

Configuration Manual

MSc Research Project

Data Analytics

Preena Darshini

x22238590

School of Computing

National College of Ireland

Supervisor: Prof. Barry Haycock

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

………………...……Preena Darshini . ……………………………………..…………………

Student ID:

………………………x22238590……………….……………………………………………..……

Programme:

…………….MSc Data Analytics………………

Year:

……2024……...…..

Module:

……………………MSc Research Project ……………………………………………….………

Lecturer:

……………………Professor Barry Haycock………………………………………….………

Submission

Due Date:

…………………………12/08/2024…….………………………………………………….………

Project Title:

Assessing the Efficacy of EfficientNet, Inception, and ResNet for

Wildlife Species Identification

…….………

Word Count:

2196

……………………………………… Page Count: ………………35…………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

10/08/2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)


Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).


You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.



Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Preena Darshini

Student ID: x22238590

There are two parts to this Configuration Manual. Part 1 for the dataset which was later not

used for certain reasons which will be discussed. Part 2 for the dataset that was used for

developing the current ICT solution for this MSc in Research Project.

Part 1: Initial Dataset (Not used in Final Solution)

1 Section 1: Acquiring the Dataset and Downloading

• The dataset was downloaded from the Google Cloud Storage folder gs://public-

datasets-lila/Caltech-unzipped/cct_images (105 GB) along with the metadata (44

MB).

• Initially, there was a shortage of space on the system so made use of an external

HDD.

• It took approximately 6 hours to download the zip folder and metadata. It took almost

3 hours to extract the data and metadata from the zip folders.

• This was followed by downloading Python through Windows PowerShell. Ran the

‘pip’ command and upgraded to the latest version.

• Navigated to the external HDD using ‘cd’ command and opened a new Jupyter

notebook named “Camtrap.ipynb”.

• Imported necessary modules and paths to the metadata and image dataset were

defined.

• The metadata file which is in JSON format was read and loaded into the Python

directory.

• Summary of the metadata was displayed with 245,118 images with 3 columns namely

id, category_id and image_id.

• Even tried breaking the file stored in the external HDD into 1GB zip files using 7-Zip

for faster uploading of images.

• But it took very long to process the large number of images. Metadata file loaded

faster due to its small size.

• Ran out of disk space even on Colab after repeating the same steps as above so

purchased Colab Pro with additional compute units.

• Decided to access images directly from GCS based on the link provided.

• Lost progress multiple times due to issues like system sleep, Wi-Fi disconnected, and

system shut down.

• To overcome this, checkpoint.json was created to continue progress from the last

checkpoint.

2

2 Section 2: Data storage and preprocessing on Colab Pro

• Necessary Libraries were imported as shown in Figure 1.

Figure 1: Importing necessary libraries

• Mounted to Google Drive to save checkpoints as shown in Figure 2.

Figure 2: Mounting to drive and checkpoint_file definition

3

3 Section 3: Processing Images and Extracting Metadata

• A function “list_blobs” to list all the blobs in the GCS bucket Figure 3.

Figure 3: Function to list blobs

• A function “process_images_from_gcs” to download and process images batch-wise

while creating a checkpoint to resume from the last point of interruption as seen in

Figure 4.

Figure 4: Function to process images from GCS

• A function “process_batch” to process each batch of images and extract the metadata

as shown in Figure 5.

4

Figure 5: Processing images batch-wise and displaying metadata

4 Section 4: Displaying Statistics and Sample Images

• A function “display_first_images” is used to display the first few images from the

GCS bucket as seen in Figure 6.

Figure 6: Displaying head of dataset

• Basic summary statistics of the metadata are displayed as shown in Figure 7.

Figure 7: Summary Statistics

5

5 Section 5: Model Training

• Class named “GCSImageDataGenerator” for loading the images in batches from GCS

as shown in Figure 8 below.

Figure 8: Load images in batches

• Parameters for batch size and the target image size are defined as 32 and (244,244)

respectively. The resizing is done to 244 pixels in height and 244 pixels in width. The

model processes 32 images each time before the backpropagation step.

Figure 9: Batch size and target size set

• Labels are extracted and mapped to the numeric classes as displayed in Figure 10.

6

Figure 10: Labels are mapped

• Data is split into train and test sets as shown below.

Figure 11: Data splitting

• EfficientNet is defined and used for training as seen below.

Figure 12: EfficientNet Model

• Model training is done.

Figure 13: Training EfficientNet

• Kernal restart issue on Colab while trying to run EfficientNet as shown below.

Figure 14: Kernel Restart

• On further investigation it seemed like there was also a mismatch of metadata and

image files. This made it difficult to link each metadata with the corresponding image.

After considering these issues, it was decided along with the approval of the guide

that an alternative dataset would be used.

7

Part 2: Dataset (Used in Final Solution)

1 Section 1: Acquiring the Dataset and Downloading

• The iWildCam 2019 dataset was around 46.68 GB in size. The training set contained

196,086 images from 138 locations in the southern part of California. The test set

consisted of 153,730 images from 100 different locations in Idaho.

• The dataset was downloaded on the system which took approximately 2 hours and the

test and train zip folders were extracted.

 Section 1.1: Hardware Requirements

• The hardware requirements are as shown below in Figure 1.

Figure 1: Hardware Requirements

 Section 1.2: Software Requirements

• Windows 11

• Anaconda Jupyter Notebook

8

2 Section 2: Importing Necessary Libraries

• The required libraries are installed and imported as shown in Figure 2.

 Figure 2: Importing necessary libraries

Library Use

os Function to interact with os, paths and

directories

sys Functions to interact with python interpreter

pandas For data manipulation activities

numpy For numerical operations involving arrays

and matrices

from skimage.io import imread For reading image files into array

Matplotlib.pyplot For creating visualisations

from PIL import Image, ImageDraw For opening and manipulating images and

simple 2D graphics

from sklearn.utils import class_weight For handling imbalanced datasets

seaborn For data visualisation

9

from keras.preprocessing import image For image loading and processing

import zipfile For handling zip files

from sklearn.model_selection import

train_test_split

For splitting dataset into train and validation

tensorflow For building machine learning models

from tensorflow.keras.preprocessing.image

import ImageDataGenerator

For rescaling and processing images batch-

wise

tensorflow_hub For using pre-trained models

from sklearn.metrics import

precision_recall_curve, auc, f1_score,

accuracy_score, precision_score, recall_score

For using various performance metrics

from keras.callbacks import Callback To execute the code at different stages while

training

from sklearn.metrics import

confusion_matrix, classification_report,

roc_curve, auc

For using performance metrics

from sklearn.preprocessing import

label_binarize

Used for binarizing labels in case of multi-

classification

itertools For efficiently looping

from tensorflow.keras import layers, models For importing common layers

from efficientnet.tfkeras import

EfficientNetB0

A pre-trained deep learning model

from efficientnet.tfkeras import

center_crop_and_resize, preprocess_input

For preprocessing images

from tensorflow.keras.applications import

InceptionV3, ResNet50

Pre-trained models

from tensorflow.keras.models import

load_model

Used for loading the pre-trained Keras model

from the saved files

from tensorflow.keras.optimizers import

Adam

Optimisation algorithm

from tensorflow.keras.callbacks import

EarlyStopping

To monitor the validation loss

Table 1: List of libraries

• The Table 1 above shows the list of libraries used and its purpose.

• The TensorFlow version is checked as shown below.

Figure 3: TensorFlow Version

10

3 Section 3: Exploring the Data

• The path to the location where the dataset has been downloaded is defined. Then the

files in that path are listed as shown in the below Figure 4.

Figure 4: Data Availability

• A Python dictionary is created which maps the class IDs with the animal names as

shown in Figure 5.

Figure 5: Classes

• The train and test directories are defined for easy access to the images which can be

seen in Figure 6.

Figure 6: Train and test directory paths

11

• The number of train and test images are listed as seen in Figure 7.

Figure 7: Number of train and test images

• As shown in Figure 8, CSV files are loaded in DataFrames and displayed.

Figure 8: Head of train.csv and test.csv DataFrames

12

• Figure 9 shows the DataFrames information which contains information like the

number of entries, columns and its data types, and memory usage of the DataFrames.

Figure 10 shows 16 sample images from the train images directory and test images

directory.

Figure 9: Information of DataFrames

13

Figure 10: Sample images from train and test directories

14

4 Section 4: Manipulating the Data

• The class names are then mapped to the category IDs and after appending, the first

few rows of the train_df are viewed as seen in the below as shown in Figure 11.

Figure 11: Mapping class names to IDs

• The column names of both train and test DataFrames are viewed in Figure 12.

Figure 12: Columns in train and test

• As shown in Figure 13, the file name column in train_df and test _df are updated to

include the path of each image file.

Figure 13: Including the complete path of each file

15

• The class distribution is plotted as seen below in Figure 14.

Figure 14: Class distribution function and plot

• Figure 15 shows the splitting of the train dataset into train and validation sets. The

train set contains 157,039 images and the validation set contains 39,260 images each

with 12 columns. The class weights are also computed and the dictionary of class

weights is displayed.

Figure 15: Train-val split and class weights computation

16

• Figure 16 shows the class distribution after applying class weights.

Figure 16: Original and weighted class distribution

• Figure 17 shows that rescaling is done to change pixel values from [0,255] to [0,1] for

better and quicker training. The train data generator also has a split of 25% for

validation.

• The train and validation generators are set up with the necessary parameters as seen in

Figure 17.

17

Figure 17: Rescaling and data generators

• The class indices are also printed in Figure 18.

Figure 18: Class indices

18

5 Section 5: Modeling

• The number of classes in the train DataFrame is checked, the EfficientNet model is

built, and the model summary is displayed as shown in Figure 19.

Figure 19: Verifying the number of classes and Building EfficientNet

19

• The EfficientNet model is trained and after each epoch, the accuracy and loss for both

training and validation sets are printed as seen in Figure 20.

Figure 20: Training EfficientNet Model

• The train and validation accuracy and loss are plotted as shown in the Figure 21

below and evaluation is done on the validation set.

20

Figure 21: EfficientNet model accuracy and loss

• The presence of test images is checked as shown below in Figure 22.

Figure 22: Checking the presence of test images

21

• Figure 23 shows predictions are made for the test data and the number of file paths

and predictions are verified.

Figure 23: Making predictions

• The test images are displayed with predictions. The model is saved as seen in Figure

24.

Figure 24: Displaying predictions and saving model

22

• Figure 25 shows the code snippet for building the Inception model. The model is

loaded from TensorFlow Keras. The model summary is printed.

Figure 25: Building Inception model

• The inception model is then trained and for each epoch, the model’s accuracy and loss

are displayed as seen in the Figure 26.

Figure 26: Training Inception model

23

• Figure 27 shows the code snippet where the training and validation accuracy and loss

are plotted.

Figure 27: Plots for training and validation accuracy and loss

• The data generator for the test set is generated and predictions are made as shown in

Figure 28.

Figure 28: Test Data Generator and Predictions

• 30 images are randomly selected from the test set and predictions for those images are

displayed and the inception model is saved as seen in Figure 29.

24

Figure 29: Displaying images with predictions and saving the model

• The ResNet model is built as shown in Figure 30 and the model summary is

displayed.

Figure 30: Building ResNet model

25

• Figure 31 shows the code snippet for training the ResNet model. The training and

validation accuracy and loss are also displayed for each epoch.

Figure 31: Training ResNet model

• The model training and validation accuracy and loss are plotted as shown in Figure

32.

Figure 32: Plot of model training and validation accuracy and loss

26

• Figure 33 shows the evaluation of the model on test data. The test data generator is

created and predictions are made.

Figure 33: Test data generator and predictions of ResNet

• 30 random images are selected to display the predictions from the test set as shown in

Figure 34.

Figure 34: Random images with predictions

27

• Since the performance of the model was not that great, the ResNet model was fine-

tuned as shown in Figure 35.

Figure 35: Fine-tuning ResNet

28

• Figures 36, 37, and 38 show that the training and validation accuracy and loss are

plotted, predictions are made on test data, and 30 random images are displayed along

with the predictions and the model is saved.

Figure 36: Plots for training and validation accuracy and loss

Figure 37: Generating predictions

29

Figure 38: Displaying images with predictions and saving model

• The pre-trained models are loaded again and predictions are made on the validation

set. The predictions are then combined using a simple weighted average ensemble.

The accuracy of the ensemble model is calculated and displayed as shown in Figure

39.

Figure 39: Calculating Ensemble Accuracy

30

• The images are displayed randomly with the predictions as shown in Figure 40.

Figure 40: Displaying images with predictions

6 Section 6: Evaluation

• Figures 41, 42, 43, 44, and 45 show evaluation metrics for each model being

displayed along with a code snippet. The confusion matrix, ROC curve, and

classification report for each model are displayed.

31

Figure 41: Code snippet for plotting confusion matric, ROC Curve, and Classification

report for all 4 models

32

Figure 42: EfficientNet Evaluation Metrics

33

Figure 43: Inception Evaluation Metrics

34

Figure 44: ResNet Evaluation Metrics

35

Figure 45: Ensemble model Evaluation metrics

