""""
\ National
Collegeof

. Ireland
Configuration Manual

MSc Research Project

MSc Data Analytics

Pawan Kumar

Student ID: x22186115

School of Computing

National College of Ireland

Supervisor: Dr. Muslim Jameel Syed

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Pawan Kumar
Name:

Student ID: [X22186115

Programme: |MSc. Data Analytics Year:| 2024
Module: Research Project

Lecturer: Dr. Muslim Jameel Syed

Submission

Due Date:

12 August 2024

Project Title: [Sentiment Analysis Techniques for Restaurant Reviews
Across Multiple Attributes

Word Count: 707 Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Pawan Kumar

Date: 12 August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project O
(including multiple copies)

Attach a Moodle submission receipt of the online O
project submission, to each project (including multiple
copies).

You must ensure that you retain a HARD COPY of the O
project, both for your own reference and in case a project
is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator Office
must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Pawan Kumar

Student ID: x22186115

System Configuration

The project is done on Google Colab, a cloud-based platform provided by Google that allows
Python Code to be written in a web-based Jupyter Notebook Environment. It is mainly used for
machine learning and deep learning. The study uses the T4 GPU by Google, which has 15 GB
GPU RAM and 32GB System RAM.

Change runtime type

Runtime type

Python 3

Hardware accelerator

(O cpPu (@ TaGPU

TPU v2

Want access fo premium GPUs? Purchase additional compute units

Cancel

Figure 1 Environment Setup

Software Requirements

For building the project major software used are:

e Google Collab
e Python 3.10

Python Libraries Used

The major Python Libraries used are:

NumPy
Pandas
NLTK
Seaborn
Matplotlib
Plotly

Keras

Sci-kit Learn

Dataset

The dataset used in the research is taken from the Zenodo website, which has data available from
various restaurants in Dublin across 65 locations.

5 Data Preprocessing

e The dataset is loaded into Google Colab to be used in a notebook.
e Data is analysed 360 degrees to get the insights from the data.

data = pd.read_excel,

data.head()

Restaurant ID Location ID Review Review Sentiment Cuisine Price Range Food Rating Service Rating Ambience Rating Overall Rating Restaurant Rating

R0001 Lo1 A great place for Irish music great bar and fu_. Positiv Irish 30 and under 5 5 5 5 44
R0001 Lo1 Absolutely exceptional food and staff were ver... e Irish 30 and under 5 5 44
R0001 L01 Cant remember pizza better than this anywhere ... e Irish 30 and under 5 5 44
R0001 L01 Cockiails were very impressive and a perfect e__ e Irish 30 and under 5 5 44

RUL L1 Decent clean and fast Food wasnt bad but ma... B Irish 30 and under 5 5 44

Figure 2 Data Loading

e Abasic data analysis was performed on the dataset

plt.lege
plt.

Sentiment V/s Food Rating
—— Positive
Negative

T

3
Food Rating

Figure 3 Data Analysis of Sentiment Score and Food Rating

plt.legend(ti

plt.sho
Sentiment V/s Service Rating
—— Positive
3.0 Negative
2.5
§~10-
2
&
1.51
1.0 4
0.5 1
0.0 T T T T T
1 2 3 4 5
Service Rating

Figure 4 Data Analysis of Sentiment Score and Service Rating

e Text processing on the Independent Variable.
e Figure 4 highlights the case standardization and text cleaning using Regex on the
review dataset. The output is highlighting the first review as cleaned output.

pd.DataFrame (data.R

Rewiew

A great place for Irish music great bar and fu___
Absolutely exceptional food and staff were wver. __
Cant remember pizza better than this anywhere ___
Cocktails were very impressive and a perfect e __

Decent clean and fast Food wasnt bad but ma...

Fabulous food great senvice Will definitely -..
Great food and excellent service The early bi...
Lovely staff but take away quality food Im afr...

This is our favourite Chinese Restaurant Serv.

We had a fantastic time The food and the serv.__

data.Review[a]

"A great place for ic great bar and full of great people After the Irish band more modern music on a must

g0

Figure 5 Data Processing Step 1

e Next stepis to remove the stopwords from the dataset.

great bar and full of great people

after the irish band more modern music on a must go”

apply(clean_te:

stopwords to froot/mlt
is al dy up-to-dat

1-apply(> i word for word in x.split() f word not in (stop

Review
great place irish music great bar full great p...
absolutely exceptional food staff friendly hel...
cant remember pizza better anywhere dublin gor..
cocktails impressive perfect end seriously tas

decent clean fast food wasnt bad maybe bit sea...

fabulous food great service definitely retum
great food excellent service early bird menu f...
lovely staff take away quality food im afraid ...
favourite chinese restaurant service excellent...

9999 fantastic time food service five star definite..

10000 rows = 1 columns

Figure 6 Data Processing Step 2

e Step 3 of data processing showcase the stemming and lemmatization and the final

dataset combined with Y-variable.

nltk.download("
lemmat
stemmer
stemmer . stem(Word mmatizer -lemmatize(text, pos=

[nltk_data] Downloading kage wordnet to /root/nltk_data

ewl* 1.apply()

data = pd.concat([re w'] ,data

data.renam sinplace=

DA

data.head

Review Review Sentiment

0 great place irish music great bar full great p___

1 absolutely exceptional food staff friendly hel...

Figure 7 Data Processing Step 3

e Few Word clouds are created for both the Positive Sentiment Reviews and Negative

Sentiment Reviews.

~dcloud im + Wordc
join(data- loc[data. R

e').generate(T1)

plt.=how()

lovely

alway <Wf“11£§flﬁi§§:u
highly recommend

bes t

dublinamazing
Elrreat

excellent food

Figure 8 Word Cloud of Positive Words

ack®).generate(T1)

Figure 9 Word Cloud of Negative Words

e The datais divided into training and testing in a split of 70:30.

] = data.Review Sentiment.map({

@ 5
Name: count, dtype: int64

data.Review
data.Review_Sentiment

print(

print(’ stest
print(’ ", train_y
print(

Shape
Shape
Shape
Shape o

Figure 10 Split of Training and Testing Data

e Different Text metrics like TF-IDF, Count Vectorizer and Word2Vec are built on the
dataset

tfidf_transformer = Tfidf
n_tfidf = tfidf tra
ount =

@, window=5, m: ount=5,

)

ntences' item should be a list of words (usually unicode strings). First item here is instead plain

t(map(np.array, data[

train_test split(data_features, da ti andom_state=42)

Figure 11 Text Metrics

6 Model Training and Testing

5 different approaches are used in the research with 3 text metrics techniques making a
total of 15 experiments to get the best model

1. Logistic Regression

1.1 Logistic Regression With CountVectorizer
logreg = LogisticRegression()
logreg.fit(xtrain_count, train_y)

* LogisticRegression

LogisticRegression()

pred_lg ent = logreg.predict(xtest count)
logit_cnt = accuracy score(test y, pred_lg cnt).round(3)

~a |l PP = —= - . »
print{ Accuracy:” ,accuracy_s)]

logit cnt_auc = roc_auc_score(test
print{"R ALIC re: “,logit cn

Accuracy: 8.947
ROC-AUC Score: @.947
precision recall fl-score support

1585

'_I' '_I'

accuracy
mMacro avg
weighted avg

'_I' '_I' '_I'

Figure 12 Logistic Regression With Count Vectorizer

1.2 Logistic Regression With TF-IDF

logit tfidf auc

accuracy
macro awvg
weighted awvg

Figure 13 Logistic Regression With TF-IDF

1.3 Logistic Regression with Word2Vec

data_lr model = LogisticRegression(max_iter
data_lr model.fit(word2vec_train_x, word2vec_train_y)
data_lr pred y = data_lr model.predict(word2vec_test

acc_word2vec_logit = accuracy score(word2vec_test y, data_lr_pred_y).round(
print("Ac y:z", uracy_ score(word2vec_test y, data_lr pred y).round
logit word2vec auc = roc_auc score(word2vec test y, data 1lr pred y)

‘y1logit word2vec_auc)

on_report(word2vec_test y, data 1r pred y,digits

Accuracy: 8.522
ROC-AUC Score:
fl-score support

1452
1588

o ®

o e
=@
Boo

s
P2

accuracy
macro avg
weighted avg

=4
Lo

]
WL
(=
L

Figure 14 Logistic Regression With Word2Vec

2. Naive Bayes

2.1 Naive Bayes With CountVectorizer

nb = MultinomialNBE()
nb.fit(xtrain_count, train_y)

* MultinomialNB
MultinomialMB()

pred_nb_cnt = nb.predict(xtest_count)

nb_cnt = accuracy_score(test_y, pred_nb_cnt).round(

print(2" ,accura ore(test_y, pred_nb_cnt).round
nb_cnt_auc = roc_a score(test_y, pred_nb_cnt).round(3)
print(E ‘ynb_cnt_au
print{classification_report(test_y, pred nb_cnt,digits

Accuracy:
ROC-AUC
recall fl-score support

8.975
8.988

& ®

=
[
=]

accuracy
macro avg
weighted avg

e
(Vs B 1]

L Ly

=]

Figure 15 Naive Bayes With Count Vectorizer
2.2 Naive Bayes With TF-IDF

rMultinomialMe(

Pt{X train tFidf, train y)
~ MultinomizalMB
MultinomialMse()

pred_

=l oin sirraT

support
1585
accur

macro
weighted o

Figure 16 Naive Bayes with TF-IDF

2.3 Naive Bayes with Word2Vec

port, accuracy

word2vec_nb_model = GaussianNB()

word2vec nb_model.fit(word2vec train rd2vec_train_y)
word2vec_nb_pred_y = word2vec_nb_model.predict(word2vec_test_x)

acc_nb_word2vec _score(word2vec_test y, word2vec_nb pred y).rownd(

primt(' Cy_SCO word2vec_test y, word2vec_nb pred y
nb_word2vec_auc
" ,nb_word2wvec_auc)
_report(word2vec_test y, word2vec nb_pred y,digi

support

1492
1588

=)
B

& ®
oo
=
'

L1
1]

accuracy
macro avg
weighted avg

O
W
Y=Y 5]
W

Figure 17 Naive Bayes with Word2Vec

3. Xg-Boost

3.1 XgBoost with CountVecitorizer

random_state
n_job -1)
xtrain_count, train_y)

XGBClassifier

XGBClassifier(base_score=MNone, booster=MNone, callbacks=MNone,
colsample_ bylevel=None, colsample_bynode=MNone,
colsample_bytree=MNone, device=Mone, early_stopping_rounds=None,
enable_categorical=False, eval metric=None, feature_types=Nones,
gamma=MNone, grow_ policy=Mone, importance type=MNone,
interaction_constraints=Mone, learning_rate=None, max_bin=None,
max_cat_threshold=None, max_ cat_ to_onshot=None,
max_delta step=Mone, max_depth=None, max leaves=Mone,
min_child weight=MNone, missing=nan., monoctone_constraints=None,
multi_strategy=Mone, n_estimators=2@@, n_jobs=-1,
num_parallel tree=None, random state=42, ...)

=t prec
pred xgb .

support

-]

1585
L=}

[}
o 0

oo

495

0

Ao

accuracy
macro avg
weighted avg

800
i

-]

Figure 18 XgBoost with Count Vectorizer

-
)

3.2 XgBoost With TF-IDF

XGBEClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None,
colsample_bylevel=Mone, colsample bynode=Mone,
colsample_bytree=MNone, device=MNone, early stopping_rounds=Mone,
enable_categorical=False, eval_metric=—mone, feature_types=Mone,
gamma=MNone, grow_policy=MNone, importance type=Mone,
interaction_constraints=None, learning rate=Mone, max_bin=Mons,
max_cat_threshold=Mone, max_cat_to_onehot=MNone,
max_delta_step=Mone, max_depth=Mone, max leaves=Mone,
min_child weight-None, missing-nan, monotone_constraints=Mone,
multi_strategy-Mone, n_estimators-28@, n_jobs=-1,
num_parallel tree=Mone, random state=42, ...)

_xgh_tFidf =

accuracy,

recall support

e. 36 1585

1495

accuracy a
macro ave
weighted avg

Figure 19 XgBoost with TF-IDF

3.3 XgBoost with Word2Vec

timator.fit(word2vec_train x, wol
a_xgb pred y = xgb estimator.predict(word2vec_test_x)

acc_word2vec_xgb
print(" iracy:",
xgb_word2vec_auc (word2vec_tes

print(5 b word2vec_auc)

print(classification report(word2vec test y, data xgb pred y,dig

recall fl-score support

183 1492
8.674 1568

accuracy
macro avg 88
weighted avg 22 8.398

Figure 20 XgBoost with Word2Vec

4. Random Forest

4.1 Random Forest With CountVectorizer

radm_clf i . = »n_estimators=1L

radm_ clf.fit

RandomForestClassifier

RandomForestClassifier(n_jobs 1, oob_score=True)

pred_rf_
rf_ont
print

accuracy
macro avg
weighted avg

Figure 21 Random Forest With Count Vectorizer

4.2 Random Forest With TF-IDF

radm_c1f = RandomForestClassifier(oob score= ,n_estimators=
radm_clf.fit(X_train_tfidf, train y)

v RandomForestClazsifier

RandomForestClassifier{n_jobs=-1, ocob_score=True)

f.predict(X test tfid
(pred rf_tfidf).r
L= pred_rf_tfidf

cor

precision fl-score support

a. .88 -9 1585
8.892 - -9 14495

a
1

accuracy
MAcro avg
weighted avg

Figure 22 Random Forest With TF-IDF

4 3 Random Forest With Word2Vec

radm_clf = RandomForestC ifier(oob_score= »n_estimators=

radm_clf.fit(word2vec_train x, word2vec_train y)

v RandomForestClassifier

RandomForestClassifier(n_jobs=-1, oob_score=True)

fl-score support

183 1452
674 1588

|.=| I.sl

accuracy
macro avg
weighted avg

I.sl ::l I.:I

Figure 23 Random Forest With Word2Vec

5.LSTM

Figure 24 LSTM with Count Vectorizer

LSTM with CountWVectorizer

Train Accuracy
Validation Accuracy

pred_lstm

2.0
Epochs

Figure 25 LSTM with Count Vectorizer Evaluation

Figure 26 LSTM with TF-IDF

Test Accuracy: 8.498 9227985
LSTM with TF-IDF

—— Train Accuracy
Validation Accuracy

f.round(), normal
t_y, pred_lstm tfidf.round(), normali

uri

m
weiphted

Figure 27 LSTM with TF-IDF Evaluation

Epoch 1/5
118/118
Epoch 2/5
110/110
Epoch 3/5
118/118
Epoch 4/5
110/110
Epoch 5/s
110/110

LSTM with Word2Vec

val_loss:

val

—— Train Accuracy
validation Accuracy

2.0 25
Epochs

94/94
ACCurac

roc_auc_:
S1stmy

fl-score
.e13
accurac

macro
weiphted

30

pre

support

Figure 29 LSTM with Word2Vec Evaluation

validation_data:

wordzvec_test_y))

