Configuration Manual MSc Research Project Data Analytics Prakruthi Barthur Prakash Student ID: 23109742 School of Computing National College of Ireland Supervisor: John Kelly #### **National College of Ireland** ### **MSc Project Submission Sheet** ### **School of Computing** | Student
Name: | Prakruthi Barthur Prakash | | | | | |--|---|------------|--|--|--| | Student ID: | X23109742 | | | | | | Programme: | Data Analytics | 2023-2024. | | | | | Module: | Research Project | | | | | | Lecturer:
Submission | John Kelly | | | | | | Due Date: | 12/08/2024 | | | | | | Project Title: | Utilizing Advanced Machine Learning Techniques for Predicting Fetal Health Risks | | | | | | Word Count: | | | | | | | I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project. ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action. | | | | | | | Signature: PRAKRUTHI BARTHUR PRAKASHPRAKRUTHI BARTHUR PRAKASH | | | | | | | Date: | 12/08/2024 | | | | | | PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST | | | | | | | Attach a comple
copies) | ted copy of this sheet to each project (including multiple | | | | | | Attach a Mood | le submission receipt of the online project each project (including multiple copies). | | | | | | You must ensu
for your own ref | ere that you retain a HARD COPY of the project, both erence and in case a project is lost or mislaid. It is not p a copy on computer. | | | | | | Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office. | | | | | | | Office Use Onl
Signature: | y | | | | | | 5.g.iata.c. | | | | | | Penalty Applied (if applicable): ### Configuration Manual Prakruthi Barthur Prakash Student ID: X23109742 #### 1. Introduction This guide supports users in configuring the system according to individual operational needs with step by steps for basic setup and advanced personalization. This guide has been created to simplify the process of configuring it and make sure you obtain optimal performance/functionality in any use case. Covering all important configuration facts, it offers straightforward explanations and concrete examples to help all users make the right decisions. ### 2. Dataset Description | Sl
No. | Attribute Name | Data Type | Attribute
Description | |-----------|---------------------------------|-----------|--| | 1. | Baseline Values | Float64 | Heart Rate of Fetal | | 2. | Accelerations | Float64 | Rate of accelerations per second | | 3. | Fetal Movement | Float64 | Rate of fetal
movements
per second | | 4. | Uterine Contractions | Float64 | Rate of uterine contractions per second | | 5. | Light Decelerations | Float64 | Rate of Light
Decelerations
per second | | 6. | Severe Decelerations | Float64 | Rate of
Severe
Decelerations
per second | | 7. | Prolongued Decelerations | Float64 | Rate of
Prolongued
Decelerations
per second | | 8. | Abnormal Short-Term Variability | Float64 | Percentile of
time with
abnormal
short-term | | | T. | | | |------------|--|---------|--| | | | | variability | | 9. | Mean Value of Short-Term Variability | Float64 | Mean value
of short-term
variability | | 10. | Percentage of Time with Abnormal Long-Term Variability | Float64 | Percentile of
time with
abnormal
long-term
variability | | 11. | Mean Value of Long-Term Variability | Float64 | Mean value
of long-term
variability | | 12. | Histogram Width | Float64 | Width of the histogram | | 13. | Histogram Min | Float64 | Min Value of
Histogram | | 14. | Histogram Max | Float64 | Max Value of Histogram | | 15. | Histogram Number of Peaks | Float64 | Rate of peaks
in the exam
histogram | | 16. | Histogram Number of Zeros | Float64 | Rate of zeroes in the exam histogram | | 17. | Histogram Mean | Float64 | Hist mean | | | Histogram Mode | Float64 | Hist mode | | | Histogram Median | Float64 | Hist median | | | Histogram Variance | Float64 | Hist variance | | 21. | Histogram Tendancy | Float64 | Histogram
trend | | 22. | Fetal Health | Float64 | Fetal health:
Normal,
Suspect,
Pathological | ## 3. System Specification ### 3.1 Hardware Specification Following are the hardware specifications of the system that was used to develop the project: **Processor**: Apple M1 Chip RAM: 16GB Storage: 256GB **Graphics Card**: 8-core GPU Operating System: macOS Sonoma #### 3.2 Software Specification Visual Studio is a comprehensive IDE used to write, edit, debug, and build code (Python) and the version of Visual Studio used here is 1.91.0 (Universal). #### 3.3 Python Packages/Libraries used The following Python packages were installed using pip and used to implement the project - Pandas - Numpy - Mathplotlib - Seaborn - Plotly - Imblearn - Scikit-learn - Boruta ### 4. Implementation - 1) Preparing of data - 2) EDA (Exploratory Data Analysis) - 3) Feature Selection using Boruta - 4) Class balancing using SMOTE - 5) Model Building: Decision Tree, Random Forest, KNN, GBM - 6) Evaluation