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Biometric data security using Homomorphic encryption

Devansh Zaveri
x22194690

Abstract
In the modern tech world, biometric authentication technologies have become more and

more common in a number of sectors, including mobile devices, banking, healthcare, and
border control. However, there are serious security and privacy risks associated with the
increasing reliance on biometric data. This is because biometric data is computed in raw
formats on third-party cloud servers, creating privacy hazards as well as possibilities
of illegal access to sensitive personal information. This paper explores the use of
homomorphic encryption (HE) to safeguard user privacy and facilitate cloud-based
computations on biometric data. Since cloud-based biometric authentication is becoming
popular, it is necessary to handle this sensitive data securely. This study bridges the gap by
designing a tailored HE algorithm that is perfect for biometric computations on cloud
platforms. To find out how well our strategy maintains accuracy and privacy, we will
compare it with other existing approaches. The primary feature of this encryption is that any
kind of computation can be performed on encrypted data without changing its original
format. The expected result is an observably secure and effective HE-based system for
biometric calculations in the cloud, which will promote a wider usage of cloud
authentication that preserves privacy.

Keywords: Secure Authentication and Processing, Cloud Privacy, Biometric Data,
Homomorphic Encryption, Privacy-Preserving Computation

1 Introduction

The measuring of physiological and behavioral traits in humans, including voice, signature, and
keystroke, as well as biological traits like fingerprints, faces, and irises, is known as Biometrics. The
goal is to identify and characterize individual users. Because biometric features including resilience,
invariance, and distinctiveness are desirable, biometric systems are widely used for identity verification
in a range of applications, such as e-banking, e-health, and border control. Biometric recognition
eliminates the downsides of traditional password- or token-based authentication techniques, such as the
possibility of passwords being forgotten or guessed, and the possibility of tokens being lost or stolen.
But, because of data privacy legislation like the CCPA and GDPR, it is now problematic to share
private data like biometrics with unaffiliated groups, including cloud services or other enterprises.
Businesses who violate these restrictions risk facing severe fines and damage to their reputation. Using
conventional encryption techniques, sensitive data can be effectively and safely stored in encrypted
form on cloud platforms. Nevertheless, businesses need to do computations on encrypted data by either
decrypting the data in the cloud, which may lead to security risks, or download the data, decrypt it,
perform calculations—a procedure that can be costly and time-consuming. By jumbling up the data,
conventional encryption prevents it from being read without a secret key.
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When data is decrypted, skilled hackers can also obtain the raw data, endangering privacy and integrity
problems. Weak algorithms make it easy for expert hackers and sophisticated tools to decrypt data.
Furthermore, processing on these encrypted data can completely alter the original format, even with
robust encryption. Thus, these represent a few issues with the current systems. Therefore, the solution
to this issue is to create an encryption algorithm that, even after calculating the cipher text, preserves the
original data. Homomorphic encryption is a sophisticated technique that is presently being developed to
do this. This algorithm is being updated daily and has not yet been fully applied in the actual world.
Conventional encryption jumbles data, causing it unreadable. A unique feature added by HE is the
ability to perform specific mathematical operations directly on the encrypted data. The term
"homomorphic" refers to the preservation of mathematical properties. Consider the case where two
numbers added before they are encrypted yield the same result as two numbers added after they are
encrypted and decrypted. It's like doing calculations on encrypted files and never revealing the original
information. Additional sections go over the entire encryption process in detail. By using HE, the cloud
service provider or outsourcing business can only access encrypted data and process it before returning
the encrypted result to the owner, who can use a private key to decrypt it. Sensitive data, such as
financial transactions and medical records, can be analyzed by businesses and organizations without
jeopardizing individual privacy. Our primary goal is to protect user privacy while offering businesses
insightful information. Therefore, to sum up, our research aims to put a solution into practice by
creating an algorithm that will encrypt biometric data and carry out various tasks like authentication,
searching, pattern matching, aggregation, or data analysis while abiding by the CIA triad's principles.

Question for Research. The following research question is motivated by the above research
problem:

In comparison to current techniques, is it possible to apply a homomorphic encryption scheme that will
allow accurate biometric computation on cloud platforms while also clearly preserving user privacy and
retaining the original form of data? And what kind of HE algorithm would work best against the
calculations that would need to be made using biometric data?

2 Related Work
This section will examine existing cloud-based systems that utilize homomorphic encryption, highlighting
their limitations. By comparing previous homomorphic encryption (HE) projects, we aim to identify
shortcomings in current systems and propose innovative solutions or improvements in our research. We
will subsequently present a detailed overview of relevant studies to inform our work. Also, it would
demonstrate how our project uniquely stands out different as compared to these existing systems.

 A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
Various studies, including those by Wang et al. (2023), Agrawal et al. (2019), and Naehrig et al. (2011),
have explored the application of homomorphic encryption across sectors like healthcare, finance, and the
Internet of Things (IoT). Homomorphic encryption enables the processing of biometric data while
maintaining privacy, preventing the exposure of sensitive information when handling encrypted biometric
templates (Wang et al., 2023; Li et al., 2018). However, for the practical implementation of homomorphic
encryption in sensor networks, challenges such as computational overhead, key management, and scalability
need to be addressed (Wang et al., 2023; Gentry, 2009). To tackle these challenges, ongoing research
focuses on developing lightweight cryptographic primitives, implementing efficient key management
protocols, and optimizing encryption algorithms (Wang et al., 2023; Naehrig et al., 2011).
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 Homomorphic Encryption Technology for Cloud Computing
This paper discusses the theoretical underpinnings of homomorphic encryption, highlighting the pros and
cons of partially, somewhat, and fully homomorphic encryption schemes. It also delves into the practical
aspects of implementing homomorphic encryption in cloud computing environments. Key topics include
performance overhead, computational complexity, and compatibility with existing cloud platforms. By
comparing different homomorphic encryption schemes and their suitability for various applications, the
authors illuminate the practical implications of deploying homomorphic encryption in real-world cloud
computing scenarios (Min and Geng et al., 2019).

 Optimal Multikey Homomorphic Encryption with Steganography Approach for Multimedia
Security in Internet of Everything Environment

Protecting the privacy and security of multimedia data transmitted over interconnected networks is critical in
the rapidly evolving Internet of Things (IoT) and Internet of Everything (IoE) environments. Homomorphic
encryption and steganography are two cryptographic techniques gaining significant attention for enhancing
multimedia security in these settings. This literature review examines the current advancements and
challenges in the field of optimal multikey homomorphic encryption combined with steganography for
multimedia security in IoE environments. Steganography focuses on covert communication by embedding
sensitive information within multimedia files. Numerous studies have explored the integration of
steganography with homomorphic encryption to bolster multimedia security. The authors propose a
steganographic method for embedding encryption keys within multimedia content to facilitate secure
communication in IoE environments. However, issues related to the robustness and detectability of
steganographic techniques remain, necessitating further research to address vulnerabilities and improve
reliability (Abunadi et al., 2022).

 Red Green Blue Image Encryption Based on Paillier Cryptographic System
In this research, they offer a new method for encrypting red, green, and blue (RGB) images using the
Paillier cryptography system. This method involves first dividing an RGB image into its individual channel
images, and then applying the Paillier encryption function to the pixel intensity values. The encrypted image
is then merged, and compressed if needed, and sent via an unprotected communication channel. After that, a
decryption procedure recovers the sent image. The encrypted and recovered photos underwent a number of
security and performance analyses to confirm their resilience to security breaches. However, because no
calculations were made on the raw data, this encryption does not demonstrate homomorphism. The image
encryption method only generates higly secured images. (Mamadou I Wade et al., 2018)

 Role-based Access Using Partial Homomorphic Encryption for Securing Cloud Data
A layer of secure cipher gateway for user data is introduced in this paper. In order to prevent unwanted
access, this study presents an integrated system based on role-based access control principles and partial
homomorphic encryption. To maintain data integrity, access to the data is strictly governed by the user-role
mapping in the role-based hierarchy. Additionally, the suggested model offers mitigation strategies for
different types of cloud threats. Based on a secure communication channel for data transfer with shorter
encryption and decryption times, the work has been compared with its peers. By integrating RBAC with
homomorphic encryption, the paper proposes a model that not only enforces strict access controls but also
maintains data privacy even when accessed by authorized users. (Saxena, U.R., et al, 2023)

 Paillier Cryptosystem Based Robust and Reversible Image Watermarking
The paper "Paillier Cryptosystem Based Robust and Reversible Image Watermarking" explores an
innovative watermarking method that ensures both robustness and reversibility, using the Paillier
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cryptosystem. The Paillier cryptosystem is employed to encrypt the embedded image which ensures that the
watermarking process is secure and the embedded image remains confidential. The proposed method is
robust, meaning it can withstand attacks such as noise addition, and reversible, meaning the original image
can be fully restored. It depicts a significant advancement in watermarking techniques by integrating robust
and reversible methods. However, the use of the Paillier cryptosystem, while ensuring high security, might
introduce computational overhead, potentially limiting its applicability in real-time or resource-constrained
environments. Future research should focus on optimizing the computational efficiency of this
approach.(Dash, Naik et al, 2024)

 Potential of Homomorphic Encryption for Cloud Computing Use Cases in Manufacturing
The potential of homomorphic encryption for cloud computing in manufacturing sector is examined in this
paper. Based on a review of the literature, the potential and restrictions for both homomorphic and classical
encryption are first discussed. Second, simulations are run to verify the limitations by comparing the
computation time and data transfer between homomorphic and classic encryption. The findings demonstrate
that, depending on the use case, homomorphic encryption is a trade-off between security, time, and cost.
Thirdly, use cases related to manufacturing are identified; the two use cases—predictive maintenance and
contract manufacturing—are explained in detail and show the potential advantages of homomorphic
encryption. (Kiesel, Marvin et al, 2023)

 A survey on implementations of various homomorphic encryption schemes
Nevertheless, the current literature either ignores newly suggested HE schemes (like CKKS) or concentrates
on a single kind of HE. Based on experimental results, we perform a thorough comparison and evaluation of
the performance of homomorphic cryptosystems in this paper. All three HE families are covered in the study,
along with a number of well-known schemes like BFV, BGV, FHEW, TFHE, CKKS, RSA, El-Gamal, and
Paillier. The implementation specifications of these schemes in popular HE libraries, such as Microsoft
SEAL, PALISADE, and HElib, are also covered. Furthermore, we examine the robustness of HE schemes
against various forms of attacks, including integer factorization attacks on both classical and quantum
computers and indistinguishability under specific plaintext attacks. (Doan,Tvt et al, 2023)

2.1 Summary table of the papers studied

Paper Key findings Methodologies Contributions

A Review of
Homomorphic
Encryption for Privacy-
Preserving Biometrics

A number of HE
methods related to
biometrics were
compared in terms of
computational
efficiency, to give
readers a clear idea of
each method's
computing capacity.
Potential methods for
the study of HE were
illustrated by a set of
challenges and future
research directions.

Systematic literature
review and analysis of
existing research.
Evaluation of different
HE schemes and their
suitability for biometric
applications.
Benchmarking and
performance evaluation
of HE-based biometric
systems. Analysis of
emerging trends and
research gaps in the
field.

Provides a comprehensive
overview of HE
applications in biometrics,
highlighting its advantages,
challenges, and potential
future directions. Provides
a comprehensive overview
of HE applications in
biometrics, highlighting its
advantages, challenges, and
potential future directions.

Homomorphic
Encryption Technology
for Cloud Computing

HE enables secure
cloud computing by
allowing data to be

The paper evaluates
different encryption
schemes based on their

The paper offers a
comprehensive overview of
how HE can be applied to
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processed in encrypted
form. Fully
Homomorphic
Encryption (FHE)
provides the strongest
security guarantees but
is often too
computationally
expensive for practical
use in large-scale cloud
environments. Partial or
Somewhat HE schemes
strike a balance
between security and
efficiency, making
them more feasible for
certain cloud
applications like
encrypted search or
limited arithmetic
operations. The paper
highlights challenges in
optimizing
performance, ensuring
scalability, and
balancing encryption
overhead in cloud
settings.

ability to preserve data
privacy in the cloud
while allowing
computations on
encrypted data. The
computational
efficiency and
performance overhead
of HE in cloud
environments are tested
and compared across
different encryption
schemes. Real-world
scenarios of HE
applications in cloud
services, such as secure
data storage, encrypted
searches, and encrypted
machine learning, are
explored.

enhance privacy and
security in cloud
computing. It provides
guidance on optimizing HE
to minimize computational
overhead in cloud
computing. The paper
identifies key challenges
for future research, such as
improving the efficiency
and scalability of FHE, as
well as enhancing the
usability of HE for cloud
service providers.

Optimal Multikey
Homomorphic
Encryption with
Steganography
Approach for
Multimedia Security
in Internet of
Everything
Environment

The proposed Optimal
Multikey
Homomorphic
Encryption with
Steganography, model
enhances multimedia
data security in the
Internet of Everything
(IoE) environment. It
provides superior
results in terms of
metrics like encryption
quality and robustness
compared to other
approaches. The
solution effectively
addresses key
challenges of secure
data transmission,
privacy, and processing
limitations in IoE

Singular Value
Decomposition (SVD)
separates cover images
into RGB components.
Coyote Optimization
Algorithm (COA)
selects optimal pixels.
Poor and Rich
Optimization (PRO)
with Multikey
Homomorphic
Encryption (MKHE)
encrypts secret images.
Steganography embeds
encrypted data into
cover images.

Combines homomorphic
encryption and
steganography for
enhanced data security.
Introduces optimization
techniques (COA, PRO) to
improve the accuracy of
pixel selection and
encryption quality.
Provides a practical
solution for multimedia
security in resource-
constrained IoE
environments.
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networks​

Red Green Blue Image
Encryption Based on
Paillier Cryptographic
System

The Paillier
cryptographic system
effectively encrypts
RGB images by
applying homomorphic
properties to each color
channel (Red, Green,
Blue) separately. High
security for image
encryption was
achieved through
probabilistic
encryption, ensuring
that the same pixel
values are encrypted
into different
ciphertexts. The system
introduces significant
computational
overhead, making it
suitable for scenarios
where security is
prioritized over speed.

The Paillier encryption
algorithm is applied to
each of the three RGB
channels independently.
Each pixel value in the
RGB image is treated
as a plaintext and
encrypted using the
Paillier system. The
Paillier system's
homomorphic
properties (addition
over ciphertext) allow
for operations on
encrypted images
without decryption. The
encrypted images are
evaluated for visual
distortion, encryption
time, and robustness
against attacks.

First use of the Paillier
cryptosystem for RGB
image encryption, showing
how homomorphic
encryption can be adapted
for multimedia data.
Demonstrates how the
probabilistic nature of
Paillier encryption
increases the security of
image data by ensuring
ciphertext diversity.
Provides a benchmark for
the computational costs and
security benefits of using
homomorphic encryption
in multimedia encryption
systems.

Role-based Access
Using Partial
Homomorphic
Encryption for Securing
Cloud Data

Role-based access
control (RBAC)
combined with Partial
Homomorphic
Encryption (PHE)
enhances security for
cloud data. PHE allows
certain computations to
be performed on
encrypted data without
needing decryption,
making it efficient for
implementing RBAC in
cloud systems. The
system is scalable to
handle large data sets in
cloud environments,
allowing secure data
sharing among users
with different roles.

The paper integrates the
RBAC model with
Partial Homomorphic
Encryption, ensuring
users can only access
the data they are
authorized to view. A
cloud-based system is
designed and simulated
to evaluate the
efficiency and security
of the proposed model.
Performance metrics
such as computational
overhead encryption/
decryption times, and
access control
enforcement are
analyzed to validate the
approach.

The paper proposes a novel
framework combining
RBAC with Partial
Homomorphic Encryption
for securing cloud data
access. The work
contributes to the
development of an efficient
and scalable access control
system that can be
practically implemented in
cloud environments. By
using PHE, the system
allows for computations on
encrypted data without
compromising security,
offering flexibility in
handling different user
roles.

Paillier Cryptosystem
Based Robust and
Reversible Image
Watermarking

The proposed Paillier
Cryptosystem-based
watermarking is
resilient to attacks such
as compression,

The watermark is
encrypted using the
Paillier Cryptosystem,
which supports additive
homomorphism,

Introduced a novel
combination of the Paillier
cryptosystem with robust
and reversible
watermarking techniques,
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cropping, and noise.
The system allows for
both the extraction of
the watermark and
perfect recovery of the
original image,
maintaining the
integrity of the content.
The system
demonstrates moderate
computational
efficiency for real-time
applications but can be
optimized further.

allowing the encrypted
watermark to be
embedded into the
image. A reversible
data hiding technique is
employed to ensure the
original image can be
fully recovered after the
watermark is extracted.
Various attacks like
compression, noise, and
geometric
manipulations are
applied to the
watermarked images to
test robustness. Metrics
such as Peak Signal-to-
Noise Ratio (PSNR)
and Bit Error Rate
(BER) are used to
evaluate the
watermarking's
performance and image
quality after extraction.

which is rare in image
watermarking research.
The system achieves both
high security (via Paillier
encryption) and
reversibility (recovering
the original image without
loss). It establishes a
foundation for future
research on combining
cryptographic methods
with reversible
watermarking, suggesting
optimizations in terms of
efficiency and scalability.

Potential of
Homomorphic
Encryption for Cloud
Computing Use Cases
in Manufacturing

HE enables
manufacturers to
perform computations
on encrypted data in the
cloud without revealing
sensitive information,
such as predictive
maintenance or supply
chain optimization.
FHE provides strong
security but has high
computational costs,
making it less practical
and PHE may be more
suitable for specific
tasks. The main
challenges include high
computational
overhead, key
management
complexities, and
integration with
existing manufacturing
systems.

Identifies key use cases
in manufacturing (e.g.,
predictive maintenance,
quality control, supply
chain management)
where HE can enhance
data security and
privacy. Assesses the
performance, security,
and practicality of
various homomorphic
encryption schemes
(FHE, PHE, SHE) for
cloud-based
applications in the
manufacturing sector.
Simulates a
manufacturing process
where encrypted data is
used for secure cloud-
based predictive
maintenance, analyzing
the trade-offs between
encryption overhead
and security.

Proposes a framework for
using HE in cloud-based
manufacturing
environments to ensure
secure data processing and
storage. Identifies specific
manufacturing use cases
where HE can offer
significant benefits, such as
predictive maintenance,
production optimization,
and quality control,
enhancing privacy and
security in cloud-based
environments.Recommends
strategies for reducing
computational overhead,
optimizing key
management, and
improving the scalability of
HE for broader use in the
manufacturing sector's
cloud computing
ecosystem.
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A survey on
implementations of
various homomorphic
encryption schemes

All schemes have
varied performance and
security guarantees.
FHE offers the highest
security but comes with
computational
overhead, whereas PHE
and SHE provide a
more practical balance
for many applications,
sacrificing some
security for
performance. While
FHE is theoretically
powerful, its practical
use is limited due to
performance issues.
SHE and PHE schemes
are more commonly
implemented in
applications like
encrypted search and
simple computations
over encrypted data.

The paper surveys and
classifies various
homomorphic
encryption schemes,
across multiple
implementation
scenarios. The paper
reviews specific
implementations of HE
schemes in real-world
software libraries (e.g.,
HElib, SEAL, Paillier,
etc.), evaluating factors
such as encryption,
decryption,
computational
complexity, and
performance.
Benchmarks are
conducted to assess the
efficiency, scalability,
and applicability of
each HE scheme across
different types of
computation and data
sizes.

The paper provides a
thorough survey of the
current landscape of HE
implementations, offering
insights into the strengths
and weaknesses of various
schemes. By evaluating
multiple HE schemes, the
paper highlights practical
recommendations for
choosing the appropriate
scheme based on the
application needs (e.g.,
security, speed, or data
size). It identifies gaps and
challenges in the current
HE implementations,
encouraging further
optimization in
computational efficiency
and applicability in
resource-constrained
environments.

3 Research Methodology
Users are able to work in untrusted environments and utilize encrypted data for computations without ever
needing to be decrypted thanks to homomorphic encryption. Computing on encrypted data was first
introduced by Rivest, Shamir, and Adleman in 1978. The application of homomorphic encryption (HE) to
safeguard biometric calculations performed on cloud computing platforms is studied in this work. In this
study, we would work with fingerprint biometrics and conduct some operations on them and deploy it on
a cloud platform such as AWS. The growing popularity of cloud-based biometric authentication necessitates
the development of strong methods for managing this private information while maintaining user
confidentiality. The most important steps that would be taken during implementation are listed below.

3.1 Research Method

1. Collecting Fingerprint Data

We start by gathering fingerprint data from publicly available biometric datasets. Also we can collect the
fingerprint data live from the fingerprint scanner which are stored as digital templates, following
standards like ISO 19794-2 or ANSI 381. The files containing these digital fingerprints have the
extension .EFT (Electronic Fingerprint Transmission). But we collected a few sample fingerprint images
from publicly available github repository and used them for encryption.
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2. Choosing the Homomorphic Encryption (HE) Scheme

Choosing the right type of encryption depends on the specific operations we want to perform on the
fingerprint data. Different operations require different Homomorphic encryption algorithms. For example,
simpler tasks like calculating distances, or just addition might only need Partial HE, while more complex
tasks like feature comparison might require Somewhat HE or Fully HE. We have compared all the HE
schemes below and choose and perfect one for our project. Before that, we would understand the basic
concept of HE.

3. Basic Concept of Homomorphic Encryption and its types

Homomorphic Encryption works like a locked box that keeps the data inside safe while still allowing
certain calculations to be performed on the outside. This means you can process the data without ever
unlocking (decrypting) it.

Here's a basic example :

 Plaintext (source data): 10 plus 5

 Encryption: Within the homomorphic encryption box, you lock the digits 5 and 10. You encrypt
these numbers and give it in the box.

 Computation on encrypted data: Without knowing the actual numbers, someone adds the data in the
encrypted box.

 Decryption: After opening the encrypted box, the decrypted solution turns out to be: 15.

 What's amazing is that the computation was done without disclosing the initial values of 10 and 5.
This is helpful in situations such as secure cloud storage, where you can store private data in the
cloud and use it for computations without having to decrypt it.

Types of HE schemes

 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) is a powerful cryptographic method that allows computations to
be performed directly on encrypted data. FHE uses advanced mathematical concepts like lattices and
homomorphic polynomials for addition and multiplication. This ensures that even when data is processed
on cloud platforms, it remains confidential. FHE supports the addition and multiplication necessary for
fingerprint tasks like similarity matching, where encrypted fingerprint features can be compared, such as
calculating the Euclidean distance. FHE supports arbitrary computations on encrypted data, meaning you
can perform any number of additions and multiplications without ever needing to decrypt the data. This
makes it extremely powerful but also computationally intensive. Examples include secure cloud
computing, private machine learning, deep learning models and privacy-preserving blockchain
applications. FHE can be used in environments like healthcare, finance, or government where maintaining
the confidentiality of sensitive data during processing is crucial. Thus, FHE is the most powerful,
enabling unlimited computations but is computationally expensive.

 Partial Homomorphic Encryption (PHE)

PHE supports only one type of operation on encrypted data—either addition (e.g., Paillier encryption) or
multiplication (e.g., RSA encryption), but not both together. It is useful in applications where only one
type of operation is needed. For example, RSA can be used for secure signature verification, and Paillier
for secure aggregation of data (like in electronic voting). PHE is often used as a building block in more
complex cryptographic protocols, such as secure multiparty computation or zero-knowledge proofs. PHE
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schemes typically focus on addition operations on encrypted data. In fingerprint recognition, features like
minutiae points (ridge ends and bifurcations) are crucial for identification. PHE enables the comparison of
encrypted minutiae templates while keeping the original data concealed. PHE is the most efficient but
supports only one operation, making it suitable for simpler applications.

 Somewhat Homomorphic Encryption (SHE):
SHE stands for somewhat homomorphic encryption, which is the intermediate form between partially

homomorphic encryption (PHE) and fully homomorphic encryption (FHE). SHE supports a limited
number of operations on encrypted data, typically either a few multiplications or a combination of
additions and multiplications. It is a compromise between efficiency and capability. SHE is suitable for
situations where full FHE's computational overhead is too high, but some degree of homomorphic
operations is needed, like in secure voting systems or encrypted search operations. SHE is less powerful,
allowing limited operations, offering a balance between functionality and performance.

In our project, our focus is to increase the brightness of an image which only involves adding a
constant value to the pixel values of the image. Since Paillier homomorphic encryption (which is a
type of PHE scheme) supports addition operations on encrypted data, we can use it to perform
this task on encrypted file of our fingerprint image and deploy the project on AWS to
demonstrate secure cloud processing. We do not require FHE and SHE as both are very
inefficient for our requirement and would take a high computation time and would be expensive.

4. Deploying to cloud (AWS)

To deploy our Python project on AWS, we use Amazon EC2 for scalable computing power. Amazon
Elastic Compute Cloud (EC2) is a web service provided by Amazon Web Services (AWS) that offers
scalable and resizable computing capacity in the cloud. Essentially, it allows users to rent virtual servers
also called as instances on which they can run applications, host websites, process data, and perform a
wide range of other computing tasks without needing to invest in physical hardware. First, we created an
EC2 instance and configure it with a suitable OS, such as Amazon Linux. We use SSH to securely
connect to the instance and install necessary dependencies using pip, and set up any required
environment variables. Finally, ensure your instance has the correct security group settings to allow
inbound traffic on necessary ports, and start your application. Lastly, we clone the project files to the
instance from github repository using git clone. This setup will allows our project to run on the cloud,
leveraging AWS's robust infrastructure.

3.2 Research tools and Libraries used
An IDE and python programming language will be used to build our model which would encrypt the
fingerprint files.
 random : The random module in Python provides functions to generate random numbers

and perform random operations, such as shuffling a sequence. It includes methods for generating
random integers, floating-point numbers, and choosing random elements from a list. In our
algorithm, this random module is used to generate a random number ‘r’ which is coprime to ‘n’,
where n is the product of prime numbers p and q. This ‘r’ is used to calculate the cipher text.

 PIL (Pillow) : Pillow is a Python Imaging Library that adds image processing capabilities to
your Python interpreter. It allows for opening, manipulating, and saving many different image file
formats. Commonly used for tasks like resizing, cropping, and adding filters to images. We use
this library to open, show and save the images using the ‘Image’ module.
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 Matplotlib : It is a powerful and widely used Python library for creating static, animated,
and interactive visualizations. It offers a comprehensive set of tools for generating various types
of plots, including, Line plots, Scatter plots, Bar charts, Histograms, Pie charts and many more.
We have created the histogram to compare between the computed and the original image pixels.

 NumPy : NumPy (Numerical Python) is a powerful library in Python used for numerical
computing. It provides support for large, multi-dimensional arrays and matrices, along with a
collection of mathematical functions to operate on these arrays. NumPy is foundational for many
other scientific and data analysis libraries in Python, such as SciPy, pandas, and TensorFlow. We
first convert the image to array of pixels using NumPy before encryption and computation and
again shape it back to graphical image format.

4 Design Specification

Fig 1. Block Diagram of our Encryption Model

Description :

 At first, we have is the initial biometric image that we want to encrypt using Paillier homomorphic
encryption. The client-side application (e.g., a Python script) is responsible for encrypting the image
using the Paillier encryption algorithm.

 Next we have, the virtual server in the AWS cloud that will run the application responsible for handling
encrypted images. The SSH Server allows secure remote connections to the EC2 instance. Then we
have the Image Encryption Services running on the EC2 instance that handles image encryption, storage,
and any homomorphic operations. In the application logic, we have the core Python application that
performs the encryption, manages data, and handles requests.

 The client only sees the decrypted computed image on execution. Lets discuss the entire implementation
in detail in next section.
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5 Implementation
Implementing biometric image encryption using Paillier homomorphic encryption is a complex task that
requires a deep understanding of cryptography, image processing, and cloud computing. Lets first consider
the following key considerations and then understand the process step by step.

Key Considerations

 Biometric Data Sensitivity: Handling biometric data requires strict security measures.
 Paillier Efficiency: The Paillier algorithm can be computationally expensive, especially for large

images.
 AWS Services Selection: Choosing the right AWS services for storage, computation, and security is

crucial.
 Image Format and Preprocessing: The image format and preprocessing steps will impact encryption

and decryption performance. That is, if an image is of high resolution, it would take some time for
encryption and decryption. Lets discuss each steps in detail :

5.1 Key Generation

Paillier is a probabilistic asymmetric encryption algorithm known for its homomorphic property. This means
you can perform calculations on encrypted data without decrypting it first.This makes it useful in various
applications like electronic voting, auctions, and secure data aggregation, biometric comparison, etc. In our
project, we use paillier algorithm as it supports only addition which is our basic need and hence it is most
suitable for adding constant factor to all pixel values and brightening the image.

How it Works:
 Key Generation: First it creates public and private keys using prime numbers.
 Encryption: It encrypts a message using the public key and a random number.
 Decryption: Decrypts the ciphertext using the private key.
 Homomorphic Addition: Adding two encrypted messages results in an encryption of the sum of the

original messages.

Pseudo code to compute public and private keys :
function generate_keys(bitlength)
p, q <- two large random primes of length bitlength/2
n <- p * q
lambda <- lcm(p-1, q-1)
g <- random number in Z*n^2
mu <- (L(g^lambda mod n^2))^-1 mod n
return public_key(n, g), private_key(lambda, mu)

Working :

 Generate Two Large Prime Numbers:
Randomly select two distinct large prime numbers, denoted as p and q. The size of these primes directly
impacts the security of the cryptosystem. Larger primes provide higher security but also increase
Computational overhead.

 Calculate the Modulus:
Compute the product of p and q to obtain the modulus n. This value will be part of both the public and
private keys.
n = p * q ………(1)
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 Calculate Euler's Totient Function:

Euler's Totient Function ϕ(n) is defined as the number of integers less than n that are coprime (i.e., have
no common divisors other than 1) to n. For a positive integer n, ϕ(n) counts the number of integers from 1 to
n−1 that do not share any prime factors with n. In other words, it counts how many numbers are coprime
with n. If n is the product of two primes p and q, then ϕ(n)=(p−1)×(q−1).
Determine the value of Euler's totient function for n, denoted as φ(n). This is calculated as:

φ(n) = (p-1) * (q-1) ………(2)

To set up the Paillier cryptosystem, two large prime numbers p and q are chosen, and the modulus n is
computed as n=p×q. The value λ(n) is calculated using the least common multiple (LCM) of p−1 and q−1.
Since p and q are prime, Euler’s Totient Function is used to compute ϕ(n), where:

ϕ(n)=(p−1)×(q−1) Then, λ(n)=lcm(p−1,q−1) …………(3)

Select a Random Integer g:
Choose a random integer g where 1 < g < n^2. This value must satisfy the condition that n divides the order
of g. This can be efficiently checked using modular arithmetic properties.

 Calculate Lambda:
Compute λ = lcm(p-1, q-1), where lcm stands for the least common multiple. ………..(4)

 Calculate Mu:
Calculate μ = (L(g^λ mod n^2))^-1 mod n, where L(x) = (x-1)/n and ^-1 mod n represents the modular
multiplicative inverse. .……..(5)

This complex calculation is essential for ensuring the correct decryption of messages. The value of μ plays a
crucial role in the decryption process, allowing the system to recover the original message from the
encrypted ciphertext. The specific mathematical properties of this equation are carefully designed to ensure
the security of the Paillier cryptosystem.

 Public and Private Keys:
The public key consists of the pair (n, g).
The private key consists of the pair (λ, μ).

 Explanation of Parameters:
n: The modulus, a composite number.
g: A generator element.
λ: Carmichael's totient function of n.
μ: A multiplicative inverse used in decryption.

 Security Considerations:
The security of the Paillier cryptosystem relies on the difficulty of factoring the modulus n into its prime
factors p and q. The choice of large prime numbers is crucial to ensure the computational infeasibility of
factoring n. Also, the proper random number generation is essential to prevent vulnerabilities in the key
generation process. By following these steps and carefully selecting parameters, we can generate a secure
Paillier key pair for encryption and decryption.

5.2 Encryption and Decryption

 Encryption

To encrypt a message m (where 0 <= m < n) using the public key (n, g):

Choose a random number: Select a random integer r such that 1 <= r < n.
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Calculate the ciphertext: Compute the ciphertext c as follows:

c = (g^m * r^n) mod n^2 ……………(6)
The ciphertext c is the encrypted form of the message m. Note that different values of r will result in
different ciphertexts for the same message, adding randomness to the encryption process.

 Decryption

To decrypt a ciphertext c using the private key (λ, μ) (from equations 2, 4 ,5 and 6):
Calculate intermediate value: Compute d = c^λ mod n^2.
Apply L function on d where L is, = (n-1)/n. therefore we get, [c^λ mod n^2.] -1 / [c^λ mod n^2.]

………(7)

Recover the message: Compute the original message m as:
m = (L(d) * μ) mod n ………….(8)

The result m is the decrypted plaintext.

 Explanation of the Process
The encryption process involves raising g to the power of the message m and multiplying it with a random
element r raised to the power of n. The result is taken modulo n^2.
The decryption process involves raising the ciphertext c to the power of λ modulo n^2, applying the L
function, and then multiplying by μ modulo n to recover the original message.
The security of the Paillier cryptosystem relies on the difficulty of computing m from c without knowing the
private key (λ, μ).

5.3 Image processing before encryption and computation
This is the most crucial step of the implementation. We first convert the biometric image pixels to their
corresponding numerical values (e.g., grayscale or RGB values). We then transform the image pixels which
were in matrix form, into ‘list’ using numpy library of python. By creating this array, it becomes easy to
encrypt list of pixels faster using a loop. We can also do image compression to reduce data size or resolution
which makes all the computations faster. After encrytpion and computation, the array of pixels is reshaped
back to graphical image.

5.4 Homomorphic encryption and operations

We encrypt each pixel integer using the Paillier public key and then perform necessary image computing
operation that is addition to each pixel in their encrypted form. As, Paillier supports additive and
multiplicative homomorphic encryption, we have performed additive HE as per our requirement which
increases the pixel number and brightens the image.

5.5 Deployment on cloud - AWS

We create an AWS account and launch an EC2 instance. Now, choose an appropriate operating system i.e
AWS Linux and configure security groups to allow SSH (port 22) and any other required ports for
connection. A key pair for SSH access is downloaded in your local machine which we will need for
authentication during secure login . Then update the package list and install Python and required libraries.
After loggin in via ssh, we transfer the project files to the EC2 instance from github repository using git
clone and execute it to perform encryption and computations. Thus this demonstrates secure data operations
on cloud without hampering privacy.
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6 Evaluation
After seeing the implementation steps, lets dive into our project output and study in detail. We would then
discuss and compare this with the other existing systems in the next section. In below figure 2, we see that
the original thumb image is very dark and saturated. We first encrypt the image using paillier algorithm as
explained above and we get the output as shown in figure 3. Now here comes the main part, where we
perform the operation of brightness enhancement. First the pixels of the raw image are converted into the
array of grayscale values using numpy library and its encrypted using paillier encrypt function. After
encryption, we perform the homomorphic addition to each pixel, where values of each pixel is increased by
factor 30 that brightens the image as shown in figure 4.

Fig 2. Raw Fingerprint Image
Fig 3. Encrypted Image

Fig 4. Brightened Image

Below in figure 5, is the histogram of the encrypted image that exhibits a shift towards higher pixel values
compared to the original image, confirming the brightening effect. While pixel values are increased, it's
crucial to assess whether the overall image structure and content are preserved after decryption and hence
we find that our fingerprint image is same as that of original but in a brightened form. Any significant
distortion or loss of information would diminish the effectiveness of the encryption method. The time taken
to encrypt and decrypt images is also evaluated and it takes around 7-8 secs to get the final computed image.
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But this measured time is with our image used in this project. The computation time can vary slightly
depending on the resolution of the other images, because homomorphic encryption often comes with
significant computational overhead. The Paillier cryptosystem's security properties is assessed in the context
of image encryption and we find that it is very much suitable for image processing tasks. We do not require
very complex algorithms like FHE for encryption, as our focus is to lessen the computation time as much as
possible and provide the output.

Fig 5. Histogram of pixel values

We also calculated the mean and standard deviation that are statistical measures used to analyze the pixel
values of images shown in fig 6. We do not require to calculate precision, recall or accuracy as we are not
classifying or detecting anything here.

 Mean
Mean (or average) is a measure of central tendency that provides the average value of a set of numbers. For
pixel values in an image, the mean gives a sense of the overall brightness level. The mean pixel value is
calculated by summing all pixel values and dividing by the total number of pixels. In our project, mean
provides the average brightness of the original image and the decrypted image after processing. The mean
pixel value of the original image versus the decrypted image can show how the brightness has changed due
to the encryption and brightness adjustment.

 Standard Deviation
It is a measure of the dispersion or spread of a set of values. It indicates how much the pixel values deviate
from the mean pixel value. The standard deviation is calculated as the square root of the variance. Variance
is the average of the squared differences from the mean. The standard deviation of pixel values tells us about
the spread of pixel intensities. A larger standard deviation indicates more variability or contrast in the image.
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Fig 6. Mean and Standard Deviation of pixels

We see that the mean value of the pixels of original image is 108.59 and that of Decrypted Image is 198.30.
And the variance is 68.33 from the average value of pixels in original image and that for decrypted images it
is 30.56. In next section, we would discuss and compare our project with the existing systems and the
improvements needed.

Fig 7. Creating an AWS account and connecting to EC2 instance

As shown in figure above, ‘myimageHE.pem’ helps us to authenticate into our ec2 and we are connected to
our instance using ssh. We pull the project hosted on github using git clone and install all the python
dependencies required. From below figure 8, we seen that we have successfully implemented our project on
cloud ensuring secure image computation. Since AWS CLI, is a command line based, we cannot see the
computed and encrypted image, and hence for this, we used a save function, so that it gets saved in the same
directory with other project files after computation. Thus we hosted it on cloud and demonstrated secure
processing without exposing the original biometrics.
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6.1 Discussion
Fig 8. Project running on AWS cloud

In this project, we explored the application of the Paillier cryptosystem for encrypting biometric images,
specifically focusing on the process of image brightening. The project was deployed on AWS for cloud-
based processing, leveraging the scalability and computational power of cloud infrastructure. This
discussion will analyze the findings, critique the experimental design, compare it to existing systems,
and suggest potential improvements.

Major key Findings :

 Image Brightening through Homomorphic Encryption:

The Paillier cryptosystem allowed for homomorphic addition, enabling the brightening of images by
increasing pixel values while still in the encrypted domain. The encrypted image, when decrypted, showed a
noticeable increase in brightness, demonstrating the feasibility of processing encrypted data without
decrypting it. Deploying the project on AWS facilitated efficient processing of large biometric images. The
scalability of AWS allowed for handling multiple image processing tasks concurrently, showcasing the
practicality of cloud computing for intensive cryptographic operations.

 Performance Metrics and Security :

The computational overhead of homomorphic encryption is significant, resulting in longer processing times
compared to unencrypted image processing. Network latency and data transfer speeds impacted the overall
performance when processing images in the cloud. The Paillier cryptosystem provided robust security for
the biometric images, ensuring that the data remained confidential throughout the processing pipeline.

Some critiques of our experimental design

 Computational Overhead:

The primary drawback of the Paillier cryptosystem is its high computational cost. This was evident in the
extended processing times for image operations. Existing systems that do not use encryption, or use less
computationally intensive encryption methods, can perform similar tasks much faster. But where, security is
a major concern than faster processing, some delay in processing is accepted.

 Scalability and Efficiency:
While AWS provided the necessary infrastructure for scalability, the inherent inefficiency of homomorphic
operations limited the overall performance. The project could benefit from optimization techniques such as
parallel processing and hardware acceleration (e.g., using GPUs or specialized cryptographic processors).
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The current design may not be suitable for real-time biometric applications due to the significant processing
delays. Real-world systems require near-instantaneous processing, which is challenging with the current
implementation of the Paillier cryptosystem.

This HE technique is not yet properly implemented in the real world and requires lots of modifications in
their algorithms. Yet our project tries to demonstrate the use of basic HE to some extent, and to depict the
securing of data on cloud platforms like AWS or any other third parties.

Comparison to Existing Systems

 Traditional Encryption Methods:
Though Traditional methods like AES provide faster encryption and decryption and are very secure, but
they lack the ability to perform computations on encrypted data. As when you compute on the encrypted
data, it also changes the original format. The trade-off between security and efficiency is more balanced in
traditional systems compared to the computationally heavy homomorphic encryption.

 Other Homomorphic Encryption Schemes:
Some fully homomorphic encryption (FHE) schemes, while even more computationally intensive, offer a
broader range of operations than the Paillier cryptosystem. But this FHE scheme has the most complex
mathematical calculations which would make it totally inefficient and would provide a huge latency, even
for small computations. Thus this scheme was not suitable for our project. Partially homomorphic schemes,
like ElGamal and Paillier, provide similar functionality but with different trade-offs in terms of security and
efficiency.

The existing systems have implemented HE in various other sectors as we saw in the literature review,
but many of them have a huge latency for encryption, some of them have not perform any operations
on encrypted data to test the homomorphism property. Its has become more necessary to deploy such
algorithms to cloud companies first, rather than implementing in other sectors. Thus, our project
demonstrates how securely we can carry out operations on encrypted format on a cloud platform, and
how the original data remains secure and intact without being modified.

Suggested Improvements

 Hardware Acceleration: Utilizing GPUs or dedicated cryptographic accelerators could significantly
speed up the processing of homomorphic operations. Implementing the project on FPGA-based
solutions could provide a custom hardware approach to improve performance.

 Hybrid Approaches: Combining homomorphic encryption with traditional encryption methods could
offer a balance between security and performance. For instance, using homomorphic encryption for
critical operations and traditional encryption for less sensitive tasks.

 Cloud Infrastructure Optimization: Reducing network latency through edge computing or using
AWS services optimized for low-latency data transfer could improve overall system performance.
Implementing auto-scaling and load balancing features of AWS to dynamically allocate resources based
on processing demands.
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7 Conclusion and Future Work
In this project, we explored the application of homomorphic encryption to biometric image data using the
Paillier algorithm, subsequently deploying the solution on AWS for secure and scalable processing. Our
primary research question was to determine whether homomorphic encryption, specifically the Paillier
algorithm, can be effectively utilized to secure biometric images while allowing meaningful computations to
be performed on the encrypted data.

Our most important objectives were threefold:

 Implement the Paillier homomorphic encryption algorithm for biometric image encryption.
 Develop a system for performing necessary computations on encrypted biometric images without

decrypting them.
 Deploy the developed system on AWS to ensure scalability and robustness.

Throughout this project, we successfully implemented the Paillier encryption algorithm to encrypt biometric
images and created a framework for performing operations on this encrypted data. We then deployed this
system on AWS, ensuring it could handle large volumes of data securely and efficiently.

Key findings from our project include:

 Effectiveness of Homomorphic Encryption: We demonstrated that the Paillier algorithm could be
effectively applied to biometric images, allowing basic operations to be performed on encrypted data
without compromising security.

 Scalability and Performance: By leveraging AWS, we ensured that our system could scale to handle
large datasets and provide timely responses, crucial for real-world applications.

 Security Assurance: Our approach significantly enhances the security of biometric data by ensuring that
it remains encrypted during processing, reducing the risk of data breaches.

The implications of our research are profound for fields requiring secure processing of sensitive biometric
data. By ensuring that biometric images can be processed without decryption, we reduce the potential attack
vectors and enhance the overall security posture of biometric systems. This advancement is particularly
relevant in contexts such as secure access control, identity verification, and privacy-preserving biometric
authentication systems.

But, our research is not without limitations. The primary limitations include:

 Computational Overhead: Homomorphic encryption introduces significant computational overhead
compared to traditional encryption methods. This can impact the performance, especially for resource-
intensive operations on large datasets. Also, for the very resolution images, like a 4k images, it take
more computation time. The solution to this would be compressing the image first before processing on
cloud.

 Limited Operations: The Paillier algorithm supports only a limited set of operations (addition and
scalar multiplication) on encrypted data. This restricts the complexity of computations that can be
performed homomorphically.

 Scalability Constraints: While AWS provides scalability, the cost associated with extensive use of
cloud resources can be a limiting factor, especially for large-scale deployments.

Future Works

 Enhanced Algorithm Efficiency: we can investigate more optimization techniques for the Paillier
algorithm to reduce computational overhead. One of the primary limitations of homomorphic
encryption is its computational intensity. Future research could focus on algorithmic improvements or
hardware acceleration (e.g., using GPUs or specialized cryptographic processors) to enhance
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performance. This would make the technology more practical for real-time applications, broadening its
applicability and improving user experience.

 Support for Complex Operations: Integrate more advanced homomorphic encryption schemes like
BGV or CKKS that support a wider range of operations, including multiplications. Paillier encryption is
limited to addition and scalar multiplication. More complex operations are necessary for advanced
biometric processing tasks. Expanding the range of operations would allow for more sophisticated
analyses and applications, such as machine learning on encrypted data, further protecting user privacy
while enabling rich data insights.

 Hybrid Encryption Approaches: Develop a hybrid approach combining homomorphic encryption
with other cryptographic techniques like Multi-Party Computation (MPC) or Secure Enclaves. Thus by
combining different cryptographic methods can leverage the strengths of each, offering enhanced
security and performance. This approach could provide a more versatile and efficient solution,
appealing to a wider range of applications and industries. The limitation of one algorithm can be
covered by another.

 Cloud-Based Encryption Services: Develop a cloud-based service offering homomorphic encryption
for biometric data as a service. Many organizations need secure biometric processing but lack the
expertise or resources to implement it. Offering this as a managed service on platforms like AWS or
other third party cloud companies could attract customers across sectors needing secure and compliant
biometric processing. By this, we can commercialize a secure biometric authentication system for
enterprises and consumers. There is a growing demand for secure authentication methods that protect
user privacy, especially in financial services, healthcare, and government sectors. Therefore by
providing a ready-to-deploy solution would meet the increasing need for secure, privacy-preserving
authentication methods.
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