ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc Data Analytics

Monika Maheswari Baskar
Student ID: X22200169

School of Computing
National College of Ireland

Supervisor: Vikas Tomer

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Monika Maheswari Baskar
Student ID: X22200169
Programme: MSc Data Analytics Year: 2023-2024
Module: MSc Research Project
Lecturer: Vikas Tomer
Submission Due
Date: 16/09/2024
Project Title: Yoga Pose Prediction Using InceptionV3 an Transfer Learning
Approach
Word Count: 1110 Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Monika Maheswari Baskar

Date: 16/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple v
copies)

Attach a Moodle submission receipt of the online project v
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both v
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Monika Maheswari Baskar
X22200169

1 Introduction:

This study is titled “Yoga Pose Prediction using InceptionV3 and transfer learning approach”
this research is all about predicting 38 Yoga poses. This configuration manual contains
thorough information about the hardware and software to build the environment. Specific
details of the data sources, system specifications, codes and libraries used for implementing
and evaluating this research.

2 System Requirements:

This section explains about both the hardware and software required to implement and run
the code was thoroughly described in this section. The setup for jupyter notebook through the
anaconda navigator, required python libraries and packages and other components which are
required are also mentioned. This section is used to explain that the code runs without any
glitch and to make sure that it can be understood by everyone easily.

3 Hardware Requirements:

Figure 1 explains the hardware used for this project to understand the improved version of the
hardware components have been used to run the code. Window 11 with 64 bit processor, i3
gen and 12 GB.

®

Related links

Device specifications

Device name DESKTOP-USS5EL6P

Processor Intel(R) Core(TM) i3-1005G1 CPU @ 1.20GHz 1.20 GHz
Installed RAM 12.0 GB (11.7 GB usable)

Device ID 30DA1024-A78C-4A65-9CC5-84DEFAB26AFS

Product ID 00327-36249-80641-AACEM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Windows specifications

Domain or workgroup ~ System protection Advanced system settings

Edition Windows 11 Home Single Language

Version 23H2

Installed on 27-07-2023

OS build 22631.3880

Experience Windows Feature Experience Pack 1000.22700.1020.0

Figure 1 Hardware Requirement of the system

4 Software Requirements:

Copy G5

Copy S

Python was the only programming language used in this study for the implementation. This
python code was written and executed in a jupyter notebook that was used as an easy to use
platform making an excellent choice for deep learning and machine learning tasks.

Jupyter Notebook
Anaconda Navigator

Figure 2 shows all the necessary imported libraries needed for the research project for data
pre-processing, transformation, evaluation and implementation of the InceptionV3 algorithm
to implement the yoga pose prediction.

import os

import ast

import mediapipe as mp
import numpy as np
import matplotlib.pypl
import cv2

from sklearn import metrics

from
from

PIL import Image
os import listdir

ot as plt

import tensorflow as tf

from
from
from
from
from
from
from
from
from
from
from
from

tensorflow.keras.
tensorflow. keras.
tensorflow. keras.
tensorflow. keras.
tensorflow. keras.
tensorflow.keras.
tensorflow.keras.
tensorflow.keras.
tensorflow. keras
tensorflow. keras
mlxtend.plotting

sklearn.metrics import precision_score, recall score, fl_score

preprocessing.image import ImageDataGenerator

applications import InceptionVv3

layers import BatchMormalization, Dense, Dropout

models import Model
optimizers import Adam
prepracessing import image
utils import img_to_array
utils import array_to_img

.utils import load_img
.preprocessing.image import ImageDataGenerator,

import plot_confusion_matrix

Figure 2 Necessary Libraries

load_img,

img_to_array

5 Data Collection:

The dataset was taken from kaggle which is a publicly available dataset consisting of yoga
asanas with a total number of 6720 images belonging to 38 classes which are then
downloaded in the local disk and then extracted from zip to normal. Yoga poses were
organized into folders with names corresponding to the respective yoga pose.

6 Implementation:

This section detail explains about the project's data, modelling, training and finally getting the
results and visualizations along with the step by step guide for reproducing the study using
the provided code.

7 Data Augmenting:

Open the yoga project notebook and import all the necessary packages, augmenting the
images from the dataset in Figure (3) and keeping the output path as a new folder to import
all the augmented images into that folder. Also while doing these changes checking if the
images ends with png, jpg or jpeg after these all steps it loads and pre-processes the images
and executes the result as total image processed and total augmented images.

folder_dir = r"D:\Projects\FYP\Phase_2\Yoga classification\New_folder\Yoga_Dataset\yoganidrasana”
output_base dir = r"D:\Projects\FYP\Phase_2\Yoga_classification\New_folder_ 2"
yoganidrasana = os.path.basename(folder_dir)

Creating output directory

asana_output_dir = os.path.join(output_base_dir,yoganidrasana)
os.makedirs(asana_output_dir, exist_ok=True)

for images in os.listdir(folder_dir)

Checking if the image ends with png, jpg, or jpeg
if images.endswith(".png") or images.endswith(".jpg") or images.endswith(".jpeg"):
img_path = os.path.join(folder_dir, images)
img = load_img(img_path)
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
total_images_processed += 1
i=e
for batch in datagen.flow(x, batch_size=1, save_to_dir=asana_output dir, save_prefix= yoganidrasana, save_format="jpeg')
i+=1
total augmented_images += 1
if 1 » 3:
break
print(f"Total images processed: {total_images processed}")
print(f"Total augmented images generated: {total_augmented_images}")

Figure 3 augmenting the data

8 Data Preparation:

For detecting the pose and iterating through each of the image files which performs pose
detection and creates the annotated images with the landmarks. The annotated images are
generated and saved in an output directory Figure (4) with the filenames and this code
explains that the OpenCV is used for image handling and Mediapipe for pose detection. The
annotated images are the skeleton images where the original raw image changed to the
skeleton format to get the precise accuracy.

mp_drawing = mp.solutions.drawing utils
mp_pose = mp.solutions. pose

Function to draw joints using Mediapipe
def draw_landmarks(image, landmarks, connections, color=(8, 8, 255)):
if landmarks:
for connection in connections:
start_ide = connection[@]
end_idk = connection[1]
if landmarks.landmark[start_idx].visibility » 8.5 and landmarks.landmark[end idx].visibility » @.5:
start = mp_drawing. normalized to pixel coordinates(
landmarks. landmark[start_1dx].x,
landmarks. landmark[start_idx].y,
image.shape[1],
image.shape[0])
end = mp_drawing._normalized to pixel coordinates(
landmarks. landmark[end_idx].x,
landmarks. landmark[end_idx].y,
image.shape[1],
image.shape[@])
if start and end:
cv2.line(image, start, end, color, 2)
cv2.circle(imsge, start, 5, color, -1)
cv2.circle(image, end, 5, color, -1)
folder_dir = r"D:\Projects\FYP\Phase_2\Yoga classification\New_folder_2\yoganidrasana"
files = os,listdir(folder_dir)
c=4

for image name in files:
Check if the file is an image (png, jpg, jpeq)
image path = os.path.join(folder dir, image name)
if image path.endswith(".png") or image_path.endswith(".jpe") or image_path.endswith(".jpeg"):
image = cvl.imread(image_path)
if image is None:
continue
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=8.5) as pose:
image.flags.writeable = False
results = pose.process(cv2.cviColor(image, cv2.COLOR_BGR2RGE))
image. flags.writeable = True
annotated_image = np.zeros(image.shape, ctype=np.uints)
annotated_image,fill(255)
if results.pose_landmarks:
draw_landmarks (annotated image, results.pose landmarks, mp_pose.POSE_CONMECTIONS, color=(8, @, 255))
draw_landmarks(image, results.pose lsndmarks, mp_pose.POSE_CONNECTIONS, color=(8, 8, 255))

#soving the skeleton annoted image in new path
output_path = ns.path.join(r"D:\Projects\FYP\Phase_2\Voma_classification\Voma_Skeleton\yoganidraszna”, £"{c}.jng")

v, imarite(output_path, annotated image)

c+=1

Figure 4 Pose detection and Skeleton annotation

9 Reading the data:

After data preparation the dataset has been divided into train and validation. Dataset is going
to perform the prediction of the yoga asana and these 38 asanas are going to be used in model
prediction as shown in Figure (5).

source_dir = r'D:\Projects\FYP\Phase 2\Yoga classification\Voga Skeleton\virabhedrasana 11"
destingtion_dir = r'D:\Projects\FYP\Phase_2\Yoga_classification\New Skeleton Dataset\virabhadrasana 11"

Figure 5 Reading the data

10 Model Training InceptionV3:

In the same notebook installing the InceptionVV3 model as shown in figure (6) and by adding
some custom layers from batch normalization, ReLU and Softmax activation as shown in
figure(7).

img_shape = (224, 224, 3)
pre_trained = InceptionV3{welghts='1imagenet’', include top=False, input_shape=img_shape, pooling='ave')
Fine-tune the lost 15 Layers
for layer in pre_trained.layers[:-15]:
layer.trainable = False
for layer in pre_trained.layers[-15:]:
layer.trainable = True
pre_trained. summary()
print(f'Total number of layers: {len(pre_trained.layers)}’)

Figure 6 installing the InceptionV3 model

img_shape = (224, 224, 3)
num_classes = 38
pre_trained = InceptionV3(weights='imagenet', include_top=False, input_shape=img_shape, pooling="avg')
for layer in pre_trained.layers[:-15]:
layer.trainable = False
for layer in pre_trained.layers[-13:]:
layer.trainable = True

% = pre_trained.output

¥ = Batchlormalization(axis=-1, momentum=8.99, epsilon=0.081){x)
% = Dense(128, activation='relu')(x)

% = Dropout(8.2)(x)

predictions = Dense(num_classes, activation='softmax’)(x)

Create the final model

model = Model{inputs=pre_trained.input, outputs=predictions)

model . compile{optimizer=Adam(learning_rate=8.881), loss='categorical crossentropy’, metrics=['accuracy'])
mode 1. summary()

Figure 7 Adding some custom layers

After the model is trained for the architecture and established the project was trained over

200 epochs as shown in figure (8 & 9).

img_shape = (224, 224, 3)
num_classes = train_data.num_classes
pre_trained = InceptionV3{weights="'imagenet', include_top=False, input_shape=img_shape, pooling='avg')
for layer in pre_trained.layers[:-15]:
layer.trainable = False

for layer in pre_trained.layers[-15:1:
layer.trainable = True
% = pre_trained.output
% = BatchMormalization(axis=-1, momentum=@.%9, epsilon=@.881)(x)
% = Dense(128, activation='relu')(x)
% = Dropout(8.2)(x)
predictions = Dense(num_classes, activation="softmax')(x)

model = Model{inputs=pre_trained.input, outputs=predictions)
model.compile{optimizer=Adam{learning_rate=8.881), loss='categorical_crossentropy', metrics=['accuracy'])
model . summary()

Training the model
STEP_SIZE_TRAIN = train_data.n // train_data.batch_size
STEP_SIZE WALID = val_data.n // val_data.batch_size

history = model.fit(train_data,
steps_per_epoch=STEP _SIZE_TRAIN,
validation_data=val_data,
validation_steps=STEP_SIZE VALID,
epochs=298,

verboze=1)
Figure 8 Adding the epoch

TOH7 108 2O T B o Y e R 1 R L - R Lo - G e - i L 1
Epoch 192/200
168/168 2s dms/step - accuracy: 8.8758 - less: 8.2715 - vel_sccuracy: 9.8333 - val_loss: 1.3893
Epoch 193/200
168/168 3675 2s/step - accuracy: @.8744 - loss: 8.4883 - val_accuracy: ©.7965 - val_loss: 8.7831
Epoch 194/200
168/168 25 4ms/step - accuracy: 1,080 - loss: @.0722 - vel_accuracy: 9,750 - val_loss: 1.8477
Epoch 195/200
168/168 3bds 2s/step - accuracy: 0.8786 - loss: 8.4226 - val_accuracy: 8.7919 - val_loss: 8.8275
Epoch 196/2008
168/168 25 4ms/step - accuracy: @.8125 - loss: 8.5655 - val_accuracy: 8.8333 - val_loss: .6479
Epoch 197/200
168/168 3665 25/step - accuracy: ©.876% - loss: 8.3931 - val_accuracy: @.7896 - val_loss: @.8320
Epoch 198/200
168/168 125 GBms/step - accuracy: 8.9862 - loss: 8.2872 - val_accuracy: 9.9167 - val_loss: 8.4574
Epoch 199/2008
168/168 3605 2s/step - accuracy: @.8674 - loss: 8.4343 - val_ accuracy: ©.7995 - val_loss: @.8167

Epoch 209/200

168/168

25 4ms/step - accuracy: @.8750 - loss: 8.3837 - val_accuracy: @.750@ - val_loss: 1.8199

Figure 9 Result of 200 epoch

Once the model is trained in InceptionV3 the next step is to print the accuracy and loss of
InceptionVV3 model in Figure (10 & 11). Once the code is executed it will print the graph of
both loss and accuracy in Figure (12 & 13).

plt.figure()
plt.xlabel('Epoch Humber')

plt.ylabel('Loss")

plt.plot(history.history['loss'], label="training set')
plt.plot(history.history['val_loss'], label='validation set')
plt.legend()

plt.title('Model Loss')

plt.show()

Figure 10 Code for model loss

plt.xlabel('Epoch Number')

plt.ylabel(" Accuracy')

plt.plot(history.history['accuracy'], label="training set')
plt.plot(history.history['val_gccuracy'], label='validation set')
olt. legend()

Figure 11 Code for model accuracy

Model Loss

Accuracy

3.5
- training set
~—— validation set
3.0 1
2.5
2.0 4
3fl..5" “
10 l\ | l l L *
'-H | l“ ‘ ‘ .“ ‘
051 ' W
0.0
0O 25 50 75 100 125 150 175 200
Epoch Number
Figure 12 Graph of model loss
1.0 4
| A i/ Vil ‘ 'i‘
b
P \f
iyl |
|
0.6
0.4 4
0.2 4
— training set
0.0 - — validation set
© 25 50 75 100 125 150 175 200

Epoch Number

Figure 13 Graph of model accuracy

11 Model Evaluating:

After training the model the next step is to check on the evaluation part by giving the
predicted image directory path to check whether the trained model is predicted perfectly or
not as shown in figure (14).

def predict_image(filename, model):
img_ = image.load_img(filename, target_size=(224, 224))
img_grray = image.img to array(img)
Img_processed = np.expand_dims{img_array, axis=8)
img_pracessed /= 255,

prediction = model.predict(img_processed)
print("Prediction array:", prediction)
print("Prediction shape:”, prediction.shape)
index = np.argmax(prediction)
print("Predicted index:", index)
if index »= len(classes):
raise ValueError(f"Predicted index {index} iz out of range for classes list of length {len(classes)}")
plt.imshow(img_array)
plt.shau()

predict_image(r"D:\Projects\FYP'Phase_2\Yoga_classification\Images\Tolasana 48.png", model)
Figure 14 Checking the Imge is predicting
The final step is if we give the image path with raw images it should predict the image as the

same but as the skeleton image with their respective asana name. In figure (14 & 15) it
predicts and gives the Paschimottanasana asana perfectly.

def findPosition(img, results, draw=True):
ImList = []
if results.pose landmarks:
for id, 1m in enumerate(results.pose_landmarks.landmark):
h, w, ¢ = img.shape
cx, cy = int{lm.x * w), int{lm.y * h)
ImList.append{[id, cx, cy])
if draw:
cv2.circle(img, {(cx, cy), 5, (255, @, @), cv2.FILLED)
return ImList

def findJoints(img, 1lmlist, pl, p2, p3, draw=True):
if len(Ilmlist) »>= p3 + 1:
x1, y1 = Imlist[pl][1:]

x2, y2 = Imlist[p2][1:]
x3, ¥3 = Imlist[p3][1:]
if draw:

cwv2.line{img, (x1, w1), (x2, y2), (@, 8, 255}, 3)
cw2.line{img, (x2, y2), (=3, y3), (@, 8, 255}, 3)

def predict_image(filename, model}:
img = image.load_img{filename, target_size=(224, 234})
img_array = image.img_to_array({img_)
img processed = np.expand_dims(img_array, axis=8)
img_processed /= 255.
prediction = model.predict(img_processed)
return prediction

mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose

Figure 15

image_path = r"D:\Projects\FYP\Phase_2\Yoga_classification‘Images\Paschimottanasana_37.png"
img = cvi.imread(image_path)

Check if the imoge was Loaded successfully
if img is Mone:
print(f"Error: Unable to load image at {image_path}™)
else:
with mp_pose.Pose(min_detection_confidence=8.5, min_tracking_confidence=8.5) as pose:
img.flags.writeable = False
results = pose.process(cv?.cvtColor(img, cv2.COLOR_BGR2ZRGE)})
img.flags.writeable = True

annotated_image = img.copy()
annotated_image = np.zeros(annotated_image.shape, dtype=np.uintd)
annotated_image.f111(255)

Imlist = findPosition(img, results, False)

if len(lmlist) != @:
findJoints{annotated_image, I1mlist, 12, 14, 16, True)
findJoints{annotated_image, I1mlist, 11, 13, 15, True)
findJoints{annotated_image, I1mlist, 12, 24, 26, True)
findJoints{annotated_image, I1mlist, 11, 23, 25, True)
findloints(annotated_image, lmlist, 16, 18, 28, True)
findloints(annotated_image, lmlist, 28, 16, 22, True)
findloints(annotated_image, lmlist, 15, 17, 19, True)
findloints(annotated_image, lmlist, 19, 15, 21, True)
findloints(annotated_image, lmlist, 23, 24, 12, True)
findloints(annotated_image, lmlist, 12, 11, 23, True)
findloints(annotated_image, lmlist, 26, 28, 32, True)
findJoints{annotated_image, 1mlist, 32, 3@, 28, True)
findJoints{annotated_image, 1mlist, 25, 27, 29, True)
findJoints{annotated_image, 1mlist, 2%, 31, 27, True)
findJoints{annotated_image, Ilmlist, 1@, 9, 18, True)

findJoints{annotated_image, Ilmlist, &, 6, 5, True)
findJoints{annotated_image, Ilmlist, 5, 4, @, True)
findloints (annotated_image, lmlist, @, 1, 2, True)
findloints(annotated_image, lmlist, 2, 3, 7, True)

Display the annototed image using motplotlib
plt.figure(figsize=(5, 5})
plt.imshow(cv2.cvitColor(annotated_image, cv2.COLOR_BGRZRGE))
plt.title{"Paschimottanasana™)

plt.axis('on")

plt.show()

Figure 16 Predicting the training data

10

Paschimottanasana

251

75 1

» 100

125

175 1

200

0 50 100 150 200

Figure 17 Final Output

12 Reference:

Dataset Link : Yoga Pose Image classification Dataset Available :
https://www.kaggle.com/datasets/shrutisaxena/yoga-pose-image-classification-dataset

11

