

Configuration Manual

MSc Research Project
MSc Cybersecurity

Navya Tumparthy
Student ID: 23101521

School of Computing
National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

……Navya Tumparthy.……………………………………………………………………………

Student ID:

……23101521…………………………………………………………………………………………

Programme:

……MSc Cybersecurity…………………………………

Year:

2023-2024……

Module:

… MSc Research Practicum part 2……………………………………………...………

Lecturer:

…… Khadija Hafeez……………………………………………………………………….………

Submission
Due Date:

…12th August 2024……………………………………………………………………….………

Project Title:

… Efficient Intrusion Detection for Smart Homes: Suricata and
Machine Learning for Speed and Efficiency……………………………….………

Word Count:

…2521………………………… Page Count:…25…………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

… Navya Tumparthy…………………………………………………………………

Date:

……12th August 2024…………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Navya Tumparthy
23101521

This guide provides the detail steps of integrating a hybrid Machine Learning(ML) model with
Suricata an open-source IDS. The steps provided below helps with the reproduction of
experimentation as the details of the libraries installed and the scripts used for optimising IDS
in smart home application are given.

1 Dataset Cleansing

Step 1: Download the dataset CICIoT2023 from https://www.unb.ca/cic/datasets/iotdataset-
2023.html. The dataset contains many CSV files. Each has the network traffic features of
different IoT devices. It comprises of both benign and malicious traffic labelled (Neto et al.,
2023).
Step 2: Install Anaconda on Mac OS as explained in the link below:
https://docs.anaconda.com/anaconda/install/mac-os/#
Step 3: Identifying the missing and NA values from dataset.

• Open Jupyter notebook from anaconda and create a new notebook for data processing.
• Install pandas library for manipulating dataset.

pip install pandas
• Then run the below script which checks all CSV files for any missing/NA values and

provides the counts for each and every class.

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://docs.anaconda.com/anaconda/install/mac-os/

2

 Step 4: The output of the script shows that there are no missing or NA values in dataset as
shown below. If there are any, we need to delete the entries for quality of data.

2 Data Balancing
Step 1: The dataset contains multiple classes of attacks. To simplify the dataset first the attacks
are classified into 7 types with the help of python scripts. Prior to running the script install the
joblib and imbalanced-learn libraries in jupyter notebook (nikitastsinnas, 2024).

!pip install joblib
!pip install imbalanced-learn

3

Step 2: Run the script below in jupyter notebook to map all the attack classes into 8 classes
(nikitastsinnas, 2024).

• Create a function to analyse the data imbalance and then balance it using under

sampling and SMOT methods as in below screenshot (nikitastsinnas, 2024).

4

• Run commands below to check the data balance and the output shows quite an

imbalance.

• The output should shows like below where there is great imbalance between classes

(nikitastsinnas, 2024).

• To address the imbalance, under sample the higher count data and oversample the

lower count data to 10,000 counts by using the below script and save the new dataset
as ‘New_CICIoT.csv’ (nikitastsinnas, 2024).

5

Note: This script can be used together in a single jupyter notebook cell.

3 Model Training and Evaluation

As the data is pre-processed and transformed into new dataset ‘New_CICIoT.csv’ this can be
used for model training.
Step 1: Open Google Colab a free computing service from google to train and evaluate models
with ease rather using our own computing resources (research.google.com, 2023). Upload the
transformed dataset to the colab.
Step 2: Install below packages before model training

pip install pandas
pip install scikit-learn
pip install lightgbm
pip install joblib
pip install seaborn
pip install matplotlib

Step 3: Run the entire script together to train and save the model.
• First, the necessary libraries are imported for model training and the balanced dataset

is loaded.
• Later the dataset is split into training and testing in proportion of 70-30 and then RF

model is initialised with appropriate hyper-parameter tuning by analysing the accuracy
as below.

• Then the top ranked features as per RF built-in functionality are extracted and printed

out for next layer ML training.
• LGBM is trained by adding hyper-parameters and cross-validation of 5 splits.
• Later the model is tested using classification report for training and testing data.

6

• Difference between the accuracy of training and testing data is calculated to check

overfitting problem.
• Later Confusion matrix and ROC AUC Curves are printed for analysing the model’s

performance in visual manner.
• The model is saved into pkl file which is downloaded from google colab for

implementation purpose.

4 Lab Setup

7

After the training and evaluating model for performance, next goal is to implement the model
in simulated smart home by integrating with Suricata an open-source signature-based IDS and
check its efficiency in terms of identifying the attack, computational power used for detection
and speed of detection. To achieve this there should be a proper lab setup.

• Install VMware fusion pro version 13.5.2 on your MAC Book Pro from link below.
One need to register for downloading. But it is a free service for personal use.
https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fus
ion

• After installation download Kali Linux from https://www.kali.org/get-kali/#kali-

installer-images
• Select as Apple Silicon as shown below, and an ISO file of Kali Linux will be

downloaded.

• Open VMware application and click on ‘+’ symbol to add a new Virtual Machine to

your environment.

• Then select the ‘Install from disc or image’ option and then select downloaded Kali

Linux ISO image then proceed further.

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fusion
https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fusion
https://www.kali.org/get-kali/#kali-installer-images
https://www.kali.org/get-kali/#kali-installer-images

8

• Select Debian’s latest version as Operating System and then provide 2GB of RAM, 2

Core processors and 20 GB ROM during installation and proceed installing the Kali
Linux.

• Create a username and password for the Kali VM for security.
• Ubuntu server of version 22.04.4 LTS (Jammy Jellyfish) of 64-bit ARM architecture is

used for MAC OS, which can be downloaded from
https://cdimage.ubuntu.com/releases/22.04/release/

• Repeat the same steps to create one more VM with Ubuntu ISO image by providing
4GB RAM, 2 core processors and 50GB ROM.

• Proceed with installation by setting up username and password.
• Ensure the network adapter setting for both VM’s is set to ‘NAT’ as this enables the

communication between the VM’s and VM’s to internet.

https://cdimage.ubuntu.com/releases/22.04/release/

9

• Ensure to take snapshots of VM’s before starting the experimentation.
• By Default, Ubuntu server comes with CLI and there is no GUI. To ease the usage

lightweight GUI is installed. LightDM is used for GUI which is explained in
https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-
ubuntu-server-66b131d4da8c

5 Suricata Installation
• Open and login to Ubuntu Server for installing Suricata. Suricata version 7.0.6 was

installed during experimentation (docs.suricata.io, 2024).
• First update your system to ensure latest packages are available and also with all

dependencies for smooth working of Suricata (docs.suricata.io, 2024).
sudo apt update
sudo apt upgrade -y
Install the libraries are are necessary for Suricata installation
Sudo apt install -y libjansson, libpcap, libpcre2, libyaml, zlib
Sudo apt install -y make gcc pkg-config rustc cargo
sudo apt-get install autoconf automake build-essential ccache clang
curl git \
 gosu jq libbpf-dev libcap-ng0 libcap-ng-dev libelf-dev \
 libevent-dev libgeoip-dev libhiredis-dev libjansson-dev \
 liblua5.1-dev libmagic-dev libnet1-dev libpcap-dev \
 libpcre2-dev libtool libyaml-0-2 libyaml-dev m4 make \
 pkg-config python3 python3-dev python3-yaml sudo zlib1g \
 zlib1g-dev
cargo install --force cbindgen
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update
sudo apt-get install suricata

• Check if the directories are present by running commands below:
sudo cd /etc/suricata/rules
sudo cd /var/lib/suricata
sudo cd /var/log/suricata

• If directories are not created create directories by using below commands:
sudo mkdir -p /etc/suricata/rules

https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-ubuntu-server-66b131d4da8c
https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-ubuntu-server-66b131d4da8c

10

sudo mkdir /var/lib/suricata
sudo mkdir /var/log/suricata

• Once the directories are present update the rules of Suricata with the latest signatures:
sudo suricata-update

• Now enable Suricata and start the service.
sudo systemctl enable suricata
sudo systemctl start suricata

• Check if it is running successfully by the command below and it should show that the
service is running (docs.suricata.io, 2024).

sudo systemctl status suricata

6 Mininet Installation
• First upgrade your ubuntu packages

sudo apt update
sudo apt upgrade -y

• Later run the below command to install mininet directly from packages of
ubuntu (Mininet Team, 2018).

sudo apt-get install mininet
• To check version of mininet use command below

mn –version
• To manage mininet using controller download pox controller (Mininet Team, 2018)

git clone https://github.com/noxrepo/pox.git
cd pox
./pox.py forwarding.l2_learning

7 Smart Home Simulation

• Smart home simulation using mininet python scripting. Below script explains that the
five nodes are simulated for smart home and are connected with each other. IPs has
been assigned to all the nodes (Mininet Team, 2018).

• Virtual ethernet has been created to have communication between smart home and Kali
VM

https://github.com/noxrepo/pox.git

11

• To run the simulation run the script using python3 and it should connect the smart home
as below.

12

• To test if all devices are working as expected just run pingall in mininet command line

and result should show 0% drop in packets.

• As this smart home should be monitored by Suricata to check the interfaces of the

devices simulated run command ‘sh ifconfig’ as shown below (Mininet Team, 2018).

13

• Based on the above results we could see 5 interfaces and virtual ethernet tunnels. These

five interfaces should be added in suricata.yaml file for monitoring.
• To ensure smart home networks connectivity with ubuntu as well as kali VM we have

used virtual ethernet and IP forwarding. For which below changes are performed in
ubuntu machine.

sudo ip link add veth0 type veth peer name veth1
sudo ip addr add 10.0.0.100/24 dev veth0
sudo ip link set veth0 up
sudo sysctl -w net.ipv4.ip_forward=1
sudo iptables -t nat -A POSTROUTING -o ens160 -j MASQUERADE
sudo iptables -A FORWARD -i ens160 -o veth0 -m state --state
RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A FORWARD -i veth0 -o ens160 -j ACCEPT
sudo ip link set veth1 up

• The route should be added in kali VM as well.
sudo ip route add 10.0.0.0/24 via 192.168.30.11

8 Suricata Setup
• To monitor the smart home interfaces open suricata.yaml file located at /etc/suricata

and add interfaces under ‘pcap’ section as shown below (docs.suricata.io, 2024):

• Run pox controller and smart home network first. Later run Suricata using below

command and the output show that the ‘Engine is Started’ meaning it is monitoring the
interfaces we have added.

14

• The attacks can be viewed in fast.log located at /var/log/suricata directory as below. To

test we added a rule to detect ICMP traffic in rules folder located at
/var/lib/suricata/rules and the output shows like below.

• To capture the traffic that is necessary for ML model prediction below traffic rules are

added in suricata.yaml file to capture in eve.json logs located at /var/log/suricata
(docs.suricata.io, 2024) and it should look like below:
 - eve-log:
 enabled: yes
 filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
 filename: eve.json
 # include the name of the input pcap file in pcap file processing mode
 pcap-file: false
 community-id: false
 # Seed value for the ID output. Valid values are 0-65535.
 community-id-seed: 0
 xff:
 enabled: no
 mode: extra-data
 deployment: reverse
 header: X-Forwarded-For
 types:
 - alert:
 tagged-packets: yes
 fields: [timestamp, src_ip, dest_ip, src_port, dest_port, proto, flow_id, in_iface,
event_type, alert.severity, alert.signature]
 - frame:
 # disabled by default as this is very verbose.
 enabled: no
 - anomaly:
 enabled: yes
 types:
 # decode: no
 # stream: no
 # applayer: yes
 #packethdr: no

15

 - http:
 extended: yes
 - dns:
 enabled: yes
 query: yes
 answer: yes
 - tls:
 extended: yes
 - files:
 force-magic: no
 - smtp:
 extended: yes
 - ftp
 - rdp
 - nfs
 - smb
 - tftp
 - ike
 - dcerpc
 - krb5
 - bittorrent-dht
 - snmp
 - rfb
 - sip
 - dhcp:
 enabled: yes
 extended: no
 - ssh
 - mqtt:
 # passwords: yes # enable output of passwords
 enabled: yes
 - http2
 - pgsql:
 enabled: no
 # passwords: yes # enable output of passwords. Disabled by default
 - stats:
 totals: yes # stats for all threads merged together
 threads: no # per thread stats
 deltas: no # include delta values
 - flow:
 fields: [flow_id, timestamp, flow_duration, protocol, src_ip, dest_ip, src_port,
dest_port, bytes_toclient, bytes_toserver, packets_toclient, packets_toserver, start, end,
age, state]
 - netflow:

16

 enabled: yes

9 ML Integration
• In this next step we integrate ML model with Suricata. This is done by using python

scripting where eve.json file is parsed for necessary features.
• Save the script in a file and run it along with Mininet network and Suricata.
• The script is saved as ‘pythonmonitoring.py’ file.
• To run the script, use the command below and it should run with no errors.

python3 pythonmonitoring.py
• First all the libraries needed for script are imported.
• Model is loaded using joblib.
• Path for eve.json is written for accessing the logs along with fast.log.
• Interfaces that should be monitored are specified for better understanding.
• To analyse the CPU utilisation process ID of Suricata and python script are provided

which should be checked in your systems while running the scripts and change it
accordingly.

• To ensure the accuracy of model’s performance the mean values of the features are
used in case if the feature is empty from eve.json

• A function is used to initialise a data structure for extracting all features that are

necessary for models’ prediction.

17

• Then all the statistical values of the features are calculated using the library Numpy

• All the features are extracted from logs which will be used for calculating statistical

and dynamic features as below.

18

19

• Features are passed to model in the order of top 20 for prediction. Along with that time
taken and CPU utilisation of ML model as well as Suricata are calculated using psutil
library as below.

• By using watchdog, we ensured that the only latest entries of eve.json are parsed.

20

10 Testing through attack simulations
• Ensure Kali Linux and smart home network can ping each other. Ideally if all steps are

followed as mentioned above it should work.
• Next in Kali Linux install the necessary libraries to perform DDoS attack on mininet

devices.
pip install hping3

• Then by using the below command you can perform the attack on smart home devices.
• TCP flood attack:

21

sudo hping3 -S --flood -V -p 80 10.0.0.1
• ICMP flood attack:

sudo hping3 --icmp --flood -V 10.0.0.3
Results should show the detection time, CPU usage as well as memory usage as below:

• DNS tunnelling attack:
• First install iodine in Kali VM

sudo apt-get update
sudo apt-get install iodine

• Similarly install the same on any of the smart home device.
light1 sudo apt-get install iodine

• Create a DNS server in kali VM
sudo iodined -f -c -P mypassword <IP of Kali> tunnel.example.com

• Again, login to the same device where iodine is installed and run the command below:
light1 sudo iodine -f -P mypassword <kali ip> tunnel.example.com

• Now the tunnel is established, which can be viewed using netcat server of kali.
nc <mininet device ip> 8080

• By just creating a tunnel the Suricata will alert the DNS tunnelling and also the script
should detect the attack and provide the time taken for detection as well as CPU usage
details as below.

• Mirai botnet attack was not directly conducted on smart home network, rather pcap file

of Mirai attack traffic was collected and necessary network features were extracted into
a csv file. For this download the file from
https://mcfp.felk.cvut.cz/publicDatasets/IoTDatasets/CTU-IoT-Malware-Capture-34-
1/ (Stratosphere IPS, 2023).

https://mcfp.felk.cvut.cz/publicDatasets/IoTDatasets/CTU-IoT-Malware-Capture-34-1/
https://mcfp.felk.cvut.cz/publicDatasets/IoTDatasets/CTU-IoT-Malware-Capture-34-1/

22

23

• Then this file was used as input for saved model for prediction. The attack traffic was
predicted correctly by the model as in below screenshots and during which the time
for prediction on each sample as well as the CPU utilisation is calculated.

• The output shows as below where we can see that Mirai attack as well as other network

traffic attacks were predicted.

• Below is the script used for this prediction and evaluation of Mirai attack.

24

References

docs.suricata.io. (2024). 3. Installation — Suricata 7.0.2-dev documentation. Available at:
https://docs.suricata.io/en/latest/install.html [Accessed 6 August 2024]

Mininet Team (2018). Mininet Walkthrough - Mininet. Available at:
http://mininet.org/walkthrough/ [Accessed 6 August 2024]

Neto, E.C.P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R. and Ghorbani, A.A. (2023)
‘CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT environment’,
Sensors, 23(13), pp.5941. doi: 10.3390/s23135941

nikitastsinnas (2024). IDS-8. Available at: https://www.kaggle.com/code/nikitastsinnas/ids-8
[Accessed 6 August 2024].

research.google.com. (2023) . Google Colab. Available at:
https://research.google.com/colaboratory/faq.html#:~:text=Colab%20is%20a%20hosted%20J
upyter [Accessed 13 July 2024]

https://docs.suricata.io/en/latest/install.html
http://mininet.org/walkthrough/

25

Stratosphere IPS. (2023) Aposemat Project: IoT Malware Datasets. Available at:
https://www.stratosphereips.org/datasets-iot [Accessed 22 Jul. 2024].

