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Akhil Anthony
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Abstract

In the rapidly evolving aviation industry, ensuring safety and efficiency of air-
craft’s is essential. This research investigates whether the integration of image pro-
cessing algorithms and predictive maintenance algorithms can enhance the efficiency
and reliability of aircraft engine maintenance operations. This paper addresses vul-
nerabilities in the traditional maintenance practices by focusing on real-life incidents
which highlight the need for better maintenance systems which can be used during
manufacturing and during the flights. This paper proposes a comprehensive system
using hybrid models CNN-BiLSTM, which is a combination of deep learning models
for RUL prediction and a hybrid model VGG16-SVM, which is a combination of
deep learning and machine learning model for defect detection. The evaluation of
the models showed CNN-BiLSTM model obtained an MAE of 48.03 and the VGG-
SVM model achieved an overall accuracy of 90.79% The developed web application,
designed for maintenance personnel demonstrates the systems ability to transform
the aerospace maintenance. The findings indicate that integration of advanced im-
age processing and predictive maintenance algorithms can improve the safety and
efficiency of the aircraft engines. Thus the study proves, the combination of im-
age processing and predictive maintenance techniques can enhance the aerospace
maintenance operations.

1 Introduction

In the aerospace industry, the maintenance processes have significant impact on safety
and reliability of aircraft’s. Recently, a JetBlue Airbus A321neo which is fitted with a
Pratt & Whitney PW110G engine encountered an issue and had to be brought down
through an emergency landing in Shannon, Ireland. Even though the aircraft was de-
livered recently, this incident put-forward the critical need for advanced maintenance and
monitoring systems for aircraft engines which can be used during manufacturing pro-
cess and throughout their operational life. It highlights weakness of today’s maintenance
strategies and stresses the importance of automatic defect detection during the produc-
tion, in addition to the continuous monitoring during the flight to help in early detection
of issues as well as precise estimation of the life expectancy of the engine components.
Developing systems that can easily identify flaws and accurately predict the remaining life
of the engine is crucial to ensure safety and reliability in aviation. Frequent aircraft en-
gine maintenance is a fundamental requirement in maintaining the reliability of aircraft’s.
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Figure 1: Turbo Engine Maintenance

Turbofan engines are the core component of aircraft and they operate under very harsh
environments which result in high mechanical stress. These engines need to be regularly
maintained and monitored to guarantee their reliability as they are crucial for the safe
functioning of aircraft( (Yang et al.; 2022)). Nonetheless, there are several obstacles in
maintaining these engines, ranging from accurately calculating the Remaining Useful Life
(RUL) to identifying flows in engine parts, especially the engine blades. The combination
of these challenges calls for a novel strategy that can enhance maintenance operations
reliability and efficiency.The complexity of the engines and the challenging operating con-
ditions they face cause wear and tear, and these are the root causes of the maintenance
issues occurring with turbofan engines. The conventional methods of maintenance, which
often rely on planned examination and reactive fixes, have proven inadequate in prevent-
ing unexpected failures.
Unexpected engine failure can be expensive due to repair costs, airport charges, and
potential catastrophic consequences. The aviation industries try to mitigate these risks
while upholding strict requirements for efficiency and reliability. The integration of innov-
ative technologies into maintenance practices offers a chance to address these challenges
more effectively. Should the issue be resolved or even somewhat alleviated, there would
be significant advantages. Predictive maintenance can enhance safety by proactively
detecting possible failures. In addition to safety , predictive maintenance can reduce
operational cost by minimizing pointless inspections and extending the lifespan of engine
components. Furthermore, the mitigation of unforeseen downtime would improve airline
operations overall efficiency, which contribute to higher profitability and customer satis-
faction.
Despite the possible advantages, there is still work to be done in identifying fan blade
flaws and accurately forecasting the remaining useful life of the turbofan engines. The
biggest challenge is the intricate and nonlinear process of engine deterioration, which is
influenced by various factors such as material properties, operating conditions and en-
vironmental impact( (Abdulrahman et al.; 2023)). Furthermore, the detection of defects
especially in engine fan blades require high precision due to the small size of the damage.
The technical side of the issue contains several sophisticated and interrelated processes.
The predictive maintenance relies on advanced data analytics and on various machine
learning models to process and understand vast amounts of sensor data collected from
the turbofan engines. Hybrid models like CNN-BiLSTM, which combine the strength
of CNN and BiLSTM have proven to be very effective in handling time-series data and
providing accurate Remaining Useful Life (RUL)predictions.
The application of image processing and computer vision technology is essential for de-
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fect detection in engine blades. Traditional methods are useful and still have limitations
in terms of efficiency and accuracy. The deep learning and machine learning models
have developed significantly in detecting defects in images and classifying them. These
models are trained on an extensive collection of images, they can detect various patterns
and even the smallest flows that a human inspector might miss( (Abdulrahman et al.;
2023)). Among these developments the VG16-SVM hybrid model which combines the
advantages of CNN and traditional machine learning language has become a powerful
technique. The combination of high accuracy of deep learning in feature extraction along
with robust classification capabilities of SVMs, result in enhanced performance in image
classification tasks. These points show that theVG16-SVM hybrid model will be more
suitable for defect detection.
The goal of this research project is to develop a comprehensive system that combines im-
age processing techniques like VG16-SVM hybrid for defect detection in turbofan blades
and a predictive algorithm CNN-BiLSTM hybrid models for forecasting the remaining
useful life of the engine. The combination of these innovative technologies reduces the gap
in ongoing maintenance practices dramatically along with enhancing both accuracy and
promptness of the maintenance measures. Taking preventive measures before conditions
worsen and result in catastrophic failures have become easier with the use of image pro-
cessing techniques which help in describing the defects in engine blades. A user-friendly
application will be developed using Streamlit for making this system practical and ac-
cessible. This application will provide a interface where user can input sensor data and
predict the remaining useful life and also detect the defect in the turbofan engines by up-
loading the images, making the system accessible to maintenance personals and decision
makers
A thorough analysis of prior studies reveals the fundamental concepts on which this work
is built. Predictive maintenance technology is becoming more and more necessary in
the aerospace industry. Concurrently, improvements in image processing technology have
demonstrated considerable potential for defect identifications. However combining these
disparate methods into a single framework for turbofan engine maintenance is a novel
field of study that could provide revolutionary results. In light of the points raised, the
main research question is : “Can the efficiency and reliability of aerospace maintenance
operations be enhanced by integrating advanced image processing algorithms for defect
detection in turbofan blades with predictive maintenance techniques for assessing the re-
maining useful life of turbofan engines?” The objective of this study is to develop a web
based application system which combines image classification and predictive maintenance
for achieving advancements in aerospace maintenance procedures.
The detailed flow of the research is as follows. Section 2 covers the review of the re-
lated research done in this field. Section 3 explains the methodology for RUL prediction,
Defect Detection and Web Application.The design specification is covered in section 4.
The implementation and Evaluation is depicted in section 5 and 6. Finally, the section 7
shows the conclusion and future work.

2 Related Work

Pronostic and Health Management (PHM) is a crucial element in maintaining the safety
and reliability of an aircraft( (Ensarioğlu et al.; 2023)). Remaining Useful Life estimation
and Defect Detection are the two important elements of PHM. PHM makes sure the
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systems work properly and prevent failures and reduce maintenance cost( (Ramasso;
2014)).Prognostics focus on obtaining the health details of the system and the remaining
life of the components inside the system. RUL prediction focuses on the remaining life
of the aircraft engine, meanwhile defect detection looks for different damages present
on the engine blade. Both RUL and defect detection methods can be classified under
Model-based, Data-Driven, and Hybrid Models( (Ensarioğlu et al.; 2023)).This literature
review explores recent developments in RUL estimation techniques and defect detection
methodologies.

2.1 Remaining Useful Life (RUL) Estimation

2.1.1 Model - based

Estimating Remaining Useful Life (RUL) is essential in prognostic and health manage-
ment to optimize maintenance plans and guarantee system dependability particularly
in intricate fields like aeronautical engineering. Jonathan and Christian ( (Garay and
Diedrich; 2019)) proposed a study that tackles the challenges of applying stochastic meth-
ods for RUL estimation. The Bayesian prognosis, wiener processes and Monte Carlo sim-
ulation were adapted to predict the remaining cycles before failure. The method proved
to be highly accurate, with results falling to underestimated confidence intervals in 80%
of cases. Focusing on the remaining cycles, this approach improves overall efficiency and
reduces downtime. Similarly, a web-based tool designed by Daniel, Bernadette, and Al-
berto ( (Azevedo et al.; 2019)) for simulating a Prognostic Health Management (PHM)
system focuses on the Remaining Useful Life prediction of specific components. Three
AI inspired methodologies are implemented, a similarity-based method, a neural network
and an extrapolation-based method. Despite the contributions there are limitations, as
the model is tested on synthetic data, it may not capture the complexities and variab-
ilities present in the real-world data also as the dataset increases the resources required
also increase and it can impact the tools usability in real world scenarios.

2.1.2 Data-driven Approaches

Han, Niu and Wang ( (Bingjie et al.; 2021)) introduced Similarity based methods which
are useful while implementing global models due to system complexity. They used his-
torical degradation data to predict the future performance. They used a system which
incorporated operating condition clustering and information fusion from multiple sensors.
They validated the model using the aero turbofan engine which demonstrated high ac-
curacy and robustness, which had a Root Mean Square Error of 25.4, which reflected the
performance and highlighted the method’s effectiveness. The experiment conducted by
Jianguo, Yujie, Xiao, Liying, Dong, Wenyou, Xiaochu, and Jinglin ( (Cui et al.; 2022))
integrated the Sequenze- and-Excitation mechanism with a bidirectional long short-term
memory network (BiLSTM), creating a robust SE-BiLSTM network. The model was
trained with the NASA’s engine performance degradation dataset and compared with the
traditional models which include BILSTM, LSTMBS, and LSTM, and the SE-BiLSTM
significantly reduced the root mean square error by 9.01%, 16.59%, and 23.05% respect-
ively. These results show the model’s superior predictive capability.
In a related approach, Shuan, Yucai, Jipeng, Jian ( (Zhao et al.; 2022)) combined an
Attention mechanism with s Long Short-Term Memory (LSTM) and this model op-
timized the Remaining useful life prediction by selecting the key features. The model
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employed L2 regulation early stopping mechanism and dropout to prevent overfitting
and the model achieved a lower RMSE of 13.25, 22.57, 12.98, 23.88. The integration
of the Multi-head Attention system with LSTM increases the computational complex-
ity and also the model’s performance and scalability will be affected when applied to
real time application data. Similarly, Hilal, Sevinc, and Kadir( (Tekgöz et al.; 2022))
examined various Machine learning like Random Forest(RF), Support Vector Regres-
sion(SVR), Multi-Layer Perceptron (MLKP), AdaBoost, and Gradient Boosting Regres-
sion(GBR) and Deep learning model like Long Short Term Memory(LSTM), Gated Re-
current Unit(GRU), Convolutional Neural Network(CNN), CNN-LSTM, CNN-GRU and
Temporal Convolutional Network. This study gives an understanding on selecting the
appropriate model based on the characteristics of the data.
The study conducted in the year 2023 by Xiaojun, Yunpeng and Gong( (Bai et al.;
2023)),focus on advance machine learning.Faced with the difficulty of inadequate fea-
ture extraction and inaccurate predictions inspired the researchers to create a fusion
model that integrated features of attention mechanisms, stacked noise reduction, and Bi-
directional Gated Recurrent Units (BiGRU). This model assigned weight to sensor data,
extracted vital features, and predicted time series data with high accuracy. The model
is optimized using the Bayesian algorithm and the model validated using the CMPASS
dataset and achieved an RMSE of 13.51 and a score of 252.61. Moreover, Sijie, Nan,
Jin, and Yafeng( (Liu et al.; 2023)) introduced a Condition - Based Maintenance (CBM)
system by using the Transformer-GRU network. By combining the Transformer encoding
capability and GRU decoder the proposed model captures information from the sensor
data. The proposed system having an RMSE of 12.38 shows the superior performance by
the proposed model. The use of Transformer components can be computationally intens-
ive, and this limits the practical application in environments with limited computational
resources.
Finally, the study by Vaasudev, Riyansh, Sharanya( (Sharma et al.; 2024)), Shows the
importance of Artificial Intelligence and Machine Learning by using a XGBoost model
for finding the remaining useful life of the turbofan engines, which had an RMSE of 15.44
and MAE of 8.97. These values prove that this model outperformed various traditional
methods.The requirement of high computational requirements and the presence of noisy
data make it difficult while applying the proposed model in settings with little resources.

2.1.3 Hybrid Model

A study conducted in the year 2023, by Kiymet, Tulin and Erdal( (Ensarioğlu et al.;
2023)) introduces a hybrid model that combines One Dimensional Convolutional Neural
Network and Long Short Term Memory(LSTM) for better performance. The 1D-CNN-
LSTM model acquired and RMSE value of 16.1. The performance of the model relies
on the techniques difference-based feature construction and change point detection based
PWL labeling. VAriations or errors in these will have a huge impact on the performance
of the model. All the reviewed studies contribute to my project, which is to develop a
web application for remaining useful life (RUL) prediction and defect detection.

2.2 Defect Detection

Similar to the Remaining Useful Life estimation the defect detection can also be categor-
ized under model-based, Data-Driven and Hybrid models.
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2.2.1 Model-Based

Jing, Chang, Zhi-Yuan, Luo-Dan, and Ying-tao( (Li et al.; 2020)) proposed a hybrid
model combining Delaunay triangulation and a mesh growth algorithm to achieve the
3-D reconstruction of a defect point cloud from ultrasonic C-Scan data. The model had
a few different limitations which include Error in Reconstruction mesh and measurement
errors. But the study provided a better understanding of the hybrid model and gave the
idea of using the hybrid model in my research.

2.2.2 Data-Driven Approaches

The paper proposed by kechen, Xiangkun, Shuai, and Yunhui ( (Song et al.; 2023)) ad-
dresses the challenges in quality inspection of aero engine blades. They propose a solution
which integrates Cross layer semantic guide network (CSGNet), YOLOv6 and Furthest
Dynamic Copy Paste (FDCP) data augmentation method CSGNet achieved 2.3% more
than compared to the YOLOv6. Even with these developments the detection speed re-
quires further optimization while using real time data, and the complexity of the proposed
model demands higher hardware adaptability. Compared to VGG16, the VGG16 layers
can automatically extract the features in detail and easily improve the detection of small
defects.
In another approach, a vision-based framework for aero engine blade surface defect de-
tection proposed by Dawei, Yida, Qian, Yuxiang, Zhenghao, and Jun ( (Li et al.; 2021))
acquired superior results when compared with traditional models it acquired 93.5% ac-
curacy, precision of 94.8%, recall of 96.1% and an F1 score of 95.4%. Even with these
outstanding results the chance for overfitting especially due to the lack of data. Chuhan
and Haiyong ( (Wang and Chen; 2023)) introduced an Efficient Edge Detection Net-
work (EEDN) which addresses the key challenges such as micro sized defect features
and varying defect scales using depth wise separable convolutions and a Multiscale Fea-
ture Enhanced Attention (MFEA) module. The proposed approach improved multiscale
expressiveness and captured long range channel information and achieved superior per-
formance with 0.859 ODS and 97 FPS. Despite these advancements these models can
struggle with the precise classification of defects if the size and variability of defects are
small, which lead to missed detection or false positives.
In the year 2023 Yusra, Mohammed, Abdulla, Brain, and Yahya ( (Abdulrahman et al.;
2023)) conducted a systematic review which offers comprehensive insights into various
deep learning models, a total of 13 primary studies were conducted. The CNN with Fea-
ture Point Extraction acquired an accuracy of 95.2%, the CNN framework acquired an
accuracy of 0.9803, FWNet acquired 89.4%, Coarse to fine detection system had 93.5%,
The Mask R-CNN had 0.82, ResNet CNN had a precision of 63%,enhance YOLOv5 and
adapted YOLOv5 respectively had 98.3% and 93% accuracy, GPTNet had an accuracy
of 84.9%, Enhanced Mask R-CNN had 60.4%, the ensemble learning model had f1 score
of 0.77, DBFF-YOLOv4 had 96.7% of precision and finally the GAN-based Detection
had an accuracy of 0.911. This paper provides a clear understanding of the traditional
methods, and this review is instrumental while selecting appropriate models for various
projects including my research which employs a VGG16-SVN model.

6



2.2.3 Hybrid Models

The paper proposed by yunfeng, Min, Yiqiong, Xueping ( (Ma et al.; 2024)) addresses
the challenging problem of automated automated inspection of aero engine blades which
focus on tiny and weak surfaces. They proposed a SPDP-Net (Semantic Prior Guided
Defect Perception Network), the solution acquired a precision of 95.9 and a recall of 94.0.
Due to the sophisticated modules in this model, it can lead to higher computational re-
quirements, and it can limit its real time performance and as the generalizability of the
model to entirely new or unseen data in different environments cannot be predicted. The
VGG16-SVM model provides a more computational efficiency and a better alternative.
The limitations and challenges identified in various models for surface defect detection in
aero engine blades such as complexity, data dependency, and hardware requirements as
well as the need for robust real time detection highlighted by CSGNet( (Li et al.; 2020))
and other papers inspired me to explore alternative solutions. These models required
high computational resources and extensive data preprocessing. These reasons gave me
the idea of using the VGG16-SVM model for my classification task. This approach is not
only computationally efficient but also adaptive to various environments.
The article by Fatine, Raed, Niamat, Marc, Chad, Safae ( (Elakramine et al.; 2022))
Put forward a fundamental approach for integrating MBSE in aircraft maintenance. The
study highlights the potential of MBSE by showcasing the application of SysML in mod-
eling and analyzing complex maintenance systems. An integrated aircraft maintenance
training platform that combines simulation training with auxiliary operations to enhance
maintenance efficiency and reduce errors was introduced by Wei, Dan and Yanfu( (Zhang
et al.; 2023)). The system also tries to prevent human errors which play a vital role in
flight delays and cancellations.
From the studies by Wei and Fatine show that advanced modeling techniques can signi-
ficantly improve overall maintenance efficiency. This idea, along with the insights from
other papers in defect detection and remaining useful life prediction has inspired the de-
velopment of an advanced web-based system. With the combination of both Remaining
Useful Life estimation and Defect detection this system can provide a holistic solution
for aircraft maintenance, which can help in reducing maintenance errors and improved
operational efficiency.

3 Methodology

This research focuses on the development of a web based application system for fore-
casting Remaining Useful Life (RUL) and detecting various Defects present in the engine
blades. This methodology includes, data collection, preprocessing, and model building
of RUL prediction and data preprocessing and model building of Defect Detection, and
Web Application.

3.1 Data Collection

Obtaining good quality datasets is crucial for the development of machine learning and
deep learning models. This research employs two datasets from NASA’s Open Data
Portal and Kaggle to build the web based application. The dataset from NASA’s open
data portal data addresses the prediction of Remaining Useful Life (RUL) and the data
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set from Kaggle addresses Defect Detection.
The first dataset, CMAPSS is secured from NASA’s open data portal. In which the
FD001 data is used for predicting Remaining Useful Life (RUL).Figure 2 shows the con-
tents of data. The dataset includes various multivariate time series, which represent the
operational data of different engines from a fleet of the same type. The dataset contain
26 columns which intricate the engine id, cycles, operational settings and sensor data.
The second dataset acquired from Kaggle is designed for studying aeroengine defect de-

Figure 2: Turbo Engine Dataset

tection. The dataset contains turbine blade images along with detailed defect annotation
information. This dataset contains images of scratch, creese, dot, and damage.

3.2 Remaining Useful Life (RUL)

3.2.1 Data preprocessing

There are several crucial steps that should be considered for preprocessing sensor and
label data for analysis and modeling. As the first step the train data, test data and the
Rul data is loaded using a function that can read data into a DataFrame. A histogram is
plotted for understanding the data. Next, the test data is merged with the RUL values,
and this is the most crucial part of data preparation. The RUL is calculated using the
formula given below This step is the most crucial step in Remaining Useful Life analysis.
The RUL for the training data is calculated by finding the maximum time cycle and
subtracting the current time cycle. The Remaining Useful Life (RUL) for each unit in
the test data is calculated using the following equation 1 and for training data equation
2.

RUL = (Tmax +RULgiven)− t (1)

where:

• Tmax is the maximum time cycle of the unit.

• RULgiven is the provided RUL value for the unit.

• t is the current time cycle.
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RUL = Tmax − t (2)

For understanding the frequency of the RUL values in the data, a histogram is plotted,
and this provides a clear depiction of the expected lifespan of the units based on the test
data. The columns which are not useful for the prediction are dropped from the training
data and with this the dimensionality and the noise in the data can be reduced and allows
the model to focus on the sensor data that are used for predicting the Remaining Useful
Life. Before the data is given into the model it is scaled using the MinMaxScaler to
normalize it to a range between 0 and 1. Then the data is reshaped to sequence suitable
for the LSTM models.
Different aspects such as row shape, data type and null values are printed for analyzing
the training, test and RUL data. The summary statistics for each sensor is also printed.
This analysis helped in understanding the Structure, content and quality of the data. For
finding the relation between the sensors a correlation matrix is also printed.
Coming to the test data, it is prepared similarly to the train data, by merging it with
the RUL values and dropping the unrelated columns. With this the test data is similar
to the training data and facilitates accurate evaluation of the model performance. These
steps transform the raw data into a structured and standardized format for training the
CNN-BiLSTM model and predicting the Remaining Useful Life.

3.2.2 Exploratory Data Analysis

A series of Exploratory Data Analysis steps are performed to gain through understand-
ing about the data. This section includes summarization of the main characteristics of
the dataset and visualizations. Examining the distribution of time cycles and Remain-
ing Useful Life along with identifying relationships between different features helped in
gaining insights that guide data preprocessing. The EDA include Data overview, Data
Cleaning, Descriptive Statistics, Data Visualization, and Data Transformation.

1. Data Overview

Initially the dataset is loaded into the pandas dataframe, which makes it easier
for analysis. Afterwards the first few rows of the data are displayed to get an
understanding of the structure and content of all three datasets.

2. Data Cleaning

As the first step in data cleaning, the presence of missing values in the train and test
dataset are checked. Upon this examination there were no missing values present
in both datasets. This ensures that the data is ready for analysis.The descriptive
statistics was performed after for each unit in the training data. This provided
a summary of the central tendency, dispersion, and shape of the training dataset.
Figure 3 shows the summary statistics for the training data.

This statistics provides a proper overview of the datasets numerical features, central
tendencies, variability and range. The mean and median values gives the idea on
central tendency and this is calculated for each and every senors. For example the
mean, minimum, maximum and standard deviation of the sensor s 1 is 518.67 and
this suggest that sensor is providing a static measurement or it might not be relevant
for the modeling task. Similarly the patterns for all the sensors are observed.
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Figure 3: Image of Descriptive Statistics

3. Data Visualization

(a) Distribution of Time cycles

The histogram illustrate the time cycle distribution in the training data. The
x-axis represents the number of time cycles which ranges from 0 to 350 and
the y axis represent the frequency of each time cycle which ranges between
0 to 800. Along with this a Kernel Density Estimate curve is also printed to
show the probability density.

Figure 4: Distribution of Time Cycles in Train Data

The histogram have multiple peak frequency between 0 and 150 time cycles,
and the frequency ranges between 600 and 800 units. This proves that many
of the units operated with in this duration and this also suggest a uniform
distribution of lifespan for many units in the data. After 150 the frequency
gradually decrease, this continues till 250 and then the unit drops sharply. The
KDE line which is printed along the histogram shows that small subset of units
operate for longer period, and this can be understood from the high frequency
for time cycles till 150. This also confirms that shorter lifespan are more
common. The spread of the data shows it is having a right-skewed distribution
and more number of sensors have a moderate lifespan. The higher frequency
units suggest that maintenance strategies should prioritize these range as most
failure occur here. The histogram gave insights on the operational lifespan of
the units in the dataset which crucial for developing the model.

(b) Distribution of RUL in Test Data

The histogram Figure 5 gives insight to the distribution of RUL data in the
test data. Similar to the histogram for Time cycle, the x axis of the histogram
ranges from 0 to 350 and the y axis represent the frequency. The histogram
shows a peak around 100 and 150 with the maximum frequency near 150 cycles
and the frequency is close to 700 units. The distribution of data is symmetrical,
as the frequency value rise steadily and then gradually decrease and this also
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suggest a normal distribution of RUL values. With this histogram valuable
insights about the expected lifespan of the units in the test data is gained.

Figure 5: Distribution of RUL in Test Data

(c) Histogram for Sensor Readings

Figure 6: Histograms of Sensor Readings

Figure 6 represents the histogram for all the sensors, from s 1 to s 21 in the
data.This give insight on the distribution of each sensor data in the dataset.
For example, the histogram for s 1 that is the sensor 1 have a single peak at
518.67 and this indicates constant reading across all observations along with
this the variability of the data is also checked and no variability is present in
the data. Similarly the sensors s 2, s 3, s 4, s 7, s 8, s 11, s 12, s 14, s 15,s 20
and s 21 is having normal distribution. Meanwhile, for the sensors s 5, s 10,
s 16, s 18, and s 19 the distribution is constant. Furthermore,the sensor 6 is
having a narrow distribution and sensors s 9 is having a peak around 9065.24,
s 13 is having a narrow peak at 521.5, and s 17 is having several discrete peaks.
This histogram proves most of the sensors are having a normal distribution of
data and this proves that the data is reliable.

4. Data Transformation
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Data transformation is one of the most crucial step before implementing the model.
This step involves scaling and reshaping of the data. For preparing the data for RUL
prediction the MinMaxScalar is used for normalizing the data, this normalization is
important for algorithms like LSTM. The LSTM models have a specific sequential
format for input data, therefore the data is also transformed using a reshape data
function and this transforms the data into overlapping sequence. By scaling and
reshaping the data we can ensure that the data is appropriately formatted and
normalized for training the model.

3.2.3 Model Building

One of the crucial parts in developing an Aero engine Management system is developing
a reliable model for predicting Remaining Useful Life (RUL). This section outlines the
building of the model. The RUL model was built using advanced deep learning methods,
combining Convolutional Neural Network (CNN) and Bidirectional Long Short-Term
Memory(BiLSTM) to extract the spatially and temporally related features from the sensor
data.The model is compiled using the Adam optimizer and Mean Squared Error (MSE)
as loss function to minimize prediction error and Mean Absolute Error (MAE) used to
analyze the performance.
Furthermore, a function is developed to make the RUL prediction on new data. The
function ensures the data is correctly shaped and processed before fitting into the model.
Finally, the impact of each sensor on the RUL predictions is analyzed. In summary,
my model is developed by combining CNN and BiLSTM and using this the spatial and
temporal features from the sensor data is captured for predicting Remaining Useful Life
(RUL). The Adam optimizer was used to train the model and MSE was used for validating
the performance of the model. This approach ensures the development of a robust system.

3.3 Defect Detection

3.3.1 Data preprocessing

Similar to RUL prediction there are several key steps that should be followed for prepro-
cessing image and label data for analysis and modeling. Initially the images are resized
and then the pixels are normalized. The dimensions are also expanded, to be used as
the input of the VGG16 model. Additionally, thumbnails were generated for every pho-
tograph to facilitate visualization. A function was introduced which resizes the images
and encodes them in base64 format. This format is useful for simplifying the sharing
and presentation of results by embedding images into web pages without the need for
separate image files.
Furthermore, the features were extracted, and thumbnails were automated. The tag
which indicates the dataset split along with image filename, extracted feature vector,
and the thumbnails are stored as a list. Afterwards a directory was created where keys
represent the train data, validation data and the values which contain the file path of
the corresponding image. After processing the images in each directory, the result was
combined into a single DataFrame. The filenames were also modified for generating label
names for merging with label data. Label data was stored in text files which contain
separate directories for training and validation sets. The text files included annotations
for every image which specify the type of defects. A function that can process each file in
the specified directories is utilized for reading and combining the label data into a single
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file. Each row in the Data Frame included the label, corresponding dataset slit tags and
bounding box coordinates.
The final step in preprocessing is merging the image DataFrame with the label Data-
Frame. This merging was performed on the basis of filenames, which ensured that every
image feature vector was correctly connected with its corresponding label data. Addi-
tionally, the numerical labels were mapped to their respective class names “Scratch, Dot,
Crease, and Damage. These comprehensive preprocessing ensured that both the image
data and label data were efficiently prepared for modeling and further analysis.

3.3.2 Model Building

In the development of systems for defect detection in engine blades, both traditional ma-
chine learning and deep learning approaches were meticulously explored. I have chosen
a hybrid model combining VGG-16 and Support Vector Machine (SVM). Integration of
these two models achieved high accuracy in defect detection. The data from Kaggle which
contain the images of engine blade and label of defects are resized to 224*224 to match
the VGG-16 model’s input size. The pixel values are also normalized to a range between 0
and 1 and the data also undergoes dimensionality reduction using Uniform Manifold Ap-
proximation and Projection (UMAP). The VGG-16 convolutional neural network, which
is pretrained on ImageNet dataset, is employed for feature extraction. The fully con-
nected layers of the VGG-16 are removed and replaced with a pooling layer to obtain
a compact feature representation of every image. This allows the model to effectively
capture the high-level features extracted by VGG-16 for defect detection.
The core of the system is a hybrid VGG-16 and SVM model. The high-dimensional fea-
ture vectors from VGG-16 are imputed into the Support Vector Machine (SVM) classifier
for performing the last step of classifying the defect in the images. The SVM was selected
due to its robustness against overfitting and its effectiveness in high dimensional space.
Training of the model involved using VGG16 model to transform the blade images into
high dimensional feature vectors and the features are fed into the SVM classifier for de-
tecting the defect. The model’s performance was evaluated by comparing predicted clas-
sifications against ground truth annotations. Accuracy, Precision, Recall, and F1-Score
are used for analyzing the model’s effectiveness in detecting defects. For deployment,
the hybrid model was integrated into the AeroEngine Health Management System which
combines both Remaining Useful Life prediction and Defect Detection. This enables real
time defect detection in engine blades.

3.4 Web Application

In the development of Aero Engine Health Management System, a web application is
developed to make it easier for users to interact with Remaining Useful LIfe analysis and
Defect Detection. The web application is developed using Streamlit, an powerful and
user-friendly Python framework which can be used to develop interactive web interfaces.
The main objective of the web application is to provide a platform for users to upload the
sensor data for analyzing the Remaining Useful Life and also the images of engine blades
for defect detection. The sidebar navigation allows users to switch between Defect Detec-
tion and RUL Analysis. This user interface optimizes the developed models accessibility
and usability, allowing engineers and maintenance personnel to use the system effectively.
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3.4.1 Features and Functionality

1.Remaining Useful Life (RUL)
The interface for RUL prediction consist of Sliders to input data, Prediction button

for initiating prediction and finally the generated result will be displayed
2.Defect Detection Interface

The interface for Defect Detection contain an button to upload image and a Classi-
fication button to initiate the defect detection process.

4 Design Specification

This Section provides both the individual architecture of RUL prediction and Defect
Detection along with the complete architecture of Aero Engine Maintenance System.

4.1 Remaining Useful Life (RUL)

The individual architecture of Remaining Useful Life (RUL) prediction is given in Fig-
ure 7. Initially the data is collected, then the data is preporcessed, after preprocessing the
data is given to the CNN-BiLSTM model, after the training of the model it is evaluated
and finally, the prediction is performed.

Figure 7: Architecture of Remaining Useful Life (RUL) Prediction

4.2 Defect Detection

The architecture of Defect Detection is given in the Figure 8. Initially the data is collected
and fed in to a pretrained VGG16 model for feature extraction and the extracted data
is given for dimentionality reduction using UMAP, the result from UMAP is fitted into
SVM classifier after the model is trained it is evaluated and finally, the trained model is
used for prediction

4.3 Web Development

The developed web page is the final end product of the research, Aero Engine Maintenance
System. The entire architecture is given in the Figure 9 Both the Defect detection module
and the RUL module is connect to an Application UI and the corresponding inputs,
images for defect detection and the sensor data are given in to the application and the
corresponding results are generated in the application.
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Figure 8: Architecture of Defect Detection

Figure 9: Architecture of AeroEngine Maintenance system

5 Implementation

5.1 Remaining Useful Life (RUL)

Remaining Useful Life (RUL) prediction model was developed in google colab using the
python programming language.

5.1.1 Data Preprocessing

1. Data Loading

The initial step in building the model is loading the data. The training, test and the
RUL data corresponding to different fleets are loaded using a ‘load data’ function.
This function reads the data from the text files, assigns appropriate column names
for all three datasets.

2. Data Analysis

The presence of missing values, shape of the data, the data type and the descriptive
statistics are checked to ensure the data quality and proper formatting. From the
output no missing values were present and the data type was float and int, which
are the required data types for developing the model. Furthermore, the distribution
of time cycles in the training data and the distribution of RUL in the test data is
also analyzed using histogram to understand the variability and characteristics of
the data. Figure 4 shows the distribution of time cycle and Figure 5 shows the
distribution of RUL in test data.

3. Data Preprocessing
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As part of data preprocessing, the RUL is calculated for each unit in the training dataset,
which is done by subtracting the current cycles count from the maximum cycles count
and this provides the target variable for our model. Furthermore, irrelevant columns are
dropped, and the remaining sensor data is scaled to ensure it is ready to be used for
model training. The dropped columns do not contribute to the model. After the scaling
is performed the data is again transformed or reshaped into a sequence of specified length
which is crucial for the LSTM layers in the model and the sequences represent a series of
sensor readings.

4. Model Training

A model is built by combining the CNN and BiLSTM, the model captures the spatial and
temporal features for predicting the Remaining Useful Life. The Conv1D layers which are
the convolutional layers help in learning the local features which are present within the
sensor data, meanwhile the MaxPooling layers reduce the dimensionality of the features
and also help in capturing the patterns. The dropout layers introduced after the pooling
layer prevent overfitting of the model by setting some neurons off in the training phase.
The bidirectional LSTM layer captures the temporal dependencies present in the data
from both forward and backward directions. Finally, the dense layer is added to the
model with a single neuron, this acts as the output layer to predict the Remaining Useful
Layer. Furthermore, the compilation of the model is performed. The Adam is used as
the optimizer, Mean Squared Error is used as the loss function and the Mean Absolute
Error is used as another perspective to analyze the model’s performance.
After compilation the model is trained using the ‘fit’ method. The model is trained
with 50 epochs which means the model will iterate over the training data 50 times. A
batch size is specified as 64 which means the model can process 64 samples at same time
before updating the weights. The validation split is given as 0.2. After the training, the
prediction is performed using the test data. The samples containing NaN are filtered
out from the predictions, to ensures the models accuracy of the evaluation. After the
predictions the Mean Absolute Error (MAE) and Mean Squared Error (MSE) are then
computed to measure the model’s performance. The model is saved using the ’save’
function. For making predictions with new data a function is developed which ensures
the sensor data is correctly shaped and fed into the model. Finally, a function verifies the
length of the input data to check the number of features and create a full sequence and
finally reshape it to fit the model and the predictions are made. prediction.

5.2 Defect Detection

5.2.1 Data Preprocessing

Defect detection was implemented in google colab, using Python Programming language
and various functions and libraries available in the language.

1. Data Preparation

The first step in developing the model is loading the data. The path of the directory
is specified using ’glob’ and this allows the glob module to access all the images in
the directory. Various key constants are used while reading the data which include
’size’, ’stop’, and ’thumbnail size’. A function png is designed to convert the images
into base64- encoded strings which is the thumbnail version of the image.The base64
format enables easy inclusion of thumbnails in web pages without the need for
external files.
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2. Feature Extraction

A pre-trained VGG16 model with a flattening layer is used for feature extraction.
A new model is created with the original VGG16 inputs and the flattened output
and this makes the model more suitable for extracting features. For Preprocessing
and utilizing the VGG16 model for extracting features a function ‘embed vgg16 is
implemented. After the image is read the image is resized and normalized. The
processed image is taken as the input to VGG16 for predicting and extracting
features.

3. Data Processing

A flatten function is developed which serves as a utility to simplify the nested struc-
ture, making it easier to handle the output in remaining stages. The individual
elements are aggregated into a cohesive list by iteratively traversing the nested
lists, this also eliminates the complexity associated with nested data formats. All
the images for developing the model are stored in a separate directory, a function
get picture from glob is developed to access, extract features and generate thumb-
nails of the images from the directory. The results are gathered into a list of series
objects, and each series contains the tag, filename, extracted features and thumb-
nails of the images.

4. Data Preprocessing for Model

(a) Loading and Processing Images : A DataFrame is prepared which contains
the extracted features and all other relevant information from the images.
For this purpose, a directory is created by mapping directory names to their
corresponding file path. With the use of previously defined functions, the
processed images are flattened and stored to a pandas DataFrame. Finally, to
ensure that each image feature is appropriately labeled a column is added to
the DataFrame which includes the file names.

(b) Merging Label Data and Splitting data into Training and Validation Sets In-
tegration of label data with the prepared image DataFrame begins by reading
label files from the training and validation subfolders. Label data along with
other required information such as source folder, is then collected in a different
DataFrame. The merging of the label and image data is done by matching
file names and the numerical labels are mapped to respective class names and
this helps in easier interpretation and analysis of the data. The Combined
DataFrame is divided into Training and Validation sets. The subset of data
which is properly labeled for subsequent model training and evaluation are
stored in separate dataframes named ‘train df’ and ‘val df.

5. Visualization

A histogram Figure 10 is plotted using Seaborn and it plots the distribution of
classes in the training dataset. The histogram shows that the class scratch is having
a count of 200 which is followed by damage which is nearly 100 and crease having
a count of 50 and finally dot with a count more than 25.

6. Dimensionality Reduction using UMAP
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Figure 10: Visualization of Image Data Figure 11: Visualization of UMAP

Reducing the dimensionality of the feature vectors is performed using the UMAP
(Uniform Manifold Approximation and Projection). The process begins by ini-
tializing the UMAP and specifying parameters such as random state, verbose and
n epochs. The feature vectors are transformed into 2D coordinates by fitting the
UMAP algorithm. This compresses the high-dimensional feature space into a 2-
dimensional space. Finally, the Bokeh is used to develop an interactive visualization
of UMAP result
The output of this visualization displays the 2D UMAP coordinates of the feature
vectors. The data points are represented as circles on the plot and colors indicate
different classes. Moving over a data point shows the class label and thumbnail
image. This plot make it easy to explore the distribution of the data and identify
patterns and clusters.

7. Model Training

Preparing the data and guaranteeing the models’s optimal performance requires
the scaling of the training data for the Support Vector Machine (SVM) classifier.
In this section the features and target labels are separated from the training and
validation data. The training data for the model is also extracted from the training
DataFrame and the validation data is from the validation DataFrame. After separ-
ating the data, features are standardized and the SVM classifier is trained. After
the standardization of the data an SVM classifier with a linear kernel is initialized
and both the regularization strength and probability estimates are specified. ’joblib’
library is used to save both the scaler and the trained SVM model after training.
The trained model is evaluated using the validation set. The validation data is used
for generating the predictions by the trained SVM model. After the predictions the
accuracy and the classification of the predictions is generated. Accuracy helps in
understanding overall performance of the model and the report provides detailed
information on precision, recall and F1-score for each class. During prediction the
input image is loaded and it is resized to 244*244 pixels, normalized and a batch
dimension is added. Then the features are extracted using the VGG16 model. The
extracted features are then scaled using the saved scaler and then fed into the
pre-saved SVM classifier and the confidence score is obtained. The class with the
highest confidence score is taken as the prediction, and if the confidence score is
below the predefined threshold it will be considered as an “unknown class”.
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5.3 Web Application

The Aero Engine Maintenance System application was developed in visual studio
code by combining both CNN-BiLSTM and VGG16-SVM models.

(a) Environment Setup

The python libraries, Streamlit, NumPy, Pillow, scikit-learn, TensorFlow and
Keras and joblib are used for setting up the environment for the application
to run smoothly.

(b) File Organization

The entire implementation of the model depend on the pre-trained models
and scaler objects. The models include, ‘bilstm model.h5’ the trained CNN-
BiLSTM model for RUL prediction, and this is loaded using the function ‘pre-
dict rul’, “Svm model.pkl” is the trained support vector machine model for de-
fect detection and it is loaded using the function ‘load and preprocess image’,
and “scaler.pkl’ is the trained scaler for feature scaling.

(c) Streamlit Interface

In the development of the application using the streamlit, the initial step in-
volves giving the title using the st.title function, followed by sidebar with a
dropdown menu which allows user to select the two functionalities “Defect
Detection” and “RUL Analysis”. Coming to the defect detection interface,
initially a header is specified for indicating the section, followed by an file
uploader to upload the images. Finally, classify button on clicking this but-
ton the classification for the uploaded image is performed. This displays the
predicted class and associated confidence score of the image.

Following the Defect Detection section is the RUL analysis interface, here
initially a header is provided which indicate the RUL analysis section and
sliders are provided for 21 sensors using the st.slider function, these allow the
users to input data values by moving the sliders. Finally, Predict RUL button
is provided, by clicking the button RUL is predicted.

6 Evaluation

In this section the effectiveness and reliability of the CNN-BiLSTM and VGG16-SVM
hybrid models which are used in the Aero Engine Maintenance System are evaluated.
The evaluation assesses the system’s performance in accurately predicting the remaining
useful life and detecting defects.

6.1 Experiment on Remaining Useful Life (RUL)

During the development of the CNN-BiLSTM model for predicting Remaining Useful Life
(RUL), various measures were used for evaluating the model. I have used Mean Absolute
Error (MAE) and Mean Squared Error (MSE) and the corresponding visualization of
MAE and the training and validation loss for analyzing the performance of the model.
The training history of the model shows the loss and MAE for both training and validation
sets over 50 epochs. Figure 12 shows the training and validation loss. In the plot the loss
decreases steadily from 11,000 to under 1000, indicating effective learning of the model.
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The initial decrease of the validation loss indicates improved performance on unseen data,
and it stabilizes around epoch 20 which suggests that model reached an optimal learning
point. Meanwhile the MAE plot in the Figure 12 shows the mean absolute error for both
training and validation set. The MAE decreases consistently from 85 to under 20, this
indicates that the model’s predictions are more accurate as the training progresses. Both
the loss and mae follows a similar trend and this means that the model maintains its
predictive accuracy on new unseen data. The final evaluation metrics MAE of 48.03 and
MSE of 3308.89 suggest that the model performs reasonably well. The average prediction
error of 48.03 cycles and low MSE indicate the predictions are accurate and reliable.

Figure 12: MAE and RMSE of RUL

6.2 Experiment on Defect Detection

The performance of the VGG16-SVM hybrid model was evaluated using several metrics,
which include Precision, recall, F1-score and confusion matrix.

Figure 13: Classification Metrix Figure 14: Confusion Matrix

The classification metrics in the Figure 13 gives the performance of the model in
between different defect types. The dataset used for evaluation is the validation data
which contains 76 images.
The model achieved an overall accuracy of 90.79% coming to the metics for each class,
the class Crease is having a precision of 0.67 which indicates that 67% were correctly
classified as crease, furthermore the recall of 0.80 indicates that 80% of all actual crease
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were correctly identified by the model and a F1-Score of 0.73 indicate the harmonic mean
of precision and recall. Similarly, the class Damage has a precision of 0.90, recall of .0.95
and F1 score of 0.92. Meanwhile, the class dot has a precision of 0.67, recall of 1.00
and F1-score of .80 and finally, class scratch has a precision of 0.96, recall of 0.90 and
F1-score of 0.93. While evaluating the Macro-Averaged metrics the average precision is
0.80, average recall is 0.91 and the average F1-Score is 0.84 and the Weighted Average
metrics shows that it’s having precision of 0.92, this reflects the overall precision when
accounting for class imbalance, recall of 0.91 and F1-Score of 0.91.

The confusion matrix Figure 14developed for the VGG16-SVM model provides de-
tailed insight on performance of the model across defect classes, this includes Crease,
Damage, Dot, and Scratch. In the matrix the rows represent the True label, and the
columns represent the predicted labels. For the class ‘Crease’ the model correctly iden-
tified 4 instances but 1 instance was misclassified as ‘Scratch’. For class ‘Damage’, the
model correctly predicts 18 instances but misclassifies 1 instance as ‘Scratch’. Meanwhile,
the class ‘Dot’ identifies all 2 instances correctly without any misclassifications. Lastly,
the model classified 45 instances of class “Scratch” but it misclassified 2 instances as
crease, 2 instances as damage and 1 instance as dot,this indicates the model is having
overall good accuracy but there is room for improvements.

6.3 Web Application and Results

This section provides the overall front end of the AeroEngine Maintenance System Web
page, along with its individual components and their outputs.

Figure 15 Give the front end with the drop down menu for selecting the Defect detec-
tion and RUL analysis

Figure 15: Aero Engine Maintenance
System

Figure 16: RUL Prediction

6.3.1 RUL Prediction

The Figure 16 and Figure 17 shows the sliders for all the sensors and the analysis button
and the generated sample output.The maximum and minimum values of the sensors are
taken from the histogram developed for evry sensors.

6.3.2 Defect Detection

The Figure 18 shows the option to upload the image and the uploaded image can be
viewed before it is processed. Finally, the classify button gives the generated classification.
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Figure 17: Rul Prediction Figure 18: Defect Detection

6.4 Discussion

This study investigates the performance of both CNN-BiLSTM model used for Remaining
Useful Life prediction and the VGG16-SVM model used for defect detection in the Aero
Engine Maintenance System. With a MAE of 47.83 and MSE of 3284.00 along with a
notable decrease in the training and validation loss, the CNN-BiLSTM model showed
significant efficiency in predicting RUL. This result demonstrates how well the model can
extract temporal patterns and predict the RUL. The sensor impact study reveals that the
sensors 7, 8, 14, 6, and 19 have the most influence in Remaining Useful Life of the turbofan
engines. While analyzing the VGG16-SVM model for defect classification, the model
demonstrated an accuracy of 90.79%. The model demonstrated high precision and recall
scores while classifying ‘Damage’ and ‘Scratch’, the class damage has a precision of 0.90
and recall of 0.95 mean while the class scratch has 0.96 for precision and 0.90 for recall.
The development of the confusion matrix highlighted opportunities for improvements in
the detection of ‘Crease’, ‘Damage’, and ‘Scratch’ defects. The findings of both the hybrid
models to with the existing literature by showcasing the practical benefit of these models
in predictive maintenance and defect detection. The ability of CNN-BiLSTM model to
handle time series data and the performance of VGG16-SVM model indicates the notable
advancements in these domains.
Overall, this research has presented a valuable contribution to developing the Aero Engine
Maintenance System. The findings demonstrate significant improvements in handling
time-series data in predictive maintenance and classification problems along with offering
valuable contributions to the advancement in these fields.

7 Conclusion and Future Work

In this study I investigated if the maintenance practices in the aerospace field can be
improved by combining image processing and predictive maintenance techniques. My
findings indicate that the CNN-BiLSTM model achieved a MAE of 48.03 and MSE of
3308.89 and the VGG16-SVM model achieved an overall accuracy of 90.79% this shows
that the proposed models outperforms all the traditional models and the web application
developed by combining both the RUL prediction and Defect Detection can significantly
impact the aerospace maintenance practices and revolutionize them. The research has
successfully addressed the research question whether the integration of predictive main-
tenance and image processing can enhance the efficiency and reliability in aerospace
maintenance operations. Overall, my research contributes to the aerospace maintenance
practices significantly, by introducing a novel approach of integrating both image pro-
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cessing and predictive maintenance. The proposed system along with all the results lay
a strong foundation for future research and for developing a more comprehensive system
by aerospace industries.
As for the future work integrating the proposed model with IOT devices can result in the
development of technology which can monitor the engine in real time especially during
the flights, by which the safety can be guaranteed. Furthermore, as this system focuses
on turbofan engines, expanding this research to all other types of engines make this sys-
tem practical for all aircrafts. Finally, developing systems which can predict the life of
every component in the aircraft and incorporating it with the Aero Engine Maintenance
System can revolutionize the entire aerospace industry.
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