

Enhancing Serverless Architecture Security: A

Framework for Mitigating Event Injection Attacks

MSc Research Project

MSc In Cybersecurity

Prajwal Yadav

Student ID: 22210270

School of Computing

National College of Ireland

Supervisor: Prof. Mark Monaghan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Prajwal Balasaheb Yadav

Student ID:

22210270

Programme:

MSc in Cybersecurity

Year:

2024

Module:

Practicum

Lecturer:

 Prof. Mark Monaghan

Submission Due

Date:

12/08/2024

Project Title:

Enhancing Serverless Architecture Security: A Framework for Mitigating Event

Injection Attacks

Word Count:

5490 Page Count: 21

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project.

All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the

project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in

the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Prajwal Yadav

Date:

12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each

project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhancing Serverless Architecture Security: A
Framework for Mitigating Event Injection Attacks

Prajwal Yadav
22210270

Abstract

Serverless computing has emerged as a transformative model in cloud service

delivery, offering significant advantages such as cost efficiency, scalability, and

streamlined development processes. However, this model also introduces unique

security challenges, particularly in the form of injection attacks, which exploit

vulnerabilities within serverless functions to execute unauthorized commands or

access sensitive data. Motivated by the urgent need to address these security

concerns, this project aims to develop a comprehensive security framework

tailored to mitigate injection attacks in serverless computing environments. The

research is guided by the central question: How can a comprehensive security

framework be developed to effectively mitigate injection attacks in serverless

computing environments? To answer this, the project sets out to investigate the

current state of serverless security, design a multi-layered security framework,

implement it in a simulated environment, and evaluate its effectiveness. The

proposed framework incorporates preventive measures, real-time detection

mechanisms, and automated response strategies. It is tested on platforms such as

AWS Lambda, Google Cloud Functions, and Microsoft Azure Functions, using

various attack scenarios to assess its robustness. Key metrics such as detection

accuracy, response time, and impact on system performance are evaluated to

ensure the framework's effectiveness and efficiency.

1 Introduction
Serverless computing is a significant evolution in the field of cloud domain where developers

didn’t worry about the server management, they just handover to the service provider so that

they can do their other work. This services not only reduces the operational cost however it

also helps for enhancing the scalability as well as the acceleration of deployment cycles. There

are few services such as AWS Lambda, Google Cloud function and Microsoft Azure functions.

They enable for focusing on writing deployment codes rather than server management to

companies. Also, it has some serious security concerns such as third party depended on `and

security configurations etc and especially the event injection attacks. this injection attack

exploits vulnerabilities within serverless functions which leads to unauthorized access and

execution of malicious codes.

 The motivation for this project came from urgent need for addressing security vulnerabilities

in serverless architecture. As nowadays every company is adopting serverless architectures as

it has numerous benefits. As traditional security measures often fall less in serverless

environment because it has distinctive nature for example event driven execution and reliance

on third parties. My project aims to fill the security gap in existing literature surveys by

developing a comprehensive security framework tailored for mitigating injection attacks in

serverless computing. By ensuring the advanced security this research seeks for both academic

and industrial application from newly emerged threats so it can ensure both integrity and

reliability

2

• Rise of Serverless Architecture's Usage:

Serverless computing is now commonly used in everyday life whether is it personal usage

or corporate usage. It offers a significant advantages such as cost reduction, scalability and

mainly the elimination of hardware of servers and its responsibilities as well. This model

helps developers for focusing on writing a code while cloud service providers will manage

the entire servers and infrastructure.. On the other hand, there are also some security

challenges or problems faced during the use of serverless architecture.it includes rising of

surface attacks, security misconfigurations and some complexities while using third-party

dependencies. For ensuring robust security it requires a comprehensive approach that can

highlights these vulnerabilities while using best practices, strict access control, API

gateways, Continuous monitoring. From now onwards the use of serverless architecture

will rise so there is a need of understanding these security risks along with their mitigation

strategies. Also, it will help to preserve integrity and reliability(Li et al., 2022).

• Network Security Challenges:

As we know, serverless computing is an important component of cloud infrastructure with

benefits like cost-effectiveness, no need for server management, etc. However, some

serious problems can face during its usage. The main problem is an injection attack.

Injection attack leads to exploit vulnerabilities in serverless functions that shares a limited

runtime environment, it allows for unauthorized access to sensitive data. This problem

occurs due to the inherent nature of serverless architecture which lacks networking controls

(Ahmadi, 2024).

Consequently, maintaining strong isolation between functions becomes crucial to prevent these

attacks. Organizations must implement robust runtime protection mechanisms and stringent

input validation measures to detect and mitigate injection attempts early. As serverless

functions increasingly depend on third-party libraries and APIs, securing these dependencies

is also vital to prevent them from becoming conduits for injection attacks. Addressing these

specific security concerns through comprehensive measures, such as deploying Web

Application Firewalls (WAFs) and employing advanced anomaly detection algorithms, is

essential for preserving the integrity and reliability of serverless computing environments while

mitigating the risk of injection attacks.

2 Related Work

Serverless computing has made significant changes in transforming the landscape of cloud

computing by offering some amazing benefits such as scalability, cost-efficient, and easy-to-

deploy solutions. However, it also introduces unique security challenges that need to be solved.

This author has systematically reviewed almost 275 research articles, highlighting the state-of-

the-art contributions, platforms, benefits, and ongoing challenges of serverless computing

(Hassan, Barakat, and Sarhan, 2021).

The survey reveals that serverless computing enhances development efficiency and reduces

operational costs. Yet, it also faces a few critical security issues such as event data injection,

insecure deployment configurations, and third-party dependencies, which can compromise

security. The paper proposes a comprehensive security framework that includes robust input

validation, secure configuration management, minimizing reliance on external components,

and continuous monitoring. Moreover, the review underscores the importance of addressing

3

Distributed Denial of Service (DDoS) attacks through AWS serverless architecture,

highlighting the need for dynamic traffic management and real-time threat detection. Future

research was to focus on developing an automated tools and frameworks that can support

secure coding practices, enhancing the integration of advanced security measures, and

exploring the application of serverless computing in different domains.

I. Understanding of Security Challenges in Serverless Architectures

Serverless architecture provides substantial benefits such as cost efficiency, scalability,

and reliability which allows developers to focus on application development without

managing any servers. Although, it introduces some unique security challenges to their

event-driven nature. The author identifies a few critical security issues, such as event data

injection, insecure deployment configurations, and third-party dependencies. (Sharaf,

2020) Event injection attacks help to exploit the function-triggering mechanism of

serverless which, potentially leads to unauthorized access and data breaches. Insecure

deployment configurations, tailored to specific customer needs, can introduce

vulnerabilities if they are not properly configured. And the last, I.e. third-party

dependencies also lead to significant risks, as a single compromised dependency can also

affect multiple functions and services. So, (Sharaf, 2020) proposes a comprehensive

framework which enhances serverless security, including strict access controls, regular

configuration reviews, DevOps collaboration, perimeter security, and continuous

monitoring.

II. Mitigation of DDoS Attacks in Serverless architectures

AWS serverless architecture offers a cost-effective solution for preventing DDoS attacks

and ensures the availability and security of serverless applications. The authors proposed

an integration of AWS Lambda functions for dynamically filtering and managing

incoming traffic (Brahme et al., 2023). They used DynamoDB as well as AWS Lambda

functions for tracking and blocking suspicious and malicious IP addresses. AWS

CloudWatch triggers the alarms if, traffic exceeds a predefined limit and sends a

notification via AWS Simple Notification Service (SNS). This holistic approach aims for

protection of the server by dynamically adjusting to block malicious traffic. (Brahme et

al., 2023) Also, authors highlighted some points like the robustness, scalability, reliability,

and cost-effectiveness of AWS's solutions, however, they noted some potential delays in

triggering alarms and reliance on AWS-specific services. Future work includes extending

the framework to other cloud environments and integrating additional security

parameters.

III. Enhancing Security through Secure Coding Practices

Serverless applications are vulnerable to several security risks, including insecure

configurations, inadequate access controls, and data injection attacks. Mainly data

injection attacks, so (Kim, Koo and Kim, 2022) explain why secure coding practices are

important to mitigate these types of vulnerabilities. They also highlighted the need for

strong input validation to any application for preventing data injection attacks via input

and recommended some adopting the principle of least privilege to limit function

permissions. The Author also shows some risks associated with third-party dependencies,

advocating for thorough security assessments and minimizing external components.

(Kim, Koo and Kim, 2022) The proposed secure coding practices include the following

points input validation, secure configuration management, robust authentication

mechanisms, and regular security testing. Continuous monitoring and incident response

are essential for maintaining serverless security. Future research was. To develop

automated tools and frameworks to support these practices.

4

IV. Centralized Authorization Mechanisms for Serverless Security

(P. Padma and Srinivasan, 2023) DAuth is a delegated authorization framework, which

enhances security in serverless environments by centralizing authorization decisions. Use

of OAuth 2.0, DAuth separates authorization logic from the serverless functions and

ensures consistent access control. Key components include the authorization server,

resource server, and client. (P. Padma and Srinivasan, 2023)The authorization server

manages access tokens and handles authorization requests, while the resource server

enforces access control based on the tokens issued. This centralized approach simplifies

access policy management and enhances serverless application security. DAuth's

flexibility allows administrators to update access policies without modifying serverless

functions, though it presents a single point of failure. Future work was integrating

additional security measures and applying DAuth to other cloud service models.

V. Practical Strategies for Securing Serverless Applications

Serverless applications have several security risks, such as misconfigurations and

vulnerabilities related to the function execution workflows. (O’Meara and Lennon, 2020)

proposed a practical strategy for mitigating these types of risks, such as implementing

strict access controls, encrypted communications, and regular updates of dependencies.

They highlighted the importance of logging and monitoring to detect unusual behaviour

patterns and potential security threats. Case studies illustrate the effectiveness of these

strategies in real-world applications, such as an e-commerce platform that successfully

protected against common attack vectors like SQL injection and cross-site scripting (XSS)

while maintaining high performance and availability. Future research should explore the

development of automated security tools specifically for serverless environments

(O’Meara and Lennon, 2020).

VI. Practical Challenges and Solutions in Serverless Deployments

Deploying the serverless applications has some unique challenges and practical aspects,

such as configuration management, security, and performance monitoring. Tembhekar

(Prachi Tembhekar, Shanmugam and Devan, 2023), Shanmugam, and Devan focused on

AWS Lambda for exploring these issues. Proper configuration management ensures that

serverless functions are optimized for performance and secure from vulnerabilities.

Developers should secure their serverless applications, as cloud providers handle the

underlying infrastructure's security. (Prachi Tembhekar, Shanmugam and Devan,

2023)Performance monitoring is also crucial, as traditional tools may not suit the stateless

and dynamic nature of serverless functions. AWS CloudWatch is recommended for

detailed metrics on function execution times, error rates, and resource usage. Case studies

highlight challenges and solutions, such as cold start latency and function timeout

settings. The authors acknowledges that serverless computing may not suit all

applications, particularly those with consistent workloads or long-running processes.

Future research was to explore optimization techniques and tools to enhance serverless

application deployment and management.

5

6

3. Implementation
 I have created one simple Inventory management tool. In which there is one login page. And if

you are login, it with admin you then are allowed to do any action, but if you are login by any of

the normal user then your User Interface will be slightly different.

 For this webapp I have used basic html templates and python along with Django framework. For
securing this from bad actors for preventing mainly event injection attack, I have created a

7

framework in three steps.

In serverless architecture, securing any application from command injection attacks such as SQL
injection, XSS, can exploit the vulnerabilities in serverless functions which leads to data breaches
and service disruptions. To overcome this, I proposed an integrating machine learning techniques
for improving the detection and prevention of these sophisticated attacks. ML is effective in
identifying different patterns and anomalies which traditional rule-based security systems can miss,
so providing a dynamic and adaptive multilayer to defence.

 Fig 1. Workflow of framework (Original Illustration)

3.1. Preventive Measures: Secure Code

Project begins with development and deployment of Inventory Management system on AWS

serverless architecture. This application facilitates the management of products, orders, and

staff details with a very user-friendly interface. Secure coding is a crucial step for preventing

vulnerabilities that can be exploited thereby enhancing the overall security posture of our

application. Implementation of secure coding also ensures the CIA triads if application and its

data. To protect against various command injection attacks, such as SQL injection, Cross-Site

Scripting (XSS), command injection, LDAP injection, and XML injection, I implemented a

comprehensive input validation along with the logging mechanisms. This holistic multi-layered

8

security approach helps detect and mitigate potential security threats very effectively. This code

integrates robust input validation for preventing multiple types of injection attacks. It uses

regular expressions for detecting and blocking malicious patterns commonly used in attacks.

Additionally, logging mechanisms are also implemented to monitor and record significant

events, which ensures the detecting a suspicious activity and troubleshooting errors.

Explanation of the Code Logic:

Input Validation: The validate_input function: checks for the input data against SQL injection,

XSS, command injection, LDAP injection, and XML injection using regular expressions. If

there is any malicious patterns are detected, a ValidationError will be raised. By integrating

these secure coding practices, we can ensure that the application is fully protected against

different types of injection attacks, enhancing its overall security posture and robustness. This

approach integrates with the principles of proactive security and continuous monitoring to

safeguard the serverless

3.2. Detection Mechanism:

Detection mechanisms are very important in cybersecurity as it helps for the real-time detection

of attacks as well as anomalous activities. In serverless computing, where applications and

resources dynamically scaled, monitoring and detecting unusual behaviour is mandatory and

hard to maintaining the integrity and security of the system. If we have an effective detection

mechanism, so we don’t need to worry if security incidents happened which will lead to

significant damage.

How Detection Mechanisms Enhance Security?

After implementing the robust detection mechanisms, we can quickly detect as well as respond

as possible to security threats, so it can significantly reduce potential damage and help for

preventing the escalation of attacks. These mechanisms aim to continuously monitor the system

activities, detect anomalies, and if necessary, It can trigger automated responses to mitigate

future risks. This holistic approach ensures that potential threats are identified on time and

addressed before they can cause growth and disruption.

Machine Learning Algorithm: Isolation Forest

To enhance our detection capabilities, I decided to integrate the Isolation Forest algorithm for

anomaly detection. This machine learning algorithm is particularly well-suited for identifying

unusual patterns as well as behaviors in serverless environments. Here’s why I chose it.

Implementation in Our Application: We have collected relevant data from our serverless

application environment, such as resource usage API call patterns, and logs, and applied the

Isolation Forest algorithm to detect anomalies.

Logging Mechanism

Logging is another crucial component of our detection mechanism. We had two options for

logging: the built-in Django logging framework and AWS CloudWatch. We chose to integrate

CloudWatch with Django to enhance our logging capabilities, especially for large-scale

serverless environments. The log captures detailed information such as system events, user

activities, or application errors. This data is very essential for detecting different types of

anomalies, detecting possible potential security attacks, and providing a detailed audit trail that

can be used for forensic analysis.

9

Implementation: Integrating CloudWatch with Django

We integrated AWS CloudWatch for capturing the logs as well monitor log data in real time.

This integration allows us to use CloudWatch’s advanced monitoring system and alerting

features. It will help to enhance detection and response capabilities. We used the Watchtower

library to send log data directly to CloudWatch from our Django application.

3.3 Response phase:

The response phase is critical in the security framework as it determines the immediate actions

taken to mitigate the impact of a detected threat. Effective response mechanisms ensure that

once a security incident is detected, it is swiftly contained, preventing further damage and

restoring normal operations as quickly as possible. This phase involves both automated and

manual actions to neutralize threats and minimize downtime.

How do Response Mechanisms Enhance Security?

Response mechanisms are designed to act quickly and efficiently, reducing the window of

opportunity for attackers. By having predefined response strategies, organizations can ensure

a coordinated and effective reaction to security incidents. This minimizes the potential damage

and aids in quicker recovery, thereby maintaining the integrity and availability of the system.

Implementation: Automated Response Mechanisms

To enhance our response capabilities, I have implemented automated response mechanisms

which will triggered if there is the detection of security incidents. These mechanisms use the

logging and monitoring data collected via AWS CloudWatch to execute predefined actions.

The techniques and/or architecture and/or framework that underlie the implementation and the

associated requirements are identified and presented in this section. If a new algorithm or model

is proposed, a word-based description of the algorithm/model functionality should be included.

4. Design Specification

The design and setup of the serverless architecture security framework aim to provide robust

and scalable solutions to secure serverless applications against common and advanced security

attacks and threats. The architecture uses AWS services, machine learning, and traditional

security measures.

Research Procedure:

It involves the detection of the key security challenges that are faced by serverless architecture

which primarily focuses on injection attacks such as such as SQL injection, XSS, command

injection, etc., and anomaly detection. After this solution was decided to integrate with AWS

services such as Lambda, CloudWatch, and SNS.

1. Problem Identification: Understanding the event injection attacks and research about the

existing solutions.

2. Solution Design: Design a security framework that will incorporate the traditional approach

of secure coding with advanced anomaly detection using ML.

3. Implementation strategy: Implementing this framework using AWS lambda for serverless

computing and CloudWatch for logging, SNs for notification.

10

4. Testing and Evaluation: create test cases to validate input validation and monitor the

framework's response to these attacks.

Components of my framework:

AWS Lambda: For executing serverless functions that can handle backend logic and

processing. It provides a scalable, cost-effective approach without handling servers.

 Fig. 2. Architecture Diagram (Original Illustration)

AWS API Gateway: It is used for managing and routing HTTP requests from front end to

lambda functions. It helps simplify the creation, deployment, and management of APIs.

AWS RDS: It is used for storing and managing the data as it offers scalable and managed

database service which integrates with Django and all.

AWS S3: It helps for storing static files, media, and other user-generated content. I used this

to string my code there.

Django Framework: I have used this for creating web apps and for backend logic.

CloudWatch: I have used this CloudWatch for monitoring purposes. It monitors application

performance, and tracklogs, and sets up alarms for any anomaly detection.

It offers real-time monitoring and logging capabilities which allows us to continuously watch

the application's health and the detection of potential security threats.

AWS SNS: I have used the SNS for sending notifications and alerts when there is a certain

threshold or any anomalies are detected.

It also ensures that alerts are promptly delivered which enables quicker response.

GitHub: I have used this for managing version controls for the codebases which facilitates

collaboration and deployment.

It is a platform for source code management and enables continuous integration as well as

collaboration among other members.

AWS Cloud9: I have used this to provide a cloud-based integrated development environment

(IDE) for coding and debugging. Cloud9 allows everyone to write, run, and debug code in a

11

browse. It also has seamless integration with other AWS services which makes it easier to

develop and deploy applications directly from the cloud.

ZIPAPP: I have used this for packaging of Django application and its dependencies into a

deployable zip file. It offers a deployment process by bundling the entire process and

application while ensuring all necessary components are included.

Why I chose that method only for anomaly detection:

 I chose specifically the Isolation Forest algorithm for anomaly detection in serverless security

framework as it has unique characteristics and suitability for cybersecurity applications.

Isolation Forest is efficient, scalable reliable, and mainly capable of handling large datasets

typical in serverless environments (Geeksforgeeks, 2024). It starts work by isolating the

anomalies through random partitioning, which makes it specifically adaption to identifying

outliers that can be potential security threats. However, this method is non-parametric. It just

requires minimal assumptions for data distribution. This makes it versatile for various types of

anomalies like point, contextual, or collective anomalies (Geeksforgeeks, 2024). Also, its

robustness and low maintenance requirements make it an ideal choice for real-time anomaly

detection especially for dynamic cloud environments.

5. Evaluation

I have done an evaluation of three types first for checking the effectiveness of input validation

and secure coding by 3 test cases, second was testing of anomaly detection

And final was on the framework after launching it on the AWS lambda.

Evaluation of ML model:

The evaluation of our anomaly detection model was conducted locally first time before pushing

the code in lambda. So, the primary goal was to ensure the model’s effectiveness in detecting

anomalies. The model was developed using Isolation Forest Algorithm a robust technique for

anomalies detection. I trained the model on a dataset of credit card transactions. In which there

were both transactions like a small portion of fraudulent transactions and normal transactions

as well. The model was trained to find anomalies in behaviour.

The second part was related to lambda functioning itself. I tried to attack the SQL

injection on the Login page and then I found the warning about it. Below you can see the

12

screenshots attached of it. And also we can see one alarm of it as we have.

 Fig.3. Login Page

 Fig.4 . Logs

 Fig.5. Alarm

13

According to the Confusion matrix, It indicates that the model was relatively accurate for

detecting anomalies without flagging too many transactions which are normal but identifies

as anomalous. ROC curve showed that the model demonstrated models modest but reliable

performance in differencing between normal and anomalous.

5.1 Test Case 1

Here, I have performed a few test cases for evaluating the effectiveness of the implementation

of secure coding, particularly for Command injections and SQL injection. I have done it in two

ways. The first way that Django has an inbuilt feature for testing where it covers different types

of input, including valid inputs and inputs that are designed for exploitation purposes only. And

second was to test it manually. The first test case was done for testing 6 things which are SQL

injection patterns, XSS patterns, Command injection patterns, LDAP injection patterns, XML

injection attacks, and lastly custom field validation. There was one error related to the MYSQL

strict mode which prevented the data integrity issues.

 Fig.6.Test case 1

Result:

6/6= All test cases passed effectively.

The test results indicate that the input validation function is working very effectively for

detecting and preventing the potentially harm inputs which was crucial in securing the

application against different types of injection attacks. This validation logic enhanced the

overall security posture of our serverless application by preventing common vulnerabilities

such as SQL injection, XSS, command injection, LDAP, and XML injection.

5.2 Test Case 2

The second test case was particularly for the detection of SQL injection and XSS injection.

According to SC media XSS and SQL injection are very dangerous as they led to the

14

compromise of almost 65 websites and over 2M jobseeker's data were compromised due to

those attacks, (Staff, 2024). So, I decided to do a testing for such as so that in future this

framework will help to stop these kinds of attacks.

 Fig.7.Test case 2

Result:

This test case was very crucial for ensuring whether our application effectively detects and

handles these types of injection attacks which are common in web apps.

2/2 = All tests passed successfully.

The validate input function was successfully detected and raised validation error for all SQL

injection payloads as well as all XSS payloads. So, this indicates that the function is effective

in detecting SQL injection and XSS attacks as well. So, after passing this the function has

demonstrated the capacity to prevent two of the most common and dangerous web application

vulnerabilities.

5.3 Test Case 3

This test case was designed to check and validate the custom field input based on predefined

patterns ensuring that they are following the security requirements.

Result:

2/2= Successfully passed

The test cases evaluated multiple valid and invalid custom field inputs such as,

Valid input: valid field and ValidField123

Invalid input: invalid field! And invalid!d@Field

The results of our test cases indicate that our input validation mechanisms are robust as well as

capable of detecting various types of injection attacks and invalid inputs. The serverless

security framework successfully prevented all possible attacks such as XSS, and SQL injection,

and ensured that it also followed the custom invalid inputs. These results can significantly

15

contribute to overall security posture. After ensuring that inputs are properly sanitized and

validated effectively.

 Fig.8.Test case 3

• Discussion

The findings from experiments and evaluation conducted in this thesis demonstrated that the

proposed serverless architecture security framework can effectively mitigate all the injection

attacks within serverless computing environments, especially through the integration of

advanced ML methods like the Isolation Forest for real-time anomaly detection. The

framework successfully identified and prevented various types of injection attacks, such as

SQL injection, XSS, Command Injection, LDAP injection, and XML injection, showing the

robustness of the input validation mechanisms. Future research should include, incorporating

more advanced machine learning techniques ensemble learning, or LLMs. Also, develop a

modular validation system for more scalability. Integrating it with real-time threat intelligence

helps improve detection capabilities. Overall, the framework proved effective, continuous

adaptation and enhancement are necessary for maintaining its effectiveness.

Empowering Small Businesses with Scalable Security:

 My proposed framework is not only designed to address the critical security aspects and

challenges in serverless computing environments but also to enhance small businesses by

providing them with enterprise-level security that is cost-effective as well as scalable. By using

the advanced machine learning models such as the Isolation Forest, with the AWS Lambda

functions. The framework also ensures real-time detection and prevention of event injection

attacks, it offers a robust security integration that is typically accessible to larger organizations.

The proposed framework covers multiple injection vulnerabilities or attacks such as SQL, XSS,

and Command injections. It also ensures a broad protection scope across serverless

environments. This is particularly useful for small businesses that may lack the resources for

deploying and maintaining the extensive security infrastructure. With the use of AWS services

such as Lambda, RDS, and S3, the framework offers solid scalability and flexibility, allowing

small businesses to scale their security measures seamlessly as they grow, without having any

16

big upfront investment. Additionally, the integration with AWS CloudWatch and SNS helps

with automated alerts and responses, it also reduces downtime and enhances overall system

resilience. This operational efficiency is very important for small businesses, as it reduces the

need for extensive IT resources and allows them to extensively focus on their core activities

without maintaining servers. After automating security processes, the framework will not only

minimize operational costs but also provide small businesses with the confidence to scale their

operations securely and efficiently, making it an ideal solution for those looking to leverage

the benefits of serverless computing without compromising on security.

6. Conclusion and Future Work

In this thesis, my primary research question was around the implementation of a robust

security framework specially focused on serverless architectures, with a particular focus on the

detection and mitigation of event injection attacks. My objectives were to develop a system

that not only identifies the potential security threats but also provides real-time responses to

prevent exploitation. To achieve this objective, I implemented different steps such as secure

coding practices, detection mechanisms with the use of machine learning, and real-time

monitoring with AWS CloudWatch. My work involved integrating multiple layers of security

measures, such as input validation, and anomaly detection, ensuring a comprehensive approach

for protecting serverless functions. The secure coding phase effectively captures major

injection attacks such as SQL injection, XSS, and LDAP injection, on the other hand, the

detection phase uses advanced machine learning to detect the anomalies in real-time. By

integrating AWS CloudWatch, we ensured continuous monitoring and logging of suspicious

activities. Concerning a research question, I successfully showed that a multi-layered security

framework can significantly improve the overall security posture of serverless architectures.

My key findings were that combining traditional input validation techniques with advanced

anomaly detection models significantly provides more robust security against event injection

attacks. The integration with AWS CloudWatch further solidified the system's ability to

monitor and respond to threats in real-time. However, while our framework proved effective,

it is not without limitations. The machine learning model's accuracy was highly dependent on

the quality as well as the quantity of the data available for training. In real-world applications,

obtaining these diverse and representative datasets will be slightly challenging.

 For future work, there are a few suggestions to enhance and extend our research.

One of the main areas is to create a cross-platform security framework that can be easily

integrated with various cloud providers, not just AWS. This can also include adapting our

system to be more flexible and compatible with different environments. On the other hand,

further research could also focus on improving the machine learning algorithms by using

more advanced algorithms or use of ensemble learning techniques. Another meaningful

approach for future research is to use of hot topic, integration of blockchain technology for

creating a decentralized, tamper-proof logging mechanism. It will help to ensure the integrity

of log data and also makes it more harden for attackers to cover their tracks. For business

purposes, exploring the potential for commercializing this framework as a security-as-a-service

(SaaS) could also provide organizations with an accessible and scalable solution to protect their

serverless architectures.

In conclusion, my project has completed all the key objectives and provided a solid

foundation for securing serverless environments, By building on this work, future research can

continue to advance the security of serverless architectures.

17

Reference

Ahmadi, S. (2024). Challenges and Solutions in Network Security for Serverless Computing.

International Journal of Current Science Research and Review, [online] 07(01). doi

https://doi.org/10.47191/ijcsrr/v7-i1-23.

Brahme, A., Deshmukh, A., Vathare, A., Patil, C. and Tarapore, Z. (2023). DDOS Prevention

System using AWS Serverless- Architecture. [online] Available at:

https://www.ijfmr.com/papers/2023/6/9563.pdf [Accessed 12 Aug. 2024].

Geeksforgeeks (2024). Anomaly detection using Isolation Forest. [online] GeeksforGeeks.

Available at: https://www.geeksforgeeks.org/anomaly-detection-using-isolation-forest/.

Hassan, H.B., Barakat, S.A. and Sarhan, Q.I. (2021). Survey on serverless computing.

Journal of Cloud Computing, [online] 10(1). doi:https://doi.org/10.1186/s13677-021-00253-

7.

Kim, Y., Koo, J. and Kim, U.-M. (2022). Vulnerabilities and Secure Coding for Serverless

Applications on Cloud Computing. ACM, 3, pp.145–163. doi:https://doi.org/10.1007/978-3-

031-05412-9_10.

Li, Z., Guo, L., Cheng, J., Chen, Q., He, B. and Guo, M. (2022). The Serverless Computing

Survey: A Technical Primer for Design Architecture. ACM Computing Surveys.

doi:https://doi.org/10.1145/3508360.

O’Meara, W. and Lennon, R.G. (2020). Serverless Computing Security: Protecting

Application Logic. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ISSC49989.2020.9180214.

P. Padma and Srinivasan, S. (2023). DAuth—Delegated Authorization Framework for

Secured Serverless Cloud Computing. Wireless Personal Communications, 129(3), pp.1563–

1583. doi:https://doi.org/10.1007/s11277-023-10189-7.

Prachi Tembhekar, Shanmugam, L. and Devan, M. (2023). Implementing Serverless

Architecture: Discuss the practical aspects and challenges. Journal of knowledge learning

and science technology, 2(3), pp.560–580. doi:https://doi.org/10.60087/jklst.vol2.n3.p580.

18

Sharaf, S. (2020). Security Issues in Serverless Computing Architecture. International

Journal of Emerging Trends in Engineering Research, 8(2), pp.539–544.

doi:https://doi.org/10.30534/ijeter/2020/43822020.

Staff, S. (2024). Over 2M jobseekers’ data compromised in SQL injection, XSS attacks.

[online] SC Media. Available at: https://www.scmagazine.com/brief/over-2m-jobseekers-

data-compromised-in-sql-injection-xss-attacks.

	1 Introduction
	2 Related Work
	4. Design Specification
	5. Evaluation
	5.1 Test Case 1
	5.2 Test Case 2
	• Discussion

	6. Conclusion and Future Work
	Reference

