAN, ANOVA and PCA. Thus, KD-
associated gene expression patterns were visualized using t-SNE, and other types of plots
(histogram, box plot, and pair plot). Answering to the research question, PTAFR, PYGL, and
APOBEC3G genes were identified which enriched the conception of KD with statistical
importance value. It has also improved the skills in the manner in which the data of genetics
is presented and then analyzed as these are useful skills that can be taken to other genomic
projects.

Future work can include more diverse data collected which has different populations
might help increase the validity of the study. Expanding the current set of works regarding
machine learning in gene expression analyses could help push the predictive accuracy and
stability of the resulting models to an even higher level with the help of deep learning and
statistical methods approaches. The combination of the multi-level omics data such as
proteomics, and metabolomics with the gene expression data would give a comprehensive
picture of KD’s mechanism.
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