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Hybrid Deep Learning Strategies for Epileptic Seizure 

Detection 

Mohammad Tabish x22205705 

Abstract 

 The health challenges related to epileptic seizures are of paramount concern and accurate 
identification at early stages is important in order to positively influence patient 
outcomes. Deep learning has revolutionized the detection, monitoring, and diagnosis of 
epileptic seizures to a greater extent in recent years, surging towards real-time 
processing. In this work, a novel deep learning method is proposed to detect epileptic 
seizures, which combines CNN (Convolutional Neural Networks) with LSTM or GRU. The 
research question is whether integrating spatial and temporal feature extraction via these 
hybrid models in an ensembled manner can improve the accuracy and dependability of 
seizure detection within EEG.  The solution includes training these models on a set of EEG 
recordings showing healthy, interictal, and ictal states with significant pre-processing to 
normalize input signals. The CNN layers capture spatial features, while the LSTM and GRU 
layers handle temporal dependencies. Evaluation determined that the CNN-LSTM model 
produces superior accuracy compared with alternative configurations. A Flask web 
service is developed for real-time seizure detection, where users can upload EEG files to 
preprocess signals, predict seizures, and retrieve related information from Wikipedia. 
These findings confirm the efficiency of combining state-of-the-art deep learning models 
to enhance seizure detection, which will be advantageous in healthcare. Future work will 
focus on further refining the model's generalization abilities, considering multiple 
datasets, and investigating clinical deployment scenarios. 
keywords: Epileptic Seizure Detection, Deep Learning, Hybrid Models, Convolutional 

Neural Networks, Neural Networks 

 1 Introduction 

Epileptic seizures, characterized by sudden, uncontrolled electrical disturbances in the brain, 

affect millions worldwide, posing significant health challenges and impacting the quality of 

life. Early and accurate detection of epileptic seizures is crucial for timely intervention and 

effective management of the condition. Traditional methods of seizure detection, which often 

rely on visual inspection of electroencephalogram (EEG) signals by medical professionals, are 

time-consuming and prone to human error. Therefore, the demand for automated and accurate 

seizure detection systems with real-time monitoring-alerting functionalities is increasing. Over 

the past few years, numerous medical diagnostic-based systems were discovered using deep 

learning techniques, and one such application is epileptic seizure detection. For the deep 

learning architectures already mentioned, Convolutional Neural Networks (CNN), Long Short-

Term Memory (LSTM) networks, and Gated Recurrent Units (GRU) are those that show more 

potential for EEG signal processing. These models are well-suited for capturing highly 

nonlinear patterns along with a temporal relationship between the data needed to identify 

seizure events. In this paper, the proposed study is to introduce hybrid deep learning techniques 

by aggregating CNN with both LSTM and GRU models to enrich epileptic seizure detection 
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on EEG signals. The hybrid model, as the name suggests, enhances detection accuracy and 

stability by using the strengths of each individual model. The primary attention was on 

designing models that can efficiently capture both spatial and temporal features of EEG facts, 

thereby offering a more comprehensive evaluation. The research is done by training and testing 

the models on a good dataset that includes EEG signals (healthy, interictal-stages between 

seizures, ictal-seizure). The input signals have been stripped down to their standardized 

components, allowing the models to perform as intended with minimal variation or drift in 

performance based on unstandardized variables. Additionally, the study covers an 

implementation with a Flask App enabling real-time prediction of seizures. This app helps users 

upload their EEG files, preprocess the data, predict seizure states using custom models, and get 

related information from Wikipedia. 

 1.1 Aim: 

In this study, a novel hybrid deep learning model was proposed that combines CNN with LSTM 

and GRU to precisely recognize epileptic seizures from EEG recording. This study aims to 

validate that the use of hybrid models, capable of capturing spatial and temporal features 

together better than standalone model types, can increase final detection accuracy, 

contentiously. 

 1.2 Research Question: 

How can hybrid deep learning models combining Convolutional Neural Networks, Long Short-

Term Memory networks, and Gated Recurrent Units enhance the accuracy and reliability of 

epileptic seizure detection from EEG signals compared to standalone models? This research 

not only contributes to the field of medical diagnostics by proposing an advanced seizure 

detection system but also aims to provide a practical tool for healthcare professionals and 

patients for real-time monitoring and intervention. Future work will explore the integration of 

more diverse datasets and the deployment of the developed models in clinical settings to further 

validate their effectiveness and generalizability. 

 2 Related Work 

For epileptic seizure detection, two papers (Jerger et al. and Chang et al. in 2001) focused on 

early-stage detection, obtaining an accuracy of 83%, with a precision rate of 82%, and recall 

and F1 measures both set at 80%. However, their work focused only on the early stages of 

seizures. Kim et al. in 2020 evaluated experimental methods for treatment, achieving a 

precision of 85%; they all barely intersected at 84% and recall from their study results but were 

limited by the paucity of empirical evidence. For example, Sadati and Mohseni in 2006 used 

Neural Fuzzy Networks with 86% overall accuracy at precision=88%, recall=85%, F1=87%, 

but they encountered implementation problems. Elger & Hoppe in 2018 dedicated their work 

to seizure detection methods, obtaining an accuracy of 82%. The corresponding precision and 

recall are respectively equal to 83% and 80%. The very low F1 score suggests difficulty in 

accurate reporting. 

Epileptic seizures, resulting from abnormal brain electrical activity, require quick and reliable 

detection for minimizing health risks and maximizing outcomes. Classical methodologies often 

require manual inspection of EEG (electroencephalogram) signals by medical professionals, 

which is laborious and time-consuming, and leads to error. Because of this, automated seizure 
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detection systems based on advanced machine learning and deep learning are being developed 

extensively. The current literature in epileptic seizure detection has advanced to research state-

of-the-art, focusing on hybrid deep learning methods that combine different neural network 

architectures in order to boost the performance of epileptic seizure detection tasks. 

Deep learning in many applications, among them medical diagnostics, has been revealed as a 

game changer. The biggest success in automatically extracting spatial features from EEG 

signals goes to the use of Convolutional Neural Networks towards detecting seizures. 

According to Achilles et al [1]., CNN’s can be used effectively for real-time detection of 

epileptic seizure and attain high accuracy by using the capability of the network in learning 

intricate patterns within EEG signals. Similarly, Zhou et al. [24] implemented CNN’s for 

seizure detection and found its model to be highly robust in dealing with variations in EEG 

data. But CNN’s were  proficient in spatial feature extraction; they do not model temporal 

dependencies for analysing time-series data, which is also true for EEG signals. To overcome 

this, researchers have applied a combination of CNN’s with Rennes, especially LSTM, which 

are known for their capability to capture temporal dependencies. In [11], the authors developed 

a deep learning approach that combines CNN and LSTM networks for effective seizure 

detection through the amalgamation of both spatial and temporal information. It achieved 

significantly high accuracy in comparison to standalone models of CNN and LSTM. This was 

further supported by Hossain et al. [9], who, in a similar application to a framework, 

demonstrated that the presented framework showed superiority in capturing the complex 

temporal dynamics of EEG signals. 

More recent models have also used hybrid forms with the addition of Gated Recurrent Units. 

This architecture is simpler compared to that of LSTM, and GRUs have proved 

computationally more efficient. On the other hand, GRUs, like LSTMs, can learn temporal 

dependencies. Subasi et al. [19] studied the combination of CNN’s and GRUs for seizure 

detection, and the results demonstrated that this hybrid model not only improved detection 

accuracy but also reduced computational complexity. This made it feasible for applications in 

real time, where timely detection is important. 

Furthermore, other works were done examining the possibilities of using ensemble learning 

methods, which include several models in one, of course with better performance, in seizure 

detection. A stacking ensemble of deep neural networks, which incorporates the strengths of 

CNN’s, LSTMs, and GRUs, in Akyol [3], outperformed a number of single models and 

demonstrated great potential for ensemble approaches to medical diagnostics. Furthermore, Al-

Qazzaz et al. [2] applied the multimodal deep learning methods by integrating entropy-based 

features in order to enhance the epileptic seizure detection. The authors demonstrated that 

overall detection accuracy can be significantly enhanced when the deep learning models are 

applied after a multi-feature extraction process. Another of its applications deals with the 

seizure detection area in deep learning models. Attention mechanisms allow deep models to 

attend to specific parts of input data, which can improve interpretability and performance. For 

instance, Shoeibi et al [17] discuss a number of DL techniques and demonstrate how attention 

mechanisms applied to CNN’s and Rennes achieve high performance for increasing seizure 

detection accuracy. This has been also supported by Chen et al. [6], who implemented cost-

sensitive deep active learning with attention mechanisms, leading to remarkable improvements 

in seizure detection performance. 

Besides the architecture of models, the selection of features to be extracted from EEG signals 

is of paramount importance in seizure detection. Although Boonyakitanont et al. [5] reviewed 

methods for feature extraction, the choice should be geared toward relevant features compatible 

with the model to further maximize its performance. For this reason, their study proved the 
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efficiency of the combination of time-domain, frequency-domain, and entropy-based 

characteristics in deep-learning-based models. It is a very complex, multi-dimensional 

approach to feature extraction that has significantly influenced the improvement in accuracy 

and robustness of seizure detection systems. 

Additional challenges for integration of seizure detection systems in the clinic include data 

variability, robust performance across diverse patient populations, and others. In fact, Elger and 

Hoppe [7] described the diagnostic challenges in epilepsy and the need for a reliable seizure 

detection system working in real-world conditions. They further emphasized that modern deep-

learning techniques can rise up to such challenges if developed on huge databases and validated 

stringently. 

In addition to the facilitation of better accuracy in detection, there has been a growing focus on 

the development of applications that are user-friendly and assist in real-time monitoring and 

intervention. Vidyaratne and Iftekharuddin [22] developed a real-time seizure detection system 

using EEG signals and demonstrated for practical applicability how deep learning models can 

be deployed. Works such as theirs thus pointed to the necessity of these models being 

incorporated into working platforms available for use by healthcare professionals and patients 

in general. 

Although substantial progress has been made in the area of deep learning for seizure detection, 

there remain several challenges that still need to be addressed, the most important being the 

availability of large, labelled datasets that can be used for training and model validation. Indeed, 

Jerger et al. [12] highlight that the generalization performance of the models is not sufficient 

when incomplete EEG datasets are available. Therefore, creating and sharing large-scale, 

annotated EEG datasets should be a focus of future research to support the development and 

validation of deep learning models. 

Then there is the issue of explainability in deep learning models. Although these models often 

have high accuracy, their black-box properties mean research  cannot interpret how the model 

behaves. Paul [14], addressed some methods to improve the interpretability of seizure detection 

models, such as feature importance visualization and explainable AI techniques. Enhancing the 

interpretability of these models is critical to support their acceptance from clinicians and 

usability in clinics. 

Lastly, continuous adjustment and refinement of seizure detection systems is necessary. The 

models need to be able to adapt as patients’ conditions evolve, translating changes in EEG 

patterns. Tran et al. [20] has highlighted the necessity of developing adaptive learning schemes 

that direct models to update their learnable parameters upon revelational data. This can keep 

the performance of seizure detection systems consistent and reliable across different periods. 

This has given rise to the successful integration of deep learning techniques, especially hybrid 

models ( between CNN’s with LSTMs/GRUs) that tend to outperform the existing works on 

detecting epileptic seizures from EEG data. Further enhanced detection accuracy and 

robustness are achieved by the adoption of ensemble methods, attention mechanisms, and 

advanced feature extraction techniques. Nevertheless, challenges surrounding data availability 

to train the model, how interpretable a machine-learned (or DL) candidate is, and continuous 

tuning of the pipeline persist. Collaborative efforts to address these challenges and innovative 

research are essential for automated seizure detection systems to be successfully deployed into 

clinical practice. 

 

Papers (Year 

- Author) 

Datasets 

Used 

Model 

Used 

Results - 

Metrics 

Used 

Value Limitations 
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Al-Qazzaz et 

al., 2024 

Real-time 

EEG data 

Multimodal 

Deep 

Learning 

Accuracy 98% Overfitting 

issues 

Sensitivity 96% 

Shoeibi, A., et 

al., 2021 

Various 

EEG 

datasets 

Deep 

Learning 

Accuracy 90% High 

computational 

cost 

Achilles et al., 

2018 

Clinical 

EEG data 

CNN Accuracy 95% Limited 

dataset size 

Precision 93% 

Recall 92% 

Subasi, A., et 

al., 2019 

EEG 

dataset 

Hybrid 

Machine 

Learning 

Accuracy 94% Complexity in 

model 

integration 

Sensitivity 93% 

Sadati, N., and 

Mohseni, H.R., 

2006 

EEG 

dataset 

Neural 

Fuzzy 

Networks 

Accuracy 86% Complexity in 

implementation 

Precision 88% 

Recall 87% 

F1 Score 86% 

Chen et al., 

2018 

Clinical 

EEG data 

Costsensitive 

Deep 

Learning 

Precision 90% High cost 

for real-time 

application 

Sensitivity 92% 

Tzallas, A.T., et 

al., 2009 

EEG 

datasets 

Time–

Frequency 

Analysis 

Accuracy 92% High 

computational 

complexity 

Sensitivity 90% 

Guo et al., 2010 EEG 

dataset 

Artificial 

Neural 

Networks 

Accuracy 92% Limited to 

specific 

features 

Precision 91% 

Jerger, K.K., et 

al., 2001 

Early 

seizure 

dataset 

Early 

Detection 

Methods 

Accuracy 83% Limited to 

early stages 

Precision 82% 

Recall 81% 

F1 Score 80% 

Akyol, 2020 Real-time 

EEG data 

Stacking 

Ensemble 

Precision 94% High 

computational 

cost 

Recall 95% 
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Table 1: Summary of Selected Epileptic Seizure Detection Research (10 Papers) 

 3 Methodology 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Architecture Diagram 

The design of the hybrid deep learning strategies for epileptic seizure detection has been 

carefully framed in a methodological approach to keep stable and accurate system 

development at each stage. From data collection to model deployment, all steps in this process 

are essential for the seizure detection system to work efficiently. 

Step 1: Data Acquisition 

The most important part of any machine learning project, especially one related to healthcare, 

is data acquisition, and this methodology, therefore, focuses heavily on the collection of data. 

The quality of electroencephalogram (EEG) data, which is directly related to user experience 

and diagnostic performance, plays a vital role in training the deep learning models. From 

humans, EEG signals used were in the normal state (healthy), interictal state (between 

seizures), and ictal state (during a seizure).  

The data collections, gathered from a number of open-access databases (including the 

University of Bonn EEG database), have been carefully crafted to comprise multiple seizure 

and non-seizure states. This large dataset of all kinds is essential for training models that 
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generalize well to the real, unseen input. In the end, separate data is allocated to various 

training sets A (healthy), B (healthy), C (interictal), and E (ictal). 

Step 2: Data Preprocessing 

The next crucial step in the workflow after data acquisition is known as data preprocessing, 

which includes denoising and pre-formatting of EEG signals before they could be input to a 

deep learning model for training. There are significant noise levels in EEG signals, which 

change the characteristics of the signal and thus cannot be used as-is. Some of the steps in the 

preprocessing pipeline are as follows:  

Signal Segmentation—The EEG signals were segmented into epochs, each having a fixed 

length. Each segment is zero-padded (or truncated) to a common length of 4097 samples. This 

length is chosen with respect to the sampling rate of EEG signals as well as epoch lengths, 

ensuring that enough information is captured for each segment for processing. 

Normalization: The data is normalized using a standard scaler, typically scaling features of 

EEG signals from [0, 1] or to a zero mean and unit variance. This is needed so that during 

training, the model converges faster to a better result, as almost all deep learning models 

benefit from standardized input data. 

Step 3: Exploratory Data Analysis (EDA) 

Exploratory Data Analysis (EDA): The third step is EDA, by which EEG data is checked for 

its intrinsic structure and attributes. Exploratory data analysis is a composite approach of 

graphical and statistical methods used to evaluate the nature, patterns, or outliers/anomalies 

within the dataset. 

Statistical Analysis: Descriptive statistics of central tendency, dispersion, and shape of the 

dataset distribution are calculated. Helpful metrics include the mean and median as measures 

of central location, standard deviation to provide an idea about the spread, and 

skewness/kurtosis to reflect how distribution affects specific states. 

Granular Analysis: This involves using different types of plots such as histograms, box and 

whisker plots, scatter plots, etc., to better understand data distribution and identify outliers. 

Scatter plots can reveal clusters and patterns, while box plots can show distribution and the 

presence of outliers. 

Step 4: Model Development 

Design and develop hybrid deep learning models. This work leverages Convolutional Neural 

Networks (CNN’s) and Long Short-Term Memory (LSTM) networks as well as Gated 

Recurrent Units.  

The hybrid model exploits both architectures—the title-specific models capable of studying 

individual behavioural effects, and a joint network with CNN layers extracting spatial features 

from a pre-segmented EEG recording for further temporal generalization, which also consists 

of a convolutional neural cell layer. These features could correspond to spatio-temporal EEG 

patterns associated with seizure generation and onward spread. In convolutional layers, filters 

provide more features: edges, frequencies, or waveforms in input signals, etc. 

LSTM and GRU Layers: To understand the temporal dynamics of EEG signals, LSTM and 

GRU layers are added, allowing the model to learn how seizure activity develops over time. 

While LSTMs are more suited for sequences with long-term dependencies, GRUs offer a 

computationally simpler alternative with fewer parameters. 

Model Configurations: Various model configurations are tested, including CNN-only, CNN-

LSTM, CNN-GRU, and CNN-LSTM with attention mechanisms. The attention mechanism 

enables the model to focus on the most important parts of the EEG sequence for identifying 

seizures. 

Step 5: Training and Evaluation 
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Train and Evaluate: Splitting the dataset into an 80–20 ratio after preprocessing ensures that 

research  model is exposed to almost all of the data while being rigorously tested on unseen 

data. Practices used during training: 

Hyperparameter Tuning: Important hyperparameters such as learning rate, batch size, number 

of layers, and units in each layer are tuned using grid search or random search. This is 

important as properly tuning these values can be key to the model generating optimal results. 

Regularization: There are techniques in place to prevent overfitting, like dropout and early 

stopping. Dropout randomly turns off neurons during training, which leads to the network 

learning more generalized features. With early stopping, training halts when model 

performance no longer improves over the validation set. 

Model evaluation: Once trained on the training set, models are then evaluated for their 

performance using different metrics like accuracy, precision, recall, and F1-score against our 

testing dataset. These metrics provide a balanced perspective on model performance that 

accounts for operating in both the false positive and false negative space. 

Analysis of Models: A comparison is done to explore, among a variety of features, which 

model offers the best performance. This is an important step as it ensures the best model goes 

into production. 

Step 6: Model Deployment 

The Top model was converted to a Flask application and Deployed. This allows users to upload 

EEG files and then the trained model processes them. These results can be used for Seizure 

detection in real time. This phase focused on:  

The user Interface - Flask application was kept lightweight and simple so as to be useful not 

only for health professionals but also informed patients. 

Live Prediction: The application reads the uploaded EEG file and instantly identifies whether 

a seizure state appears in the data. 

Additional Contextual Information: The application uses the reported seizure state to pull 

relevant information from Wikipedia, adding depth to the user experience. 

 

 4 Design Specification 

 

 

 

Figure 2 Flow Chart 
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The design specification for the hybrid deep learning system for epileptic seizure detection 

gave the framework that was developed in order to make sure this is a robust, accurate, and 

user-friendly system. Primarily, a comprehensive solution—comprising all indispensable 

elements from data acquisition to deployment—was aimed at ensuring an integrated one, where 

all kinds of functionalities work seamlessly with a high degree of accuracy in detection. 

The architecture of the system consists of several layers, each with its specific functionality. 

The first layer relates to the data acquisition; for this scope, this research used publicly available 

EEG datasets. These datasets could be roughly classified into normal (Sets A and B), interictal 

(Sets C and D), and ictal (Set E) states. All these datasets are organized very carefully and are 

saved in standard formats for easy access and processing of data. 

The preprocessing of the EEG signal was one important part of the system. Because EEG data 

contain a lot of noise, a lot of preprocessing has to be done such that the signals are friendly 

enough for deep learning models. The processing pipeline involves segmenting the EEG 

signals into fixed-length segments, padding shorter segments, and then truncating longer ones 

in such a way that they all become samples of exactly 4097 in length. This provides uniformity 

in the dataset. Other normalization techniques, such as standard scaling, make all values appear 

in the same range, which helps achieve quicker convergence during model training. 

An integral part of the design, exploratory data analysis gives insights into the distribution and 

other characteristics of the data. In such a way, different statistical and visual analysis 

techniques have been applied for finding patterns and anomalies within the data: histograms, 

box plots, scatter plots, density plots, etc. EDA helps balance the dataset by sampling an equal 

number of instances from each category. In this regard, it ensures that models are trained on 

balanced data, which is very important in order for predictions to be correct. 

The most important part was the stage of model development, where several hybrid deep 

learning architectures are delved into. It involves combining Convolutional Neural Networks 

(CNN’s) with Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 

(GRUs). CNN layers were used for extracting spatial features from segmented EEG signals, 

while LSTM and GRU layers serve to capture temporal dependencies. This combination builds 

on the strengths of both architectures to improve the overall detection accuracy. The design 

specification checks out models such as CNN-only, CNN-LSTM, CNN-GRU, and CNN-

LSTM with attention mechanisms to get the optimal model. 

The training and evaluation of the model was expected to be developed with a point of view on 

the robustness of the system. After preprocessing the data, it was split into training and testing 

data in the 80-20 ratio. Training of models with the help of techniques like dropout and early 

stopping to prevent overfitting uses hyperparameter optimization for good results. They are 

then tested on the testing set post-training using models and metrics like accuracy, precision, 

recall, and F1-score. A comparative analysis is carried out to decide which the best model is, 

based on performance. 

The last implementation detail for the model would be deploying the best-performing to a user-

friendly Flask application, an interface that would allow real-time seizure detection from EEG 

file uploads and, after preprocessing, feed them into the trained model for further prediction. 

Subsequently, the application fetches useful information from Wikipedia based on the seizure 

state predicted, providing the user with richer contextual information. 

The system is capable to be retrained when new EEG data become available so as to incorporate 

this information and be adaptive to changes in patient condition and changes in the patient’s 

EEG patterns. This supports continuous model effectiveness over time. In this sense, learning 

adaptively is the way to really maintain high accuracy and true reliability under clinical 

working conditions. 
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 5 Implementation 

      CNN Equation: 

 

ℎ{(𝑙)} =  𝑓(𝑊{(𝑙)} ∗ ℎ{(𝑙−1)} +  𝑏{(𝑙)})        (17) 

 

Implementation: In CNN model, convolutional layers were followed by MaxPooling layers to 

reduce spatial dimensions and avoid overfitting. Dropout was used for regularization. The final 

output was passed through a fully connected layer. 

 

CNN with LSTM Equation: 

 

CNN  

ℎcnn
(𝑙)

= 𝑓(𝑊cnn
(𝑙)

∗ ℎcnn
(𝑙−1)

+ 𝑏cnn
(𝑙)

) 

 

LSTM  

 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑈𝑖ℎ

(𝑡−1) + 𝑏𝑖) 

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑈𝑓ℎ(𝑡−1) + 𝑏𝑓) 

𝑜(𝑡) = 𝜎(𝑊𝑜𝑥(𝑡) + 𝑈𝑜ℎ(𝑡−1) + 𝑏𝑜) 

𝐶(𝑡) = 𝑓(𝑡) ⊙ 𝐶(𝑡−1) + 𝑖(𝑡) ⊙ tanh(𝑊𝐶𝑥(𝑡) + 𝑈𝐶ℎ(𝑡−1) + 𝑏𝐶) 

ℎ(𝑡) = 𝑜(𝑡) ⊙ tanh(𝐶(𝑡)) (12) 

 

Implementation: The CNN-LSTM model captured spatial features using CNN layers, and 

temporal dependencies were captured using LSTM layers. The model learned complex spatial-

temporal features. 

 

CNN with LSTM and Attention Equation: 

 

CNN  

ℎcnn
(𝑙)

= 𝑓(𝑊cnn
(𝑙)

∗ ℎcnn
(𝑙−1)

+ 𝑏cnn
(𝑙)

) 

 

LSTM  

 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑈𝑖ℎ

(𝑡−1) + 𝑏𝑖) 

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑈𝑓ℎ(𝑡−1) + 𝑏𝑓) 

𝑜(𝑡) = 𝜎(𝑊𝑜𝑥(𝑡) + 𝑈𝑜ℎ(𝑡−1) + 𝑏𝑜) 

𝐶(𝑡) = 𝑓(𝑡) ⊙ 𝐶(𝑡−1) + 𝑖(𝑡) ⊙ tanh(𝑊𝐶𝑥(𝑡) + 𝑈𝐶ℎ(𝑡−1) + 𝑏𝐶) 

ℎ(𝑡) = 𝑜(𝑡) ⊙ tanh(𝐶(𝑡)) (12) 

Attention  

 

Attention = softmax(𝑊𝑎 ⋅ ℎ(𝑡)) 

ℎatt

(𝑡)
= ∑ Attention𝑖

𝑛
𝑖=1 ⋅ ℎ(𝑖)  (5) 
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Implementation: The CNN-LSTM-Attention model integrated attention mechanisms to 

enhance LSTM’s ability to focus on relevant input sequence parts. This improved the model’s 

performance by weighing different sequence parts according to importance. 

 

CNN with GRU Equation: 

 

ℎcnn
(𝑙)

= 𝑓(𝑊cnn
(𝑙)

∗ ℎcnn
(𝑙−1)

+ 𝑏cnn
(𝑙)

) 

 

𝑧(𝑡) = 𝜎(𝑊𝑧𝑥(𝑡) + 𝑈𝑧ℎ(𝑡−1)) 

𝑟(𝑡) = 𝜎(𝑊𝑟𝑥(𝑡) + 𝑈𝑟ℎ(𝑡−1)) 

ℎ(𝑡) = 𝑧(𝑡) ⊙ ℎ(𝑡−1) + (1 − 𝑧(𝑡)) ⊙ tanh (𝑊ℎ𝑥(𝑡) + 𝑈ℎ(𝑟(𝑡) ⊙ ℎ(𝑡−1))) (8) 

 

Implementation: The CNN-GRU model used GRU layers instead of LSTM due to their simpler 

structure and fewer parameters. GRU layers made the model computationally efficient while 

balancing the need for temporal feature extraction. 

 

The epileptic seizure detection hybrid deep learning system is implemented in various, very 

critical stages, each of which is designed very carefully in order to ensure that the system attains 

the required level of accuracy and reliability. This section discusses, in detail, the 

implementation procedure, beginning with data preprocessing and model development to 

training, evaluation, and deployment. 

During the first phase of implementation, the preprocessing of data was done. EEG datasets 

were loaded from their respective directories, and every signal was segmented at fixed lengths 

of 4097 samples. It was uniformly realized through padding for shorter segments and truncating 

the longer ones. Further down the preprocessing pipeline was normalization, where a standard 

scaler was applied to ensure all values of the signal lay in a similar range. This was a very 

important step to enable an increase in the convergence rate of model training. Processing, 

implemented with the use of NumPy, gives assurance that the data, after processing, still 

remains valid and consistent. 

Model development was implemented by designing hybrid deep learning models. For model 

design to be implemented, TensorFlow and Keras were used in developing the models that 

combined Convolutional Neural Networks (CNN’s) with the Long Short-term Memory 

(LSTM) network and Gated Recurrent Units (GRU). The CNN layers capture spatial features 

from EEG signals, while the LSTM and GRU layers capture temporal dependencies. These 

models were built using multi-configurations: CNN-only, CNN-LSTM, CNN-GRU, and CNN-

LSTM with the integration of attention to understand the best architecture for seizure detection. 

Once the models were developed, the training phase began. After the pre-processing of data 

was done, it was split into training and testing sets in an 80–20 ratio. The training consisted of 

feeding the training set to the models and tuning their hyperparameters to achieve optimal 

results. To avoid overfitting, techniques such as dropout and early stopping were used. Trained 

the models for a number of epochs and used batch sizes selected to trade off computational 

efficiency with model accuracy. Loss and accuracy metrics were used to monitor the training 

process, and the best-performing model configurations were identified. 

Next came the evaluation phase using a separate testing set (kept reserved during training) to 

test how well trained models had been doing until that moment. Accuracy, precision-recall, and 

F1-score were calculated to evaluate the performance metrics. To compare the different model 

configurations to each other, they made sure that all metrics were logged extensively. The 
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evaluation results showed that the best model has been deployed. The last phase was 

deployment, where the chosen model was implemented into a Flask application and deployed 

for detecting seizures on live data. Users could upload EEG files into the application and pre-

process (envelope extraction) them, so that they were ready for analysis by the trained model. 

This way, the model predictions would be shown to the user along with context retrieved from 

Wikipedia for better understanding in one go. That means an app that was less approachable 

by design. 

 6 Results and Discussion 

This Research has been evaluated with the performance of hybrid deep learning system for 

epileptic seizure detection in terms of various classification options, including health and 

disease states, interictal state against healthy/ictal state, which are three class labels across EEG 

signals. Critically, their evaluation is essential for the potential real-world clinical 

implementation of these models. 

Statistical Analysis and Data Exploration 

Analysis started with an in-depth inspection of the EEG dataset, computing descriptive 

statistics for each feature set over different seizure states. It is basic in the sense that can master 

these handful of metrics, then will be able to describe any quantitative dataset: how large or 

small it may seem. The input has these numbers which was used to guide research next data 

preprocessing steps, scaling, and imputation. 

 
Figure 3 Amplitude Distribution 
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Figure 4 EEG Signals for Selected Samples 

Exploratory Data Analysis (EDA) after the statistical overview of the dataset. EDA also took 

the form of visual data representation and included histograms describing occurrence over time 

and amplitude distribution graphs illustrating differences in signal properties between healthy, 

interictal, and ictal states. Similarly, the amplitude distribution plot showed systematic 

composition differences in signal amplitudes between classes, suggesting seizure detection-

related characteristics of EEG signals were present. This is fundamental to verify that the 

balance between dataset classes allows model not to be biased and to do an initial check if 

anything is affecting this. 

Temporal Analysis of EEG Signals 

Following this, line plots were utilized to observe changes in time dynamics of certain EEG 

samples, including the differentiation between healthy and both interictal/ictal states across 

signals. In particular, the visual inspection made it evident that models needed to be able to 

discern spatial and temporal features since in identifying between having a seizure or not, the 

dynamics are important. That insight would ultimately direct researchers to create and choose 

different hybrid models—many of which were created by combining Convolutional Neural 

Networks (CNN’s) with Long Short-Term Memory (LSTM) networks or Gated Recurrent 

Units (GRUs). 

Model Performance Evaluation 
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Figure 5 Model Accuracy Comparison 

 
Figure 6 Accuracy, Loss, Recall, F1-Score Comparison 

Hybrid deep learning models were evaluated using the following key evaluation metrics: 

accuracy, loss, precision, and F1-score. This made it obviously obvious to see how the different 

model configurations performed in performance comparison charts. CNN Model: CNN-only 

model provided 85% accuracy with low loss, i.e., 0.25. As a result, this model was good at 
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learning the spatial features of EEG signals, which is shown by the high precision and F1-

score. Unfortunately, it did less well on temporal dependencies—such as in  

epilepsy prediction example where timing of seizure events matters the most. 

CNN-LSTM Model: With the LSTM layer added to CNN, loss has increased to 0.68% and 

research has an overall accuracy of 52%. While the LSTM is used to consider the temporal 

component, it may need more tuning of its parameters in order to get better results. This 

decrease in accuracy indicates that finding the right trade-off between spatial and temporal 

features is difficult, which says research needs to further tune this balance.  

CNN-LSTM with Attention: Adding attention mechanisms to CNN-LSTM, research was able 

to increase the accuracy of model by 73%. The attention mechanism made the model focus on 

skilled parts of EEG signals, thus increasing its power to identify a seizure. The improvement 

illustrates the power of attention layers in deep neural networks, especially within sequences. 

CNN-GRU Model: The CNN-GRU model, which aimed to leverage the computational 

efficiency of GRUs, achieved an accuracy of 45% with a loss of 1.07. Although GRUs are 

effective in capturing temporal dependencies, LSTMs with attention mechanisms 

outperformed GRUs in this specific application, likely due to the more complex temporal 

patterns in EEG data that LSTMs can better capture. 

 

Author (Year) Accuracy Precision 

(Macro 

Avg) 

Recall 

(Macro 

Avg) 

F1-Score 

(Macro 

Avg) 

This CNN Model 0.8792 0.90 0.87 0.88 

Jerger, K.K., et al., 2001 0.83 0.82 0.81 0.80 

Kim, T., et al., 2020 0.85 0.85 0.84 0.83 

Sadati, N., and Mohseni, 

H.R., 2006 

0.86 0.88 0.85 0.87 

Elger, C.E., and Hoppe, C., 

2018 

0.82 0.83 0.80 0.79 

 

Table 2: Comparison of CNN Model with Authors Reporting Lesser Metrics 

 6.1 Discussion 

The hybrid deep learning system for epileptic seizure detection exhibited effectiveness in 

differentiating among the healthy, interictal, and ictal states with an accuracy of 87.96% 

through different deep learning models, with the CNN model attaining the highest, hence strong 

capabilities toward spatial feature extraction. However, its incapacity to obtain the temporal 

dependency shows that something like combination with temporal models is necessary. 

Although the CNN-LSTM model was able to demonstrate fusing spatial and temporal features, 

it was still manifest in a lower level of accuracy, i.e., 54.76%, which definitely left it open for 

many areas of improvements. With the addition of attention mechanisms, the overall 

performance of the CNN-LSTM model is improved up to 75.35% in accuracy. This therefore 

highlights the critical need for attention toward relevant pieces in the input data so as to improve 

detection capabilities. 
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For the CNN-GRU model, the accuracy level reached 44.56%, which proves that simpler 

temporal models are not that excellent in comparison to the LSTM and attention-based models. 

In deploying the best-performing model, practical utility has been demonstrated through a user-

friendly Flask application for real-time seizure detection and provision of relevant information 

to the users. 

 

7 Conclusion and Future Work 

In this research, a deep-learning hybrid system for epileptic seizure detection using EEG signals 

was introduced and proposed. The whole search was carried out as part of the need for sensitive 

and reliable seizure detection methods to better patient management with overall improving 

outcomes and quality of life. The main goal of this research was to make use of the best features 

and characteristics that three different architectures Convolutional Neural Networks (CNN), 

Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU) - have when 

it comes to seizure detection accuracy by combining several deep learning models. 

The investigation commenced with the preprocessing of EEG input signals which includes 

segmenting them to a fixed length, standardizing data, and initial exploratory analysis for 

investigating their characteristics. So, these steps make sure that the input data is not biased 

and virtually ready to be used to train on deep learning models. 

In this work, several hybrid models were developed and tested. The CNN model performed 

very well with an accuracy of 87.96% and was able to learn spatial features efficiently; 

nonetheless, it was noted that the CNN alone performed poorly at capturing temporal 

dependencies in the data set. The CNN-LSTM model was then introduced to resolve this by 

utilizing the spatial feature extraction of Convolutional Neural Networks (CNN) and temporal 

sequence processing of Long Short-Term Memory networks. The standard model was able to 

achieve 54.76% accuracy, suggesting the importance of temporal information and thus more 

optimization is required for it as well. 

When an attention mechanism is added to the CNN-LSTM model, this research see a big 

improvement. An adaptation of the same model with an attention-based mechanism was able 

to improve results up to 75.35%, showing that these mechanisms are effective in exploring 

parts of input data from a sequence. Aggregations of the EEG signals by incorporating critical 

features made the attention-enhanced model better for detecting seizures, signalling that there 

is a need to include attention in large-scale neural network architectures. CNN-GRU, which is 

a model that used GRUs to take advantage of their computational efficiency, achieved an 

accuracy level up to 44.56%. While GRUs are well suited for some sequential tasks, results in 

this domain reveal that more nuanced temporal pairings from LSTMs together with refined 

attentions were vital to enable higher detection performance. 

Performances of all the models were compared, and the best-performing one was deployed in 

a user-friendly Flask application for real-time seizure detection. Users could upload their EEG 

file, research would process the data and predict whether the user was in a state of seizure as 

well as link relevant entries from Wikipedia. Its use is exemplified by the classification of EEG 

signals and information displayed to users. 

This proves the efficacy of hybrid deep learning models in epileptic seizure detection and 

hopefully will encourage further exploration with different architectures as well. The 

composition of CNN, LSTM, and attention mechanisms has created a strong backbone that can 

classify EEG signals effectively. As instance-wise localization along with sequence level 

prediction is crucial, the results reveal that research can improve detection performance by 

exploiting spatial-temporal attention. Thus one might have more confidence in the other models 

on these final three datasets after they have been subjected to a similar retraining process; 
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however, this is definitely an area for future work. System demonstrates that it could be a 

practical tool for clinicians by assisting or augmenting the management of seizures in clinical 

settings, thus resulting in better patient care. 
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