~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Divyansh Anand
Student 1D: 22240217

School of Computing
National College of Ireland

Supervisor: Abdul Qayum

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Divyansh Anand
Student ID: 22240217
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Abdul Qayum
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 900
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Divyansh Anand
22240217

1 Introduction

This configuration manual ensures that users can easily set-up and configure system en-
vironment and required libraries to execute the speech emotion recognition code used for
this research. This manual highlights and give details about the important sections of
code for better understanding and readability. All the necessary information regarding
folder creating and data file placement has been given in detail. This manual provides
screenshots of files, code, and prompts to guide the user in the best way possible. This
report itself highlights the important sections such as data preparation, pre-processing,
augmentation, modeling, and visualization. Overall, this manual gives detailed imple-
mentation steps for easy understanding and seamless execution of the hybrid speech-
emotion recognition model.

2 System Requirements

2.1 Hardware Requirements

e CPU: Any standard processor capable of running a browser

e GPU: For faster execution GPU is recommended. Google Collab provides free GPU
resources.

e Memory: At least 4 GB of RAM is recommended

e Storage Space: Sufficient cloud storage to store the raw files and csv feature files.

2.2 Software Requirements

e Operating System: The code is platform-independent and can be executed on any
operating system (Windows, macOS, Linux) via a web browser.

e Browser: Google Chrome, Mozilla Firefox, or any modern browser with JavaScript
enabled.

e Google Account: Required to access Google Colab

3 Installation Instructions

All the necessary libraries required to run the code are listed below. You can use below
given pip command install libraries-

pip install pandas numpy seaborn matplotlib scikit-learn ipython tqdm
Every library provides different functionalities throughout the code.

Apart from above libraries, some libraraies with given versions are required to execute
the code.

Ipip install keras==2.15.0 tensorflow==2.15.0 tf-keras==2.14.1 librosa==0.9.2

Reason for specific versions of libraries, librosa library has helped in preprocessing
and feature extraction part. Using other version causes error, If used latest version, the
feature file it creates is incorrect(contains null characters). In case of keras and tensorflow,
proposed model works fast and accurate using these versions. Lower version makes the
processing slow where as other versions above version 3 causes error and compatibility
issues. This line of code is added in the code itself to make it easy for the user to run the
entire code in a single run without the need of changing the versions.

4 Folder Architecture

After unzipping the upload, upload all the files on Google Drive and arrange as per the
folder structure given in Figure [1]

——
g g——
—
>
>
e

Figure 1: Folders Structure for Data and Code

Once you upload the code to the drive, by default location of the Code will be ” My
Drive/Collab Notebooks/HybridModelCode.ipynb”

After this, create two folders namely Data and FinalCSVs. In the Data directory
upload the Ravdess and Crema D source data files. There is no need to upload anything
for FinalCSVs folder. Please find the screenshot of the folders in Google Drive in Figure [2]

2

Suggested ([Files | v Folders) <~/E 88

Name Reason suggested Owner Location

B FinalCsVs You opened + 12:42 AM me @ My Drive H ‘

B Data You opened - 8:43 AM me @ My Drive

Colab Notebooks You opened + 8:43 AM me @ My Drive

Figure 2: Folders In Google Drive

5 How to Execute Code

5.1 Pre-requisites

Make sure all the data files Ravdess, Crema-D and python code HybridModelCode.ipynb
have been uploaded in the respective folders before execution of the code.

5.2 Mounting Google Drive

After executing the header files, we need to mount the Google Drive to use the uploaded
Data file content. The Figure [3|represents the prompt, you need to authenticate and give
Collab access to use your Google Drive.

Permit this notebook to access your Google Drive files?

This notebook is requesting access to your Google Drive files. Granting access to
Google Drive will permit code executed in the notebook to modify files in your
Google Drive. Make sure to review notebook code prior to allowing this access.

No thanks Connect to Google Drive

Figure 3: Prompt to Authenticate User

After successful authentication, the Google Drive is mounted as shown in Figure

o from google.colab import drive
drive.mount("/content/drive")

=~ Mounted at /content/drive

Figure 4: Drive Mounted

5.3 Data Preparation and Processing

After this Data preparation starts, all the audio files from the folders are extracted and
converted into dataframes for both the datasets Ravdess and Crema-D.

For Further processing, a common data frame is created. Users can choose among the
dataframes for further processing. This is done to increase the re-usability of the code

for processing two different datasets. By default, it will work with Ravdess dataset as
shown below in Figure

o # creating a common dataframe name for variable usability

data_path = pd.concat([Ravdess_df], axis = @)
#data_path = pd.concat([Crema_df], axis = @)

data_path.head()

3 Emotions Path @
0 surprise /content/drive/My Drive/Data/Ravdess/audio_spe... [}
1 happy /content/drive/My Drive/Data/Ravdess/audio_spe...
2 angry /content/drive/My Drive/Data/Ravdess/audio_spe...
3 neutral /content/drive/My Drive/Data/Ravdess/audio_spe...
4

disgust /content/drive/My Drive/Data/Ravdess/audio_spe...

Figure 5: Common Data frame

During data preprocessing, the original audio is trimmed using librosa library to re-
move the non-speech segments of the audio data.(McFee et al| (2020)) Below Figure [f]
represents the difference in waveplots and spectrograms before and after data prepro-
cessing step for angry emotion.

Waveplot for audio with angry emation Waveplot for audio with angry emation

/
e

Spectrogram for sudia with angry emation Spectrogram for audio with angry emotion

acee] e, = 3
a0 N 12000 8
] w = f
e Jooan <
o

Figure 6: Before and After Preprocessing of Data

5.4 Feature Extraction and Data Augmentation

After the data preprocessing steps, the feature extraction and data augmentation part of
the code executes, which extracts all the audio features from the speech data. Feature
file is then converted into csv file for further processing of the data. Figure [7] shows the
steps where csv file is created for extracted features. We can choose to rename the csv
file as per the dataset used.

5.5 Data Modelling

The data stored in csv file is extracted and loaded for data modeling. During this phase,
datasets are divided into training and testing datasets. After converting the data into an
appropriate form it is processed by model.

Creating a csv file for further processing of datd

Enotions = pd.Datarrane(X)
Enotions[Enotions'] = Y

Emotions. to_csv(*/content/drive/My Drive/Finalcsvs/Ravdessnew.csv', index-False)
#Emotions. B nt/drive/My Drive/FinalCsvs/Crema.csv', index=False)
print(Enotions.isna().any())

Enotions. head()

False
False
False
False

272
2373
2374
2375
Enotions

False

True
True
True
True

1
Length: 2377, dtype: bool

PV e B HEE

PO

o
0,000000
0260742
0.000000
0.246582
0295898

1
0.039062
0370305
0.004883
0367676
0398926

2
0.039062
0512605
0.104004
0.486328
0536621

H
0039062
0.514648
0.200684
0.480460
0523438

a
0047852
0402188
0287508
0.480460
0485352

s
0211426
0499023
0391113
0.479004
0496582

s
0308711
0498047
0406250
0477539
0511719

7
0436523
0.403652
0302578
0.475008
0525879

s
0.581055
0.501465
0415527
0481034
0493164

s ...
0570312
0.506348
0428223
0.400234
0485352

2367
2807274
1296671
0531170
-1.048533
0.000000

2368
2835110
1.054297
0527176
2130041
0.000000

2369
3768318
1.085939
0.522848
7313325
0.000000

2370
2.697085
0.528425
0.518108
4761428
0.000000

2371
3621608
5428215
0513220
3208701
0.000000

2372

3542110

1818451

0507048
2732764
0,000000

2373
3458778
-0.630478
0502360
1508649
0.000000

2373
3371874
3360710
0496490
1562840
0.000000

Figure 7: Creating CSV file for the extracted features from the Dataset

The Neural Network architecture is trained using an iterative process where the model

learns from the data step by step.

By default epoch value is set to 20 for running Ravdess dataset, the epoch value plays
an important role during model training, it signifies the number of times the dataset
will be processed during the training phase. The epoch value should be changed to 50
epochs while running the same code for Crema-D dataset which is bigger as compared
to Ravdess. Figure |8 highlights the part of code that can be modified to run Crema D

dataset.

Model training

history = model.fit(
[x_traincnn, x_traincnn], y_train,
epochs=20,
validation_data=([x_testcnn, x_testcnn], y_test),
batch_size=64,
callbacks=[early_stop, 1lr_reduction, model_checkpoint]

)

Assuming both inputs are the same here for simplicity

4

Model: “"model 2"

Layer (type) Output Shape Param # Connected to
input_5 (InputLayer) [(none, 2376, 1)] 2] 1
convld_10 (ConviD) (None, 2376, 512) 3072 ['input_5[e][e]"']

Figure 8: To Update Epoch Value

Below Figure [9] shows the sample

Total params: 4116999 (15.71 MB)
Trainable params: 4113671 (15.69 MB)
Non-trainable params: 3328 (13.00 kB)

of Epochs

while running for

Ravdess dataset.

Epoch 1/20

72/72 - 53s 530ms/step
Epoch

72/72 - 38s 523ms/step
Epoch

72/72 - 38s 526ms/step -
Epoch

72/72 - 38s 531ims/step -
Epoch

72/72 - 36s 493ms/step -
Epoch

72/72 - 38s 532ms/step -
Epoch

72/72 - 36s 494ms/step -
Epoch

72/72 - 38s 53ems/step -
Epoch

72/72 - 36s 494ms/step -
Epoch

72/72 - 38s 53ems/step -
Epoch

72/72 - 38s 527ms/step
Epoch 12/20

72/72 - 36s 494ms/step
Epoch

72/72 - 37s 520ms/step
Epoch 14/20

72/72 [= - 385 521ms/step
Epoch 15/20

loss: 1.7509 - accuracy:
loss: 1.4291 - accuracy:
loss: 1.2666 - accuracy:
loss: 1.1418 - accuracy:
loss: 1.6266 - accuracy:
loss: ©.9185 - accuracy:
loss: ©.8184 - accuracy:
loss: ©.7017 - accuracy:
loss: ©.6720 - accuracy:
loss: ©.6060 - accuracy:
loss: ©.5518 - accuracy:
loss: ©.4765 - accuracy:
loss: 0.4322 - accuracy:
loss: 0.4246 - accuracy:

©.3290 - val_loss: 2.5362 - val_accuracy:
0.4774 - val_loss: 2.9767 - val_accuracy:
©.5299 - val_loss: 2.5577 - val_accuracy:
©.5751 - val_loss: 3.1460 - val_accuracy:
©.6265 - val_loss: 2.4037 - val_accuracy:
0.6656 - val_loss: 2.9847 - val_accuracy:
©.6999 - val_loss: 2.3977 - val_accuracy:
©.7535 - val_loss: 1.2051 - val_accuracy:
©.7582 - val_loss: 1.4029 - val_accuracy:
©.7797 - val_loss: ©.9464 - val_accuracy:
©.8079 - val_loss: ©.9241 - val_accuracy:
©.8394 - val_loss: 0.6884 - val_accuracy:
©.8550 - val_loss: ©.8228 - val_accuracy:
0.8561 - val_loss: ©.7419 - val_accuracy:

Figure 9: Ravdess Sample Epochs

0.2066 - 1r: ©.0010
0.1901 - 1r: ©.0010
0.1337 - 1r: 0.0010
0.2170 - 1lr: 0.0010
0.2283 - 1r: 0.0010
©.2639 - 1lr: 0.0010
©.2995 - 1r: 0.0010
0.5764 - 1r: ©.0010
0.5911 - 1lr: ©.0010
0.7023 - 1r: 0.0010
0.7040 - 1r: ©.0010
0.7839 - 1r: 0.0010
0.7682 - 1r: 0.0010
0.7656 - 1r: ©.0010

5.6 Visualization for Model Evaluation

Further code highlights the functions that create all the graphs and matrices used to
evaluate the performance of the model in this research. All these evaluation matrices
have been plotted using a single cell, given in Figure [I0]

[1 y_pred = model.predict([x_testcnn, x_testcnn])
y_pred_classes = np.argmax(y_pred, axis=1)
y_true_classes = np.argmax(y_test, axis=1)

classes = data_path.Emotions.unique()

Plot the accuracy graph
plot_accuracy(history)

Plot the confusion matrix
plot_confusion_matrix(y_true_classes, y pred_classes, classes)

Print overall precision, recall, and F1 score
overall metrics(y_true_classes, y pred_classes)

Print the classification report with metrics
classification_report_with_metrics(y_true_classes, y_pred_classes, classes)

5% 38/36 [1 - 5s 1@dms/step

Training and Validation Accuracy

—— Train Accuracy
0.9 Validation Accuracy

0.8

0.7

Figure 10: Sample Code for Plotting Visualization

References

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E. and Nieto, O.
(2020). librosa/librosa: 0.8. 0 (version 0.8. 0), Zenodo, Jul 22.

	Introduction
	System Requirements
	Hardware Requirements
	Software Requirements

	Installation Instructions
	Folder Architecture
	How to Execute Code
	Pre-requisites
	Mounting Google Drive
	Data Preparation and Processing
	Feature Extraction and Data Augmentation
	Data Modelling
	Visualization for Model Evaluation

