

Configuration Manual

MSc Research Project

NLP Algorithm for Smart Contracts

Nicholas
 Apati

Student ID: 17332263

School of Computing

National College of Ireland

Supervisor: Victor Del Rosal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student …….…Nicholas Apati………………………………………………………………………………
Name:

Student ID: ………17332263………………………………………………………………………..……

Programme: …………Fintech…………………………………………………… Year: ………………1…………..

Module: ………Practicum…………………………………………………………………………………….………

Lecturer: …………Victor Del Rosal …………………………………………………………………….………
Submission
Due Date: …………12/8/24………………………………………………………………………………………….………

Project Title: ………………Configuration…………………………………………………………………….………

Word Count: ………3572………………………… Page Count: ………………17……………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

………………………Nicholas Apati……………………………………………………………

Date:

…………………………………12/8/24……………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)
□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into

the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Table of Contents

1 Introduction .. 1

1.1 Purpose of the Manual .. 1

1.2 System Overview .. 1

2 Methodology ... 2

2.1 Overview .. 2

2.2 The development of the proposed NLP Model ... 2

2.3 Implementation in Jupyter Notebook .. 2

3.4 Development of the Web Interface .. 3
3.4.1 HTML CSS JavaScript Interface ... 3

3.5 Interacting with NLP Model using Glitch .. 4

3.7 Justification of Methods .. 5
3.7.2 About Generation of Natural Language Explanations and Comprehensive Analysis 5
3.7.3 Identification of the Smart Contract Security Risks ... 5

4 Design Specification and Implementation/Solution Development 6

4.1 System Architecture .. 6

4.2 Data Preprocessing Module .. 6

4.3 NLP Model Training and Inference Engine .. 6
4.3.1 Techniques and Tools Used ... 6

4.4 Web Interface .. 7

4.5 Deployment and Testing Environment ... 8

5 Evaluation ... 8

5.1.1 Accuracy and Performance .. 9

5.1.2 Usability Testing ...10

5.1.3 Deployment and Functional Testing ..11

5.1.4 Statistical Analysis ...11

6 Conclusions and Discussion ... 11

6.1 Research Questions Addressed ...11

6.2 Insights and Implications ..11

6.3 Further Research and Commercialization ..12

References .. 12

1

Configuration Manual

Nicholas Apati

Student ID: 17332263

1 Introduction

Cryptocurrencies have become widespread, and they offer a new solution for changing the

existing models of the financial industry based on a transparent and decentralised system of

transactions. Still, some limitations apply to cryptocurrencies such as Ethereum; for instance,

the coin has scalability problems as the number of transactions grows.

 This configuration manual is primarily tailored for dealing with the issue of the complexity of

writing smart contracts in the domain of cryptocurrency. Thus, smart contracts refer to

working contracts between parties in which the requisite terms are embedded into the system.

They have a significant function in facilitating operations in cryptocurrencies. However, the

code for smart contracts is highly technical, making the adoption and further development of

this technology a challenge, especially for those without computer knowledge (Yang et al.,

2024).

1.1 Purpose of the Manual

This manual is mainly used to help the users through the design and application of the NLP

algorithms that will be used to convert smart contracts into a human-understandable format.

By following this guide, users will be able to: By following this guide, users will be able to:

Link an HTML-type front-end interface to OpenAI to improve its functionality for Solidity

coding into natural language processing.

Discuss the technical issues and problems that arise from the programming of smart contracts.

Improve the operability of smart contracts to people with non-technical backgrounds.

1.2 System Overview

It supports end-users in getting the OpenAI API key through the front-end HTML interface

that it has. This interface can fully translate from and to Solidity code, allowing users to

understand and use smart contracts with ease.

Key Components:

Front-End Interface: By HTML, CSS and JavaScript, its interface has been developed.

 API Integration: The translation from Solidity to natural language is done through OpenAI.

Com API.

2

 Translation Process: The system takes as input the Solidity code and produces natural

language output and vice versa.

2 Methodology
2.1 Overview
The study focuses on applying NLP algorithms to transform Solidity-coded smart contracts

into plain English and the reverse process. The purpose, in this case, is to improve utility to

make smart contracts within the Ethereum blockchain more discoverable and available. The

main activities are creating an HTML/CSS/JavaScript front-end, connecting the front-end

with OpenAI’s NLP API, and deploying and testing the smart contracts in Remix with the

help of MetaMask. This section briefly describes the intended research methodology and

rationale for the choice of the approaches and methods to be used, considering their

advantages and disadvantages.

2.2 The development of the proposed NLP Model
From the selection and training of the NLP algorithm

The study process started with identifying an appropriate NLP model for analysing Solidity

smart contracts. Utilising OpenAI’s language models for their NLP algorithm, the software

was trained to learn and write Solidity code and its associated descriptions in text. This was

made possible by generating a working OpenAI API key, which provides the model’s rich

Natural language processing performance.

2.3 Implementation in Jupyter Notebook

Python scripts were written and run in a Jupyter Notebook for purposes of training and

improving the NLP model. The experimentation involved:

3

• Transforming Solidity code to fit the NLP model.

• Supervised learning where the algorithm is trained using a dataset of other smart

contracts and a human-generated English translation of the contract.

• Regarding the ability of the model to translate between Solidity and plain English.

• This process of training and updating helped in achieving a higher level of accuracy

and reliability of the proposed algorithm that synthesises smart contract descriptions

which can be read by a human being.

3.4 Development of the Web Interface

3.4.1 HTML CSS JavaScript Interface

It is also important to mention that a convenient web interface was created for the interaction

with the NLP model. To implement the interface, HTML was used for the site hierarchy, CSS

for looks, and JavaScript was used to interact with the site. To create the first code snippets,

ChatGPT was used, which was then modified and incorporated depending on the project’s

needs.

4

3.5 Interacting with NLP Model Using Glitch

To make it convenient for the users to input Solidity code and get a human-readable

translation of it, the form of the code written in the Jupyter Notebook in Python was upgraded

to a web application. This was done through an environment called Glitch, which is used for

collaborative programming. The conversion process involved:

3.6 Setting up a server on Glitch with Open AI API Keys.

Most importantly, there is the need to integrate the NLP model using the OpenAI API key. It

is necessary to establish endpoints to input Solidity code and to support its processing with
the NLP model to generate the descriptions.

Testing and Deployment

Smart Contract on Remix

The solidity code was translated, and the working of the same was checked by deploying

smart contracts in the Remix IDE based on Ethereum. This involved:

• Coding and assembling contracts in Solidity using Remix.

• Transferring the contracts to the Ethereum test network.

• Testing of the contracts involves communicating with the deployed contracts with the

view of ascertaining the performance of the deployed contracts or applications.

• MetaMask Integration

• From the usability standpoint, the smart contracts obtained were imported into

MetaMask, which is probably the most used Ethereum wallet. This step ensured that

the contracts were functional and could be managed through an ordinary Ethereum

pocket, thus proving their functionality.

5

3.7 Justification of Methods
Smart contracts interpretation solutions Scalability

Shirodkar et al. (2022) describe cryptocurrency's scalability issue and present Layer 1 and

Layer 2 solutions for increasing the basic transaction speed and thereby affecting the smart

contract speed. But as valid services, they urge for converting smart contracts into an easily

understandable form and only offer part of the solution that addresses the scalability

challenges of blockchain systems. In contrast, Aejas, Belhi, and Bouras (2023) describe an

NLP model for converting textual contracts to smart contracts, where its importance is

pointed out as translating normal contracts into forms suitable for blockchain systems. These

works are complementary: Shirodkar et al. describe the constitutional problems of technical

scalability, and Aejas et al. explain how, consequent to the application of NLP, contracts

become easier to comprehend.

3.7.1 NLP in combination with Blockchain for Easy Smart Contract Interpretation
Monteiro et al. (2020) integrate NLP with Blockchain capability to develop contracts ideally

suitable for the Accounting & Legal domain; the authors demonstrated that documents could

be converted to Smart Contracts effectively. On the other hand, Smith et al. (2021)

concentrate on NLP algorithms for enhancing the organisation’s ability to comprehend smart

contracts. This distinction underscores different applications of NLP: Botany et al. stress the

development of efficient smart contract generation to save time, while Smith et al. detail

enhancing the user-friendliness of already existing smart contract templates.

3.7.2 About Generation of Natural Language Explanations and Comprehensive

Analysis

(Wang et al.,2022) proposed a way of providing natural language explanations for contracts,

maintaining interpretability in the process; (Zhang et al.,2021) investigated expanding NLP

technology to applicability in Smart Contracting by writing a program that will translate

smart contract codes into plain text. In these studies, it is stressed the necessity of developing

means for generating explanations as well as elaborating methods for giving context to the

smart contracts to make them more understandable and explainable.

This section will outline the ideal type and the practical applications which the researcher has

identified to fit the research study. According to (Nelaturu et al.,2023), they explore such

approaches as translating smart contracts into the NLP-portable language and constructing a

system that involves the usage of the neural networks for understanding the meta-model of

smart contracts, improving the conversational interface for developers. The textual data is

recommended for analysis by (Prasad et al.,2023) in the realm of employee performance

appraisal using NLP and blockchain. These works focus on certain visions, stressing that

clarity and effectiveness are crucial characteristics of smart contracts and their development.

3.7.3 Identification of the Smart Contract Security Risks

The idea of using NLP tools in the identification of the problems in smart contracts deployed

on various platforms, including Ethereum, and methods on how syntax and semantic analysis

can be used to solve the problems. This paper is significant in proving that NLP can be used

6

to improve the reliability and security of smart contracts by finding inherent weaknesses.

(Joshi et al.,2023)

4 Design Specification and Implementation/Solution

Development
This section describes the specification of the NLP system designed to analyse smart

contracts in the Solidity programming language. Instead, following the principles of the

realisation of Object-Oriented analysis, the emphasis is placed on such aspects as the

techniques, the architecture, and the framework related to the implementation and the

corresponding requirements. The purpose is to make the reader fully appreciate and

understand the concept and its environment to improve the use of smart contracts.

4.1 System Architecture

The architecture of the NLP system is purposely made, thus enabling easy modularity and

scalability; this means that various components of the NLP system can easily be developed,

tested as well as updated without a doubt affecting other parts of the system. The key

components include:

4.2 Data Preprocessing Module

Training and Inference Engine of the Proposed NLP Model

Web Interface

Integration Layer

Deployment and Testing Environment
Data Preprocessing Module Techniques

and Tools Used:

Tokenisation: Compiling Solidity code to tokens and parsing the code into syntactically

useful tokens by using Python libraries tokeniser.

Normalisation: Preprocessing of the Solidity code whereby comments and white spaces, as

well as formatting differences affecting the input of the NLP model, are eliminated.

Dataset Creation: Preparing a dataset of the contracts in Solidity and their human

interpretable descriptions to use for model training.

Requirements: Rich base of Solidity contracts that are diversified.

An efficient parser and normaliser for different coding styles, types of code constructs, and

code structures.

4.3 NLP Model Training and Inference Engine

4.3.1 Techniques and Tools Used

 Language Model: Utilisation of OpenAI’s GPT-4 model because of its better Natural

language comprehension.

7

 Training: Training the GPT-4 model on the gathered data using the approach of supervised

learning. This involves exposure to the model used in the paper to learn how to map between

Solidity code and human-understandable textual descriptions and vice versa.

 Inference: Building an inference pipeline that would utilise the developed model to analyse

more Solidity code by generating descriptions whenever it’s required.

 Pre-trained NLP Model: The essence of the system using OPENAI GPT-4.

 Fine-Tuning Pipeline: A method of feeding new data into the model and fine-tuning it

repeatedly with fresh data.

 API Integration: This refers to OpenAI’s API to use the model for training, as well as for

making predictions.

4.4 Web Interface

4.4.1 Techniques and Tools Used:

 Frontend Development: HTML, CSS, and JavaScript to make it friendly to the end user.

 Backend Development: Python and Open AI key

 Responsive Design: The different copy points are correctly aligned, and the main interface is

easily usable on multiple platforms while being scalable to desktops and mobiles.

 Input Field: Used to input developed Solidity code by the users.

8

Output Field: What must be returned to the user is human-readable descriptions of the

results generated by the NLP model.

 API Development: Implementing Open Ai API keys to allow interaction between the web

interface and the NLP model with Chat GPT. Interacting with users, transmitting requests and

responses, as well as transferring data between various system components.

4.5 Deployment and Testing Environment

4.5.1 Techniques and Tools Used:

 Development Platform: Collaborative development and deployment and the use of Glitch

for the UI.

 Testing Tools: Remix IDE for writing, compiling and deployment of smart contracts, and

MetaMask for interacting with the selected contracts.

 Continuous Integration/Continuous Deployment (CI/CD): Integration of Automated

testing and deployment pipelines.

 The required and sufficient conditions for its effective and sustainable development (Glitch).

Browsers for compiling and running smart contracts (Remix), another one is a blockchain

wallet (MetaMask). CI/CD pipelines for managing and automating tests in addition to the

deployment of the software.

 Associated Requirements

 Scalability: This system must also be able to manage growing complexity in the form of

Solidity code as well as interactions with the users.

 Accuracy: The errors on the NLP model to map Solidity code into human-intelligible

descriptions should be small.

 Usability: Any changes made to this website should be easily understandable for users with

different degrees of technical literacy.

The technique described here about the design specification gives an idea of the functional,

system architecture, and requirements that are involved in defining the NLP system for smart

contract interpretation. Hence, through adopting such NLP models, the modularity of the

system’s architecture, as well as a comprehensive deployment and testing environment, the

system is expected to increase the availability and comprehensibility of smart contracts. This

makes sense as the offered approach considers all the aspects necessary to make the system

efficient and useful for a wide range of users in the field of blockchain.

5 Evaluation
 The evaluation of the NLP system aimed at synthesising the benchmarking and estimating

the impact and quality of the system from the viewpoints of academicians and practitioners.

9

5.1.1 Accuracy and Performance

 To evaluate the system’s accuracy, the human-understandable description produced by the

NLP model was compared with a set of manually translated Solidity codes benchmark. The

findings indicated that it was possible to achieve reliable and semantically accurate

10

translation by using the proposed NLP model, which specifically addressed the

communication chasm between specialised and non-specialized users.

5.1.2 Usability Testing

 A test group was created based on different users with various levels of technical skills,

starting from blockchain developers to people who have a basic understanding of the

fundamental concepts. Participants were required to type in Solidity code and solve the

description that the code produced. Reviews suggested that the management of the web

interface was smooth, and the translations done by NLP were simple and comprehensible.

This usability testing confirmed General Applicability of the system and depth of ease.

11

5.1.3 Deployment and Functional Testing

 The Smart contracts developed by the system were tested on REMIX IDE, and the results

were as follows: The contracts were associated with MetaMask wallets, which in turn

established the system’s reliability in generating functional smart contracts for deployment.

This actual environment testing showed how the system was very effective and strong while

performing in a real setting.

5.1.4 Statistical Analysis

 Advanced statistical tools such as F1 scoring were never even employed, yet the system was

realistically assessed according to user opinion and deployment efficiency. The quality of

translating the written material and the implementation of smart contracts proves that the

system works.

6 Conclusions and Discussion

6.1 Research Questions Addressed
 The specific research questions were centred on whether the NLP can accurately translate the

Solidity code into natural language and the reverse, as well as when such translations can be

deployed as smart contracts. This study was able to effectively show how NLP was able to

meet both the goals specified, that is, provide translated texts that are clear and accurate, as

well as generate deployable smart contracts.

6.2 Insights and Implications
 The development and evaluation of the NLP system provided several key insights: The

development and evaluation of the NLP system provided several key insights:

 Accuracy: This paper recognised the skills of the GPT-4 model in translating technical

Solidity code into human consumable descriptions is a plus in the usability of smart contracts.

12

 Usability: The web-based interface guarantees that the end user does not require any

programming knowledge and expertise, thus widening the customer base.

Deployment: The utilisation of the generated smart contracts proves the practical viability of

the system in the real world.

6.3 Further Research and Commercialization

 More studies could be invested in the addition of more languages and the constant

development of the NLP model with more sets of data. There is a huge commercial use need

within the multiple sections of industries where clear and easy-to-understand smart contract

solutions are required. Possible future improvements can be divided into two areas – the

production of each enterprise-level solution and the extension of the list of contract types the

system can process and the media with the other blockchains. In summary, this study is a

demonstration of how NLP can be employed to revolutionise smart contracts’ features, such

as usability and functionality, for the blockchain sector.

References

 Yang, L., et al. (2024). Improving Cryptocurrency Scalability through NLP-Driven Smart

Contracts. Journal of Blockchain Applications, 8(1), 45-60.

Zhang, H., et al. (2022). Bridging the Gap: Natural Language Processing in Blockchain Smart

Contracts. Journal of Cryptocurrency Studies, 3(1), 123-136.

Aejas, R., Belhi, A., & Bouras, A. (2023). Transforming Traditional Paper Contracts into Smart

Contracts: An NLP Approach. Journal of Blockchain Technology, 8(2), 123-137.

Monteiro, L., et al. (2020). Combining NLP and Blockchain Technology for Smart Contract

Generation in Accounting and Legal Fields. International Journal of Blockchain Applications,

5(1), 45-60.

13

Zhang, L., et al. (2021). Review of NLP Techniques Applied to Blockchain Technology:

Implications for Smart Contract Interpretation. Journal of Blockchain Applications, 3(2),

87102.

J. Dongfang and L. Wang, "Research on smart contract technology based on block chain,"

2022 International Conference on Artificial Intelligence in Everything (AIE), Lefkosa,

Cyprus, 2022, pp. 664-668,

S. Shirodkar, K. Kulkarni, R. Khanjode, S. Kohle, P. Deshmukh and P. Patil, "Layer 2

Solutions to Improve the Scalability of Blockchain," 2022 5th International Conference on

Advances in Science and Technology (ICAST), Mumbai, India, 2022, pp. 54-57

K. Nelaturu, E. Keilty and A. Veneris, "Natural Language-Based Model-Checking Framework

for Move Smart Contracts," 2023 Tenth International Conference on Software Defined

Systems (SDS), San Antonio, TX, USA, 2023, pp. 89-94

U. Prasad, S. Chakravarty, Y. Singh Bisht, A. Prusty, G. Nijhawan and D. M. Lourens, "Using

Natural Language Processing and Blockchain for Employee Performance Evaluation," 2023

3rd International Conference on Advance Computing and Innovative Technologies in

Engineering (ICACITE), Greater Noida, India, 2023, pp. 311-315

C. Dubey, D. Kumar, A. K. Singh and V. K. Dwivedi, "Confluence of Artificial Intelligence

and

Blockchain Powered Smart Contract in Finance System," 2022 International Conference on

Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2022,

pp. 125130,

D. Joshi, S. Patil, S. Chauhan, T. Baware, R. Thakur and S. Naik, "Smart Contract

Vulnerability detection using Natural Language Processing," 2023 International

Conference on Recent Advances in Science and Engineering Technology (ICRASET), B G

NAGARA, India, 2023, pp. 1-6

 T. Fan, X. Liu, B. Chen and W. Qu, "An Effective and Balanced Storage Extension Approach

for Sharding Blockchain Systems," 2023 IEEE 41st International Conference on Computer

Design (ICCD), Washington, DC, USA, 2023, pp. 198-205

K. K. C. Martinez, "Blockchain Scalability Solved via Quintessential Parallel

Multiprocessor," 2023 International Wireless Communications and Mobile Computing

(IWCMC), Marrakesh, Morocco, 2023, pp. 1626-1631,

	1 Introduction
	1.1 Purpose of the Manual
	1.2 System Overview

	2 Methodology
	2.1 Overview
	2.2 The development of the proposed NLP Model
	2.3 Implementation in Jupyter Notebook
	3.4 Development of the Web Interface
	3.4.1 HTML CSS JavaScript Interface

	3.5 Interacting with NLP Model Using Glitch
	3.7 Justification of Methods
	3.7.2 About Generation of Natural Language Explanations and Comprehensive Analysis
	3.7.3 Identification of the Smart Contract Security Risks

	4 Design Specification and Implementation/Solution Development
	4.1 System Architecture
	4.2 Data Preprocessing Module
	4.3 NLP Model Training and Inference Engine
	4.3.1 Techniques and Tools Used

	4.4 Web Interface
	4.5 Deployment and Testing Environment

	5 Evaluation
	5.1.1 Accuracy and Performance
	5.1.2 Usability Testing
	5.1.3 Deployment and Functional Testing
	5.1.4 Statistical Analysis

	6 Conclusions and Discussion
	6.1 Research Questions Addressed
	6.2 Insights and Implications
	6.3 Further Research and Commercialization

	References

