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1 Introduction

This document will provides a step-by-step guide to implement the models build to solve the
research question ”To what extent can a hybrid ARIMA-LSTM model accurately predict
unemployment rates specifically during economic downturns?“. It discusses the
hardware/software requirements, environment and system configuration needed for the
research. The execution process of the three models applied that is ARIMA, LSTM and
ARIMA-LSTM are detailed in this manual. The code is presented in two different files one
for standalone ARIMA and LSTM models and the other for ARIMA-LSTM hybrid model.

2 System Configuration

2.1 Hardware Requirements

Below are the hardware requirements needed for this research.
e Machine: MacBook with Apple M2 chip or Windows 11 and above
Processor: Apple M2 (8-core CPU, 8-core GPU) or Intel Core 17 (11th or 12th Gen)
RAM: 8 GB (Minimum)
Storage: 50 GB of free disk space
Operating System: macOS Ventura (or newer) or Windows 11 Home or Pro

2.2 Software Requirements
Below are the software requirements needed for this research.

Operating System: macOS Ventura or Windows 11

Python Version: Python 3.11

Integrated Development Environment (IDE): Jupyter Notebook (available via
Anaconda)
Package Manager: Anaconda Navigator
Microsoft Excel (for data inspection)

3 Environment Setup

This section will be explaining the set up of the environment for tools and librabries to be
successfully installed

3.1 [Installing Anaconda

e Download Anaconda from https://www.anaconda.com/download
e Open the downloaded “.pkg” file and follow the installation process and then
add Anaconda to the system path



https://www.anaconda.com/download

e Once the installation process in complete open ANACONDAS NAVIGATOR
which will manage the enivornment.
e Launch Jupyter Notebook
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Figure 1: Anaconda Navigator

3.2 Open Jupyter Notebook

e Click on the launch button of jupyter notebook.

e Once the notebook is open, go where the file is saved

e After opening the research’s python file with extention (.ipynb) run all the cells to
execute the code

3.3 Installing Important Libraries
The important Libraries used in this search is below

#importing required libraries
import pandas as pd

from

sklearn.preprocessing import MinMaxScaler

import numpy as np
import matplotlib.pyplot as plt

from
from
from
from
from
from

statsmodels. tsa.arima.model import ARIMA

sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error
sklearn.model_selection import TimeSeriesSplit

sklearn.model_selection import train_test_split

statsmodels. tsa.stattools import adfuller

itertools import product

import warnings
warnings.filterwarnings("ignore")

from
from

sklearn.impute import SimpleImputer
scipy import stats

import seaborn as sns
import keras_tuner as kt

from
from
from

tensorflow.keras.models import Sequential
tensorflow.keras.layers import LSTM, Dense
tensorflow.keras.optimizers import Adam

Figure 2: Importing required libraries

4 Data Gathering & Pre-processing
In this section the data collecting and the preprocessing’s step is discussed for a smooth
replication of the research project. The dataset is taken from Kaggle the link for the dataset is:
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The tables includes data on the federal funds rate, gross domestic product (GDP), real gross domestic product, price indices, Annually

inflation, unemployment levels, continuing claims for unemployment benefits, bank credit, consumer credit, money supply, and real
estate loans as well as stock prices of SPX500 and NASDAQ. -

Figure 2: Financial Indicators Kaggle Dataset

4.1 Data Collection

A) Data Sources:

e Unemployment Data: Unemployment rates of US.
e GDP Data: GDP data of US.

e Inflation Data: Inflation rates of US.

e Stock Market Prices Data: S&P 500 stock dataset of US.
B) Downloading the datasets

e Download the dataset.

e Seclect the above economic indicators

e Save in the preferred directory on the local machine.
C) Loading the dataset in the notebook

e Use the following python code

# Loading datasets

unemployment_rate = pd.read_csv('Unemployment Rate.csv')
gdp = pd.read_csv('Gross Domestic Product.csv')

spx500 = pd.read_csv('SPX500.csv')

inflation = pd.read_csv('US_inflation_rates.csv')

# Display the first few rows of each dataset
print("Unemployment Rate Dataset:")
print(unemployment_rate.head(), "\n")

print("Gross Domestic Product (GDP) Dataset:")
print(gdp.head(), "\n")

print("S&P 500 Index Dataset:")
print(spx500.head(), "\n")

print("Inflation Dataset:")
print(inflation.head(), "\n")

Figure 3: Loading datasets

4.2 Data Preprocessing

The data preprocessing can be done by following steps

A) Data cleaning:



Date column in all the datasets were converted into a standard datetime format
Monthly inflation rate was calculated using the percentage change method in the
Consumer Price Index (CPI) and then resampled into monthly frequency.

In the S&P 500 Index dataset, columns Price, Open, High, Low, and Volume were
dropped and only Change % is retained.

Interpolation method was applied on the GDP data to convert quarterly data into
monthly.

The datasets were merged using date column and were checked for any null or
missing values.

The final merged dataset contains 518 rows and was from 31% December 1979 to 1% January
2023. Below is the code used to implement the above steps:

# Setting date columns as index
unemployment_rate.set_index('DATE', inplace=True)
gdp.set_index('DATE', inplace=True)
spx500.set_index('DATE"', inplace=True)
inflation.set_index('DATE', inplace=True)

# Converting start_date to datetime
start_date = pd.to_datetime('1979-01-01"')

# Filtering datasets to start from 1979

unemployment_rate = unemployment_rate[unemployment_rate.index >= start_date]
gdp = gdplgdp.index >= start_datel

spx500 = spx500[spx500.index >= start_datel

inflation = inflation[inflation.index >= start_date]

# Resampling to monthly frequency and apply interpolation

unemployment_rate = unemployment_rate.resample('M"').ffill()

gdp = gdp.resample('M').ffill()

spx500 = spx500.resample('M').mean() # Taking mean for monthly data

inflation = inflation.resample('M').ffill() # CPI data is already monthly, so just forward fill

# Merging datasets on DATE column
combined_df = unemployment_rate.join([gdp, spx500, inflation['InflationRate'l]l, how='outer')

# Dropping rows where all key indicators are not present
combined_df.dropna(subset=['UNRATE', 'GDP', 'Change %', 'InflationRate'], how='any', inplace=True)

# Imputing remaining missing values with column mean
combined_df.fillna(combined_df.mean(), inplace=True)

# Saving the combined DataFrame to a CSV file
combined_df.to_csv('combined_dataset_cleaned.csv', index=True)

# Saving file
print("Combined dataset has been saved to 'combined_dataset_cleaned.csv'")

Combined dataset has been saved to 'combined_dataset_cleaned.csv'

Figure 4: Merged dataset of economic inidicators

Plotting the unemployment rate of the merged dataset
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Figure 5: Unemployment Rate over Time

B) Data Normalizaion: Normalising the data is done by using the following steps:
e Use Min-Max scaling

# Normalizing the data for model fitting
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df_imputed)

Figure 6: Normalizing the dataset

C) Feauture Engineering
e Create Lag Features of 6 and 12 months of Unemployment Rate

# Feature engineering: Adding lag features for 6 months and 12 months
df_imputed [ 'UNRATE_LAG_6'] = df_imputed['UNRATE'].shift(6)
df_imputed [ '"UNRATE_LAG_12'] = df_imputed['UNRATE'].shift(12)

Figure 7: Creating Lag features

e Correlation analysis is done on economic indicators and created lag variables.
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Figure 8: Correlation Analysis

e Splitting dataset into training and testing set

# Splitting the data into training and testing datasets (80% training, 20% testing)
train_size = int(len(X) * 0.8)

test_size = len(X) - train_size

X_train, X_test = X[:train_size], X[train_size:]

Y_train, Y_test = Y[:train_sizel, Y[train_size:]

Figure 9: Splitting dataset

Model Configuration



This section will give steps for configuring the models used in this research. Set up of
ARIMA, LSTM and hybrid ARIMA-LSTM model is discussed. The hyperparameter tuning
is also discussed in this section.

5.1 ARIMA Model Setup

Stationary test : Augmented Dickey-Fuller (ADF) test is used to check if the series is
stationary

# Performing Augmented Dickey—Fuller test to check stationarity
result = adfuller(df['UNRATE"])

print('ADF Statistic:', resultlel)

print('p—-value:"', resultl1l])

# If the series is not stationary, difference the data

if resultl[l] > ©.05:
df['"UNRATE_diff']l] = df['UNRATE"'] .diff().dropna()
result_diff = adfuller(df['UNRATE_diff'l.dropna())
print('ADF Statistic (after differencing):', result_diff[@])
print('p—value (after differencing):', result_diff[1])

else:
result_diff = df['UNRATE"]

ADF Statistic: —-2.9233573357191083
p—value: 0.04269849852196447

Figure 10: AD-Fuller test

Implementing grid search to find the best parameters

# Performing grid search
For order in parameter_combinations:

Ttry:
model = ARIMA(train, order=order)
model__fit = model.fit()
predictions = model_fit. forecast(steps=len(test))
mse = mean_squared_error(test, predictions)
if mse = lowest_mse:
lTlowest_mse = mse
best_order = order
print(f"ARIMA{order} — MSE: {msel}"'")
except Exception as e:
print(f"ARIMA{order} — Failed with error: {el}")

continue

print(f"'"\nBest ARIMA order: {best_order} with MSE: {lowest_msel ")

ARIMA(®, @, ©®) — MSE: 5.568391936585201
ARIMA(2, @, 1) — MSE: 5.563901947852724
ARIMA(O, @, 2) — MSE: 5.57471177619178
ARIMA(®, @, 3) — MSE: 5.562125986412743
ARIMA(O, ©, 4) — MSE: 5.577872360558313
ARIMA(L, ©, ©) — MSE: 5.219763113140757
ARIMA(L, ©, 1) — MSE: 5.1907674089676465
ARIMA(1L, ©, 2) — MSE: 5.070155397201465
ARIMA(1L, ©, 3) — MSE: 4.994516222540795
ARIMA(L, @, 4) — MSE: 5.0145271902024738
ARIMA(2, @, ©) — MSE: 5.196463843644192
ARIMA(2, ©, 1) — MSE: 5.169461356706098
ARIMA(2, ©, 2) — MSE 4.298367589142733
ARIMA(Z2, @, 3) — MSE: 4.6594505935897095
ARIMA(Z2, @, 4) — MSE: 3.9500295737956703
ARIMA(3, ©, ©®) — MSE: 5.021867738132138
ARIMA(3, ©, 1) — MSE: 4.543659755190187
ARIMA(3, @, 2) — MSE: 5.135845649849129
ARIMA(3, @, 3) — MSE: 4.305330657065498
ARIMA(3, @, 4) — MSE: 4.073288097627701
ARIMA(4, ©, ©) — MSE: 4.856736322315407
ARIMA(4, @, 1) — MSE: 4.615721697904071
ARIMA(4, ©, 2) — MSE: 4.578203306339329
ARIMA(4, ©, 3) — MSE: 4.706333415951243
ARIMA(4, ©, 4) — MSE: 4.3515568676762015

Best ARIMA order: (2, @, 4) with MSE: 3.9500295737956703

Figure 11: Finding best parameters

Model Fitting: ‘statsmodels’ is used to fit the data



# Fitting the ARIMA model
model = ARIMA(train, order=best_order)
model_fit = model.fit()

# Forecasting values
forecast = model_fit.forecast(steps=len(test))

Figure 12: Fitting ARIMA model

5.2 LSTM Model Setup

Dataset preparation is done for LSTM using a step size of 10.
# Prepare the data for LSTM
def create_dataset(data, time_step=1l):
X; ¥ =2 [l [
for i in range(len(data)-time_step):
X.append(datali: (i+time_step)])
Y.append(datali + time_step, 01])
return np.array(X), np.array(Y)

# Creating the dataset with adjusted indexing
time_step = 10
X, Y = create_dataset(scaled_data, time_step)

Figure 13: Dataset is created using time step

Defining the LSTM model for Hyperparameter tuning

# Defining the LSTM model for hyperparameter tuning
def build_model(hp):

model = Sequentiall()

model.add (LSTM(units=hp.Int('unitsl', min_value=32, max_value=128, step=16),
return_sequences=True, input_shape=(time_step, X_train.shapel[2])))

model.add (LSTM(units=hp.Int('units2', min_value=32, max_value=128, step=16),
return_sequences=False))

model.add(Dense(1))

model. compile(optimizer=Adam(hp.Choice('learning_rate', values=[le-2, 1le-3, 1le-4])),

loss="mean_squared_error"')
return model

Figure 14: Building the LSTM model

Performing the hyperparameter search and printing the optimal parameters

# Performing the hyperparameter search
tuner.search(X_train, Y_train, epochs=10, batch_size=5, validation_data=(X_test, Y_test))

# Getting the optimal hyperparameters
best_hps = tuner.get_best_hyperparameters(num_trials=1) [0]

# Printing the optimal hyperparameters

print(f"Optimal number of units for first LSTM layer: {best_hps.get('unitsl')}")
print(f"Optimal number of units for second LSTM layer: {best_hps.get('units2')}")
print(f"Optimal learning rate: {best_hps.get('learning_rate')}")

# Building the model with the optimal hyperparameters
model = tuner.hypermodel.build(best_hps)
history = model.fit(X_train, Y_train, epochs=10, batch_size=5, validation_data=(X_test, Y_test), verbose=1)



Figure 15: Hyperparameter search

5.3 Hybrid ARIMA-LSTM Model Setup

e Applying ARIMA model on the linear components of the time series data

e Applying LSTM model on the time series data to capture non-linear patterns.

e Combining the ARIMA and LSTM predictions as features for the meta-learner (Linear
Regression).

# Stacking the ARIMA and LSTM predictions as features

X_meta = np.column_stack((arima_forecast_test_adjusted, lstm_forecast_test.flatten()))

Figure 16: Stacking the ARIMA & LSTM Forecast

e Use the Linear Regression model to combine ARIMA and LSTM predictions for the
final forecast.

X_meta_train, X_meta_val, y_meta_train, y_meta_val = train_test_split(X_meta, y_test[time_step:], test_size=0.3, random_state=42)
# Training a linear regression model as the meta-learner

meta_learner = LinearRegression()
meta_learner.fit(X_meta_train, y_meta_train)

Figure 17: Linear regression applied on the stacked dataset

6 Model Evaluation

6.1 Performance Metrices

The performance metrices are carried out using below measures.
e  Mean Squared Error (MSE)
e  Mean Absolute Error (MAE)
e Root Mean Squared Error (RMSE)
# performance metrics
test_mse = mean_squared_error(Y_test_actual, test_predict)
test_mae = mean_absolute_error(Y_test_actual, test_predict)
test_mape = mean_absolute_percentage_error(Y_test_actual, test_predict)

Figure 18: Calculating performance metrics on predictions

6.2 Forecasting and saving predictions

The Actual vs Predicted Values were plotted along with a CSV file containing the actual and
predicted values

e ARIMA forecast



# Plotting the forecasted values and the actual values

plt. figure(figsize=(10, 6))

plt.plot(train.index, train, label='Training Data')
plt.plot(test.index, test, label='Actual Test Data', color='blue')
plt.plot(forecast_series, label='ARIMA Test Predictions', color='red"')
plt.title('ARIMA Model Forecast')

plt.xlabel('Date')

plt.ylabel('Unemployment Rate')

plt. Llegend()

plt.grid(True)

plt.show()

# Saving the results to a CSV file
results_df = pd.DataFrame({
'Date': forecast_index,
'"Actual': test,
'Forecasted': forecast_series

)

results_df.to_csv('arima_forecast_results.csv', index=False)
print('ARIMA forecast results saved to arima_forecast_results.csv')

Figure 19: Plotting and saving results of ARIMA
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Figure 20: ARIMA model forecast

e LSTM forecast

# Plotting the results

plt.figure(figsize=(12, 6))

plt.plot(df_imputed.index[time_step:train_size+time_step], Y_train_actual, label='Actual Train Data')
plt.plot(df_imputed.index[train_size+time_step:train_size+test_size+time_step], Y_test_actual, label='Actual Test Data')
plt.plot(df_imputed.index[train_size+time_step:train_size+test_size+time_step], test_predict, label='LSTM Test Predictions', color='red')
plt.xlabel('Date")

plt.ylabel('Unemployment Rate')

plt.title('LSTM Model Forecast')

plt. legend()

plt.grid(True)

plt.show()

# Saving the results to a CSV file

results_lstm_df = pd.DataFrame({
‘Date': df_imputed.index[train_size+time_step:train_size+test_size+time_step],
'Actual': Y_test_actual.flatten(),
'Predicted': test_predict.flatten()

19

results_lstm_df.to_csv('actual_vs_predicted_lstm.csv', index=False)

10



Figure 21: Plotting and saving results of LSTM
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Figure 22: LSTM model forecast

e Hybrid ARIMA-LSTM forecast

# Plotting the hybrid model results for the test set

plt.figure(figsize=(12, 6))

plt.plot(test_data.index[time_step:], y_test[time_step:], label='Actual Test Data', color='orange')
plt.plot(test_data.index[time_step:], hybrid_test_predictions, label='Hybrid Test Predictions', color='red')
plt.xlabel('Date"')

plt.ylabel('Unemployment Rate')

plt.title('Hybrid ARIMA-LSTM Model Forecast')

plt.legend()

plt.grid(True)

plt.show()

# Saving the results to a CSV file
results_hybrid_df = pd.DataFrame({
'Date': test_data.index[time_step:],
'Actual': y_test[time_step:],
'ARIMA_Predicted': arima_forecast_test_adjusted,
'LSTM_Predicted': lstm_forecast_test.flatten(),
'Hybrid_Predicted': hybrid_test_predictions
1

results_hybrid_df.to_csv('actual_vs_predicted_hybrid.csv', index=False)

Figure 21: Plotting and saving results of ARIMA-LSTM
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Figure 22: ARIMA-LSTM model forecast
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