*
\ National

College
Ireland

Configuration Manual

MSc Research Project
MSc Cybersecurity

Navya Tumparthy
Student ID: 23101521

School of Computing
National College of Ireland

Supervisor: Khadija Hafeez

\‘
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee

Ireland

School of Computing

Student Name: Navya TUMPArtRY . ..o e e
Student ID: ... 23100520t nae e e enean
Programme: ... MSc Cybersecurity......ccocvveniniiiiniiiee. Year: 2023-2024......
Module: ... MSc Research Practicum part 2. e e
Lecturer: = ... Khadija Haf@ez........oo i e
Submission
Due Date: w120 AUGUSE 2024
Project Title: ... Efficient Intrusion Detection for Smart Homes: Suricata and

Machine Learning for Speed and EffiCiency.......ccccccviiiiiineniiiecien

Word Count: ..2521......., Page Count:..25. ...
I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: . Navya TUmMParthy ... e

Date: = ... 121 AUGQUSE 2024......eeeeeeeeee e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, O

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Navya Tumparthy
23101521

This guide provides the detail steps of integrating a hybrid Machine Learning(ML) model with
Suricata an open-source IDS. The steps provided below helps with the reproduction of
experimentation as the details of the libraries installed and the scripts used for optimising IDS
in smart home application are given.

1 Dataset Cleansing

Step 1: Download the dataset CICIoT2023 from https://www.unb.ca/cic/datasets/iotdataset-
2023.html. The dataset contains many CSV files. Each has the network traffic features of
different IoT devices. It comprises of both benign and malicious traffic labelled (Neto et al.,
2023).

Step 2: Install Anaconda on Mac OS as explained in the link below:
https://docs.anaconda.com/anaconda/install/mac-os/#

Step 3: Identifying the missing and NA values from dataset.

e Open Jupyter notebook from anaconda and create a new notebook for data processing.
e Install pandas library for manipulating dataset.

e Then run the below script which checks all CSV files for any missing/NA values and
provides the counts for each and every class.

In [1]: #Libraries that should be imported for working with paths and dataframes
import os
import pandas as pd
from glob import glob

Path on mac0S where the dataset is located
folder_path = '/Users/srinivasm/Downloads/CICIoT"'

As there are multiple CSV files to work glob i used to get all CSV files Get
csv_files = glob(os.path.join(folder_path, 'x.csv'))

As the data is large to ensure optimal working we used chunks of data at a time
def check_na_in_chunk(chunk)

na_counts = chunk.isna().sum()

missing_counts = (chunk == '').sum()

return na_counts, missing_counts

Counts the values of missing and NA counters
total_na_counts = pd.Series(dtype=int)
total_missing_counts = pd.Series(dtype=int)

Defining the chunk size
chunk_size = 100000

#Loop for each chunk to identify missing/NA
for file in csv_files:
try:
for chunk in pd.read_csv(file, chunksize=chunk_size):
na_counts, missing_counts = check_na_in_chunk(chunk)
total_na_counts = total_na_counts.add(na_counts, fill_value=0)
total_missing_counts = total_missing_counts.add(missing_counts, fill_value=0)
except Exception as e:
print(f"Error processing file {file}: {e}")

Printing the total counts of NA and missing values
print("Total NA counts in the dataset:")
print(total_na_counts)

print("\nTotal missing value counts in the dataset:")
print(total_missing_counts)

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://docs.anaconda.com/anaconda/install/mac-os/

Step 4: The output of the script shows that there are no missing or NA values in dataset as
shown below. If there are any, we need to delete the entries for quality of data.

Total NA counts in the dataset:
flow_duration
Header_Length
Protocol Type
Duration

Rate

Srate

Drate
fin_flag_number
syn_flag_number
rst_flag_number
psh_flag_number
ack_flag_number
ece_flag_number
cwr_flag_number
ack_count
syn_count
fin_count
urg_count
rst_count

HTTP

HTTPS

DNS

Telnet

SMTP

SSH

IRC

TCP

uop

DHCP

ARP

IcMe

IPv

LLC

Tot sum

Min

Max

AVG

Std

Tot size

IAT

Number
Magnitue

Radius
Covariance
Variance

Weight

label

dtype: float64

00000000000 O 0000000000000 SSS
P A X R R R R R R R - R R R R LR R R R R R Y

Total missing value counts in the dataset:

flow_duration 0.0
Header_Length 2.0
Protocol Type 2.0
Duration 0.0
Rate 0.0
Srate 0.0
Drate 0.0
fin_flag_number 0.0
syn_flag_number 2.0
rst_flag_number 0.0
psh_flag_number 0.0
ack_flag_number 2.0
ece_flag_number 0.0
cwr_flag_number 0.0
ack_count 2.0
syn_count 0.0
fin_count 0.0
urg_count 0.0
rst_count 0.0
HTTP 0.0
HTTPS 0.0
DNS 0.0
Telnet 0.0
SMTP 0.0
SSH 0.0
IRC 0.0
TcpP 0.0
uop 0.0
DHCP 0.0
ARP 0.0
IcMP 0.0
IPv 0.0
LLC 0.0
Tot sum 0.0
Min 0.0
Max 0.0
AVG 0.0
Std 0.0
Tot size 0.0
IAT 0.0
Number 0.0
Magnitue 0.0
Radius 0.0
Covariance 0.0
Variance 0.0
Weight 0.0
label 0.0

2 Data Balancing

Step 1: The dataset contains multiple classes of attacks. To simplify the dataset first the attacks
are classified into 7 types with the help of python scripts. Prior to running the script install the
joblib and imbalanced-learn libraries in jupyter notebook (nikitastsinnas, 2024).

2

Step 2: Run the script below in jupyter notebook to map all the attack classes into 8 classes
(nikitastsinnas, 2024).

In [6]: import os
import pandas as pd
from glob import glob
import joblib
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline

Define the path to your folder containing the CSV files
folder_path = '/Users/srinivasm/Downloads/CICIoT"
new_dataset_path = '/Users/srinivasm/Downloads/New_CICIoT.csv'

Get all CSV files in the folder
csv_files = glob(os.path.join(folder_path, 'x.csv'))

def category_extraction(df):

Extract attack category from label

category_dict = {
'DDoS—-ACK_Fragmentation' : 'DDoS',
'DDOS-HTTP_Flood' : 'DDoS',
'DDoS-ICMP_Flood': 'DDoS',
'DD0oS-PSHACK_Flood': 'DDoS',
'DDoS-RSTFINFlood': 'DDoS',
'DDOS-SYN_Flood': 'DDoS',
'DDoS-SlowLoris': 'DDoS',
'DDoS-SynonymousIP_Flood': 'DDoS',
'DDoS-TCP_Flood': 'DDoS',
'DDoS-UDP_Flood': 'DDoS',
'DDoS-UDP_Fragmentation': 'DDoS',
'DDoS-ICMP_Fragmentation' : 'DDoS',

'DoS-HTTP_Flood' : 'DoS',
'DoS-SYN_Flood' : 'DoS',
'DoS-TCP_Flood' : 'DoS',
'DoS-UDP Flood' : 'DoS',

'‘DictionaryBruteForce' : 'BruteForce',

'MITM-ArpSpoofing' : 'Spoofing',
'DNS_Spoofing' : 'Spoofing',

'Recon-HostDiscovery' : 'Recon’,
'Recon-0SScan' : 'Recon',
'Recon-PingSweep' : 'Recon’,
'Recon-PortScan' : 'Recon',
'VulnerabilityScan' : 'Recon’,

'SqlInjection' : 'Web-based',
'CommandInjection' : 'Web-based',
'Backdoor_Malware' : 'Web-based',
'Uploading_Attack' : 'Web-based',
'XSS' : 'Web-based',
'BrowserHijacking' : 'Web-based',

'Mirai-greeth_flood' : 'Mirai',
'Mirai-greip_flood' : 'Mirai',
'Mirai-udpplain' : 'Mirai’,

'BenignTraffic' : 'Benign'
}
Label encoding for attack categories
df_label_cat = df.label.apply(lambda x: category_dict.get(x))

df['label'] = df_label_cat
return df

e Create a function to analyse the data imbalance and then balance it using under
sampling and SMOT methods as in below screenshot (nikitastsinnas, 2024).

def csvToBalancedDataset(first, last, folder_path):

balanced_dfs = []

csv_files = glob(os.path.join(folder_path, '*.csv'))

for index, file in enumerate(csv_files[first:last], start=first):

try:

df = pd.read_csv(file)
Change column names
df.columns = ['_'.join(c.split(' ')).lower() for c in df.columns]

Drop NULLs & reset index
df.dropna(inplace=True)
df.reset_index(inplace=True, drop=True)

Extract binary labels
df = category_extraction(df)

Balance the classes in each dataframe
balanced_dfs.append(df)
except Exception as e:
print(f"Error processing file {file}: {e}")
return pd.concat(balanced_dfs, axis=0, ignore_index=True)

Load and preprocess the data
df = csvToBalancedDataset(9, 50, folder_path)

¢ Run commands below to check the data balance and the output shows quite an
imbalance.

df = csvToBalancedDataset(@,50)
df['label'].value_counts ()]

e The output should shows like below where there is great imbalance between classes
(nikitastsinnas, 2024).

label

DDoS 9361472
DoS 2227960
Mirai 725551
Benign 302896
Spoofing 134176
Recon 97110
Web-based 6850
BruteForce 3590

Name: count, dtype: int64

e To address the imbalance, under sample the higher count data and oversample the
lower count data to 10,000 counts by using the below script and save the new dataset
as ‘New_CICloT.csv’ (nikitastsinnas, 2024).

Load and preprocess the data
df = csvToBalancedDataset(@, 50, folder_path)

Separate features and labels
X = df.drop(columns=["label'])
y = df['label’

undersampling and oversampling
under = RandomUnderSampler(sampling_strategy={'Benign': 10000, 'DDoS': 10000, 'DoS': 10000, 'Mirai': 10000, 'Spoofin
over = SMOTE(sampling_strategy={'Web-based': 10000, 'BruteForce': 10000})

Combine undersampling and oversampling in a pipeline
pipeline = Pipeline(steps=[('under', under), ('over', over)])

pipeline to balance the dataset
X_resampled, y_resampled = pipeline.fit_resample(X, y)

Combine resampled features and labels into a new DataFrame
balanced_df = pd.concat([pd.DataFrame(X_resampled), pd.DataFrame(y_resampled, columns=['label'])], axis=1)

Save the balanced dataset to a new CSV file
balanced_df.to_csv(new_dataset_path, index=False)

Check the balance of the new dataset
print("Balanced data:")
print(balanced_df['label'].value_counts())

Balanced data:

Spoofing 10000
Recon 10000
BruteForce 10000
DDoS 10000
DoS 10000
Benign 10000
Mirai 10000
Web-based 10000

Name: label, dtype: int64

Note: This script can be used together in a single jupyter notebook cell.

3 Model Training and Evaluation

As the data is pre-processed and transformed into new dataset ‘New CICloT.csv’ this can be
used for model training.

Step 1: Open Google Colab a free computing service from google to train and evaluate models
with ease rather using our own computing resources (research.google.com, 2023). Upload the
transformed dataset to the colab.

Step 2: Install below packages before model training

Step 3: Run the entire script together to train and save the model.

e First, the necessary libraries are imported for model training and the balanced dataset
is loaded.

e Later the dataset is split into training and testing in proportion of 70-30 and then RF
model is initialised with appropriate hyper-parameter tuning by analysing the accuracy
as below.

import pandas as pd
om sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
sklearn.ensemble import RandomForestClassifier
import lightgbm as 1lgb
earn.metrics import classification_report, accuracy_score, confusion_matrix, roc_curve, auc
oblib
eaborn as sns

new_dataset_path = 'New_CICIo
df = pd.read_csv(new_dataset_pa

X = df.drop(columns=["'label'])
y = df['label’]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

rf = RandomForestClassifier(
n_estimators=100,
max_depth=10,
min_samples_split=10,
min_samples_leaf=10,
bootstrap=Tru
random_state=42,
class_weight="balanced"

e Then the top ranked features as per RF built-in functionality are extracted and printed

out for next layer ML training.
e LGBM is trained by adding hyper-parameters and cross-validation of 5 splits.
e Later the model is tested using classification report for training and testing data.

)

rf.fit(X_train, y_train)

feature_importances = pd.Series(rf.feature_importances_, index=X.columns).sort_values(ascending=|
print(feature_importances)

)
top_features = feature_importances.head(35).index

inc ‘

1gbm = 1gb.LGBMClassifier(
num_leaves=20, |
max_depth=5,
learning_rate=0.05,
n_estimators=1000,
min_child_samples=100,

reg_lambda=10.0,
feature_fractio
bagging_fractio
bagging_freg=1,
random_state=42,
class_weight="'balanced"’

early_stopping_callback = lgb.early_stopping(stopping_rounds=50, verbose=

skf = StratifiedKFold(n_splits=5, shuffle= , random_state=42)

cv_scores = cross_val_score(lgbm, X_train[top_features], y_train, cv=skf, scoring='accuracy')
print(f"Cross-validation score v_scores}")
print(f"Mean cross-validatior C : {cv_scores.mean

1gbm. fit(
X_train[top_features], y_train,
eval_set=[(X_test[top_features], y_test)],
eval_metric='logloss’,
callbacks=[early_stopping_callback

y_train_pred = lgbm.predict(X_train[top_features])
y_test_pred = lgbm.predict(X_test [top_features])

print("Training Set Classification Report)
print(classification_report(y_train, y_train_pred))
train_accuracy = accuracy_score(y_train, y_train_pred)
print(f"Training Accuracy: {train_accuracy:.4f}")

print (" ing Set Classification Report:")
print(classification_report(y_test, y_test_pred))
test_accuracy = accuracy_score(y_test, y_test_pred)
print(f"Testing Accuracy: {test_accuracy:.4f}")

e Difference between the accuracy of training and testing data is calculated to check

overfitting problem.

e Later Confusion matrix and ROC AUC Curves are printed for analysing the model’s

performance in visual manner.

e The model is saved into pkl file which is downloaded from google colab for

implementation purpose.

if abs(train_accuracy - test_accuracy) > 0.05:
print("wWarning: The model may be arfitting.")

print("The model does not appear to be overfitting.")

conf_matrix = confusion_matrix(y_test, y_test_pred)
plt.figure(figsize=(10, 7))
sns.heatmap(conf_matrix, annot= , fmt='d', cmap=
plt.xlabel('Predicted"')

plt.ylabel('Actual

plt.title('Confusion Matrix')

plt.show()

,» Xticklabels=y.unique yticklabels=y.unique

y_test_bin = pd.get_dummies(y_test)
y_test_pred_bin = pd.get_dummies(y_test_pred)

plt.figure(figsize=(10, 7))
for i in range(len(y.unique())):
fpr, tpr, _ = roc_curve(y_test_bin.iloc[:, il, y_test_pred_bin.iloc[:, i])
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, lw=2, label=f'ROC cur (area {roc_auc:.2f}) for cla .unique

.plot([e, 1], [0, 1], color=' w=2, linestyle='—-"')
.xlim([0.0, 1.0])
.ylim([0.0, 1.05])
.xlabel('F
label('Tr
.title(* v g C e ic (ROC) Cur
. legend(loc
.show()

model_filename = 'lgbm_model_top_features_regulari
joblib.dump(1lgbm, model_filename)

print(f"Mm 1 ed to {model_filename}")

4 Lab Setup

After the training and evaluating model for performance, next goal is to implement the model
in simulated smart home by integrating with Suricata an open-source signature-based IDS and
check its efficiency in terms of identifying the attack, computational power used for detection
and speed of detection. To achieve this there should be a proper lab setup.

Install VMware fusion pro version 13.5.2 on your MAC Book Pro from link below.
One need to register for downloading. But it is a free service for personal use.

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fus
ion

VMware Fusion Pro for Personal Use (For Intel-based and Apple

%
silicon Macs) 13.5.2

Primary Downloads Open Source
1352 s 520445 s English

1 agree to Terms and Conditions (©) Expand All

VMware Fusion Pro for Personal Use (For Release
Intel-based and Apple silicon Macs) 1352 Release Level Info 520445

File Name Last Updated SHA2

VMware Fusion 13.5.2 (for
Intel-based and Apple silicon
Macs)

May 10, 2024
05 50AM 8850840424000 0601¢c5b92139b3cbab3eba6821716576

After installation download Kali Linux from https://www.kali.org/eet-kali/#kali-
installer-images

Select as Apple Silicon as shown below, and an ISO file of Kali Linux will be
downloaded.

Kali Linux 2024.2 Changelog

32-bit Apple Silicon (ARM64)

® Recommended

=

‘ arm

Complete offline installation
with customization

Open VMware application and click on ‘+’ symbol to add a new Virtual Machine to
your environment.
+ v
New...
(] Folder

Scan

MACHINES

[

B GNS3VM

Then select the ‘Install from disc or image’ option and then select downloaded Kali
Linux ISO image then proceed further.

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fusion
https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware+Fusion
https://www.kali.org/get-kali/#kali-installer-images
https://www.kali.org/get-kali/#kali-installer-images

Select the Installation Method

Drag your ISO file here to start installing

Create a custom Get Windows
virtual machine from Microsoft

? Cancel Continue
L3

Create a New Virtual Machine
This will guide you through installing Win her operating system in a virtual machine
on you

Choose an operating system installat

kali-linux-2023.3-install,

ubuntu-22.04.4-live-server-ari ‘m6é4.iso
Ubuntu 64-bit Arm Server 22.04.4

Use another disc or disc image...

Cancel Continue

e Select Debian’s latest version as Operating System and then provide 2GB of RAM, 2
Core processors and 20 GB ROM during installation and proceed installing the Kali

Linux.

Choose Operating System Finish

Select the operating system to be used in this virtual machine. The configuration of the virtual machine is now complete.

L]) ®
onfiguration Finish n c

nfiguration

Select the operating system for this virtual machine: Virtual Machine Summary
Guest Operating System Debian 12.x 64-bit Arm
Microsoft Windows Debian 12.x 64-bit Arm New Hard Disk Capacity 20 GB
Linux Debian 11.x 64-bit Arm
Memory 2 GB

Other Debian 10.x 64-bit Arm
Fedora 64-bit Arm Networking Share with my Mac (NAT)

Red Hat Enterprise Linux 9 64-bit Arm Device Summary 2 CPU cores, CD/DVD, USB Controller,

Ubuntu 64-bit Arm Sound Card
VMware Photon OS 64-bit Arm

Other Linux 6.x kernel 64-bit Arm

Other Linux 5.x kernel 64-bit Arm

To change the default virtual machine settings, click Customize Settings. To run the
virtual machine now, click Finish.

Customize Settings

Continue

e Create a username and password for the Kali VM for security.

e Ubuntu server of version 22.04.4 LTS (Jammy Jellyfish) of 64-bit ARM architecture is
used for MAC OS, which can be downloaded from
https://cdimage.ubuntu.com/releases/22.04/release/

e Repeat the same steps to create one more VM with Ubuntu ISO image by providing
4GB RAM, 2 core processors and 50GB ROM.

e Proceed with installation by setting up username and password.

e Ensure the network adapter setting for both VM’s is set to ‘NAT’ as this enables the
communication between the VM’s and VM’s to internet.

https://cdimage.ubuntu.com/releases/22.04/release/

[) Show All kali: Network Adapter Add Device...

This network adapter is configured to use:

Internet Sharing The virtual machine shares the IP address of the Mac

on the external network. The Mac provides Network
Address Translation (NAT) for network traffic from
the virtual machine.

Share with my Mac
Bridge: orking
Autodetect
Wi-Fi
Custom

Private to my Mac

e Ensure to take snapshots of VM’s before starting the experimentation.

e By Default, Ubuntu server comes with CLI and there is no GUI. To ease the usage
lightweight GUI is installed. LightDM is used for GUI which is explained in
https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-
ubuntu-server-66b131d4da8c

S Suricata Installation
e Open and login to Ubuntu Server for installing Suricata. Suricata version 7.0.6 was

installed during experimentation (docs.suricata.io, 2024).
e First update your system to ensure latest packages are available and also with all
dependencies for smooth working of Suricata (docs.suricata.io, 2024).

e Check if the directories are present by running commands below:

e If directories are not created create directories by using below commands:

LD ‘

https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-ubuntu-server-66b131d4da8c
https://roman-academy.medium.com/how-to-install-a-desktop-environment-gui-in-ubuntu-server-66b131d4da8c

¢ Once the directories are present update the rules of Suricata with the latest signatures:

e Now enable Suricata and start the service.

e Check if it is running successfully by the command below and it should show that the
service is running (docs.suricata.io, 2024).

6 Mininet Installation
e First upgrade your ubuntu packages

e Later run the below command to install mininet directly from packages of
ubuntu (Mininet Team, 2018).

e To check version of mininet use command below

e To manage mininet using controller download pox controller (Mininet Team, 2018)

$ cd pox/
I a $./pox.py forwarding.l2 learning
POX . (gar) / Copyright 2011-2020 James McCauley, et al.

WARNING version:Support for Python 3 is experimental.
INFO:core:POX 0.7.0 (gar) is up.
INFO:openflow.of 01:[00-00-00-00-00-01 1] connected

7 Smart Home Simulation
e Smart home simulation using mininet python scripting. Below script explains that the
five nodes are simulated for smart home and are connected with each other. IPs has
been assigned to all the nodes (Mininet Team, 2018).
e Virtual ethernet has been created to have communication between smart home and Kali
VM

10

https://github.com/noxrepo/pox.git

mininet.net import Mininet

mininet.node import Controller, RemoteController, OVSKernelSwitch
mininet.cli import CLI

mininet.log import setlLoglLevel, info

mininet.link import Intf, TCLink

def smartHomeTopo():
net = Mininet(controller=RemoteController, switch=0VSKernelSwitch, autoSetMacs=True)

info('*** Adding controller\n')
net.addController('c0', ip='127.0.0.1', port=6633)

info('*** Adding smart home devices\n')

lightl = net.addHost('lightl', ip='10.0.0.1/24")

light2 = net.addHost('light2', ip='10.0.0.2/24")

thermostat = net.addHost('thermostat', ip='10.0.0.3/24")
camera = net.addHost('camera', ip='10.0.0.4/24")

hub = net.addHost('hub', ip='10.0.0.5/24"') # Smart home hub

info('*** Adding switch\n')
sl = net.addSwitch('sl")

info('*** Creating links\n')
net.addLink(lightl, s1)
net.addLink(light2, sl)
net.addLink(thermostat, sl)
net.addLink(camera, sl)
net.addLink(hub, s1)

info('*** Adding virtual Ethernet pair to switch\n')
Intf('vethl', node=sl)

info('*** Starting network\n')
net.start()

info('*** Installing tools on smart home devices\n')

devices = [lightl, light2, thermostat, camera, hub]
for device in devices:
device.cmd('apt-get update')
device.cmd('apt-get install -y curl iperf dnsutils hping3')

info('*** Configuring routes on smart home devices\n')
lightl.cmd('ip route add default via 10.0.0.5")
light2.cmd('ip route add default via 10.0.0.5')
thermostat.cmd('ip route add default via 10.0.0.5')
camera.cmd('ip route add default via 10.0.0.5')
hub.cmd('ip route add default via 10.0.0.5')

info('*** Adding route on the hub to reach external network\n')
hub.cmd('ip route add 192.168.30.0/24 via 10.0.0.100")

info('*** Generating traffic to simulate smart home activity\n')
Simulate ICMP traffic

lightl.cmd('hping3 -1 10.0.0.2 -c 5 &")

thermostat.cmd('hping3 -1 10.0.0.4 -c 5 &')

Simulate HTTP/HTTPS traffic
light2.cmd('curl http://10.0.0.4 &")
camera.cmd('curl https://10.0.0.5 &')

Simulate DNS queries (assuming hub can resolve DNS queries)
thermostat.cmd('nslookup google.com 10.0.0.5 &')

Simulate TCP traffic with iperf
hub.cmd('iperf -s &')
lightl.cmd('iperf -c 10.0.0.5 -t 10 &')

Simulate UDP traffic with iperf
camera.cmd('iperf -u -c 10.0.0.5 -t 10 &')

info('*** Running CLI\n')
CLI(net)

info('*** Stopping network\n')
net.stop()

name == ' main
setlLoglLevel('info')
smartHomeTopo()

e To run the simulation run the script using python3 and it should connect the smart home
as below.

11

navya@navya:~$ sudo python3 smarthomel.py
*** Adding con ller

*** Adding smart home devices

*** Adding switch

*** Creating links

*** Adding virtual Ethernet pair to switch
*** Starting network

*** Configuring hosts

lightl light2 thermostat camera hub

*** Starting controller

co

*** Starting 1 switches

)

*** Configuring routes on smart home devices
*** Adding route on the hub to reach external network
*** Running CLI

*** Starting CLI:

mininet> |

To test if all devices are working as expected just run pingall in mininet command line

and result should show 0% drop in packets.

mininet> pingall

*** Ping: testing ping reachability
lightl -> light2 thermostat camera hub
light2 -> lightl thermostat camera hub
thermostat -> lightl light2 camera hub

camera -> lightl light2 thermostat hub
hub -> 1lightl light2 thermostat camera
*** Results: 0% dropped (20/20 received)
mininet> [JIx

As this smart home should be monitored by Suricata to check the interfaces of the
devices simulated run command ‘sh ifconfig’ as shown below (Mininet Team, 2018).

mininet> sh ifconfig
ens1l60: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.30.11 netmask 255.255.255.0 broadcast 192.168.30.255
inet6 fe80::20c:29ff:fe38:9d1lb prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:38:9d:1b txqueuelen 1000 (Ethernet)
RX packets 123 bytes 11973 (11.9 KB)
RX errors © dropped © overruns 0 frame 0
TX packets 173 bytes 17485 (17.4 KB)
TX errors @ dropped 0 overruns 0 carrier 0 collisions 0
device interrupt 46 memory 0x3fe00000-3fe20000

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmadk 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x1lO<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 2074 bytes 234118 (234.1 KB)
RX errors 0 dropped © overruns 0 frame 0
TX packets 2074 bytes 234118 (234.1 KB)
TX errors @ dropped 0 overruns 0 carrier 0 collisions 0

sl-ethl: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::bOfd:aaff:feS5b:bf09 prefixlen 64 scopeid 0x20<link>
ether b2:fd:aa:5b:bf:09 txqueuelen 1000 (Ethernet)
RX packets 26 bytes 1916 (1.9 KB)

flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::2c5b:f7ff:fecd:ede3 prefixlen 64 scopeid 0x20<link>
ether 2e:5b:f7:c4:ed:e3 txqueuelen 1000 (Ethernet)
RX packets 25 bytes 1846 (1.8 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 87 bytes 7556 (7.5 KB)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::1451:2fff:fe@0:6e5d prefixlen 64 scopeid 0x20<link>
ether 16:51:2f:00:6e:5d txqueuelen 1000 (Ethernet)
RX packets 26 bytes 1916 (1.9 KB)
RX errors © dropped © overruns © frame 0
TX packets 86 bytes 7506 (7.5 KB)
TX errors 0 dropped 0 overruns 0 carrier © collisions 0

flags=4163<UP, BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::fc87:41ff:feea:ca3e prefixlen 64 scopeid 0x20<link>
ether fe:87:41:ea:ca:3e txqueuelen 1000 (Ethernet)
RX packets 25 bytes 1846 (1.8 KB)
RX errors © dropped O overruns © frame 0
TX packets 86 bytes 7486 (7.4 KB)
TX errors 0 dropped © overruns @ carrier © collisions 0

12

sl-eth5: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet6 fe80::c047:d1ff:fee3:9334 prefixlen 64 scopeid 0x20<link>
ether c2:47:d1:e3:93:34 txqueuelen 1000 (Ethernet)
RX packets 25 bytes 1846 (1.8 KB)
RX errors © dropped 0 overruns 0 frame 0
TX packets 86 bytes 7486 (7.4 KB)
TX errors 0 dropped © overruns 0 carrier © collisions 0

veth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.100 netmask 255.255.255.0 broadcast 0.0.0.0
inet6 fe80::3084:71ff:fe2e:138 prefixlen 64 scopeid 0x20<link>
ether 32:84:71:2e:01:38 txqueuelen 1000 (Ethernet)
RX packets 76 bytes 6625 (6.6 KB)
RX errors © dropped 0 overruns 0 frame 0
TX packets 44 bytes 5416 (5.4 KB)
TX errors 0 dropped © overruns 0 carrier © collisions 0

vethl: flags=4163<UP,BROADCAST,RUNNING,MULXICAST> mtu 1500
inet6 fe80::447e:53ff:fel6:a629 prefixlen 64 scopeid 0x20<link>
ether 46:7e:53:16:a6:29 txqueuelen 1000 (Ethernet)
RX packets 44 bytes 5416 (5.4 KB)
RX errors © dropped 0 overruns 0 frame 0
TX packets 76 bytes 6625 (6.6 KB)

Based on the above results we could see 5 interfaces and virtual ethernet tunnels. These
five interfaces should be added in suricata.yaml file for monitoring.

To ensure smart home networks connectivity with ubuntu as well as kali VM we have
used virtual ethernet and IP forwarding. For which below changes are performed in
ubuntu machine.

The route should be added in kali VM as well.

8 Suricata Setup

To monitor the smart home interfaces open suricata.yaml file located at /etc/suricata
and add interfaces under ‘pcap’ section as shown below (docs.suricata.io, 2024):
ls

$
ion.config reference.config suricata bkup.yaml suricata.yaml threshold.config
. |

Cross platform libpcap capture support
pcap:

E interface: ensl60

- interface: -ethl

- interface: -eth2

- interface: -eth3
- interface: -eth4
- interface: -eth5
On Linux, wi tr to S5e (ure L1 use "buffer-size"
1 / i { t thi >thing bigger

Run pox controller and smart home network first. Later run Suricata using below
command and the output show that the ‘Engine is Started” meaning it is monitoring the
interfaces we have added.

13

navya@navya:~$ sudo suricata -c /etc/suricata/suricata.yaml --pcap

1: .
i: : X

e The attacks can be viewed in fast.log located at /var/log/suricata directory as below. To
test we added a rule to detect ICMP traffic in rules folder located at
/var/lib/suricata/rules and the output shows like below.

navya@navya: $ 1s

eve.json fast.log stats.log suricata.log suricata-start.log
navya@navya: $

WEVAECHEVAER $ sudo tail fast.log

08/02/2024-13:58:43.800402 [**] [1:1000001:1] ICMP Echo Request Detected [**] [
Classification: (null)] [Priority: 3] {ICMP} 10.0.0.4:8 -> 10.0.0.5:0
08/02/2024-13:58:43.804059 [**] [1:1000001:1] ICMP Echo Request Detected [**] [

e To capture the traffic that is necessary for ML model prediction below traffic rules are
added in suricata.yaml file to capture in eve.json logs located at /var/log/suricata
(docs.suricata.io, 2024) and it should look like below:
- eve-log:
enabled: yes
filetype: regular #regular|syslogjunix_dgram|unix_stream|redis

filename: eve.json
include the name of the input pcap file in pcap file processing mode
pcap-file: false
community-id: false
Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0
xft:
enabled: no
mode: extra-data
deployment: reverse
header: X-Forwarded-For
types:
- alert:
tagged-packets: yes
fields: [timestamp, src_ip, dest_ip, src_port, dest _port, proto, flow_id, in_iface,
event_type, alert.severity, alert.signature]
- frame:
disabled by default as this is very verbose.
enabled: no
- anomaly:
enabled: yes
types:
decode: no
stream: no
applayer: yes
#packethdr: no

14

- http:
extended: yes
- dns:
enabled: yes
query: yes
answer: yes
- tls:
extended: yes
- files:
force-magic: no
- smtp:
extended: yes
- ftp
-rdp
- nfs
- smb
- tftp
- ike
- dcerpc
- krb5
- bittorrent-dht
- snmp
- rfb
- sip
- dhep:
enabled: yes
extended: no
- ssh
- mqtt:
passwords: yes # enable output of passwords
enabled: yes
- http2
- pgsql:
enabled: no
passwords: yes # enable output of passwords. Disabled by default
- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values
- flow:
fields: [flow id, timestamp, flow_duration, protocol, src_ip, dest ip, src_port,
dest_port, bytes_toclient, bytes_toserver, packets toclient, packets_toserver, start, end,
age, state]
- netflow:

15

‘ enabled: yes

9 ML Integration
e In this next step we integrate ML model with Suricata. This is done by using python
scripting where eve.json file is parsed for necessary features.
e Save the script in a file and run it along with Mininet network and Suricata.
e The script is saved as ‘pythonmonitoring.py’ file.
e To run the script, use the command below and it should run with no errors.

e First all the libraries needed for script are imported.

e Model is loaded using joblib.

e Path for eve.json is written for accessing the logs along with fast.log.

e Interfaces that should be monitored are specified for better understanding.

e To analyse the CPU utilisation process ID of Suricata and python script are provided
which should be checked in your systems while running the scripts and change it
accordingly.

e To ensure the accuracy of model’s performance the mean values of the features are
used in case if the feature is empty from eve.json

import joblib
import numpy as np

import pandas as

import psutil

from datetime import datetime

from watchdog.observers import Observer

from watchdog.events import FileSystemEventHandler

Load the trained model
lgbm_model = joblib.load('lgbm _model_ top_ features regularized.pkl')

Paths to the log files
EVE_JSON _PATH = '/var/log/suricata/eve.json’
FAST LOG_PATH */var/log/suricata/fast.log"

x
Interfaces to monitor
INTERFACES = ["sl-ethl", "s eth2", "sl-eth3",

Track the initial position in eve.json
initial eve json_ position = ©

PIDs for resource monitoring
SURICATA PID = 3303
ML_SCRIPT _PID = psutil.Process().pid # Get the current script’'s PID

Mean values for features
mean =

83182525.9,
agnitue®: 13.12182,
eader_ length": 76705.9637,
38.4681213,
col type": 9.06568989,
124.668815,
: 181.963418,
: 124.691567,
6.23982356,
©.0964376,
1308.32257,
: 91.6073456,
"flow duration®: 5.76544939,
": ©.33035785,

e A function is used to initialise a data structure for extracting all features that are
necessary for models’ prediction.

16

"syn count": ©0.33035785,
"srate" 9064 .05724,
" 9064 .05724,
: 47.0949848,
33.3248065,
": 4.09E-05,
"weight": 141.51237,

¥

Initialize data structures for features
def initialize features():
return {

“flow _duration™”

"header_lengt

“"protocol_ type"

“duration”:

“rate" o

number
number
number
number
number
number
number

count
count

o Then all the statistical values of the features are calculated using the library Numpy

"number
"magnitue"
"radius": 0O,
“covariance": 0O,
"variance": 0,
"weight": 0,

}

Helper function to convert protocol name to number
def protocol to number(protocol):
protocol map = {
“icmp"

"tep'
"udp": 17,

"ipv6-icmp": 58,

Add more protocols if needed

return protocol map.get(protocol.lower(), 0)

Function to calculate header length
def calculate_header_length(log):
if 'ip' in log:
return len(log['ip'])
return 0

Function to calculate dynamic features
def calculate dynamic features(values):
if len(values) == 0:
return 0, 0, 0, 0,
magnitue = np.sum(np.abs(values))

o All the features are extracted from logs which will be used for calculating statistical

and dynamic features as below.

17

if len(values)

return 0, 0, 0, ©, ©
magnitue np.sum(np.abs(values))
radius np.sqrt(np.sum(np.square(values)))
covariance np.cov(values)
variance np.var(values)
weight np.mean(values)
return magnitue, radius,

Adjust weight calculation as needed

covariance, variance, weight

Function to extract features from a single log entry
def extract_ features(log):
features initialize features()

if in log:

log['event type']

‘event_type'
event_type

Handle flow
if event type
flow data

or event type ‘netflow’:
log.get('flow', log.get('netflow’', {}))

if 'start’ in flow data and ‘end' in flow_data:

start time datetime.strptime(flow data['start’'], "%Y-%sm-%dT%H:%M:%S.%f%z")

end time datetime.strptime(flow data['end’'], "%Y-%m-%dT%H:%M:%S.%f%sz")

flow duration (end_time start_time).total seconds()

features["flow duration”] flow _duration

protocol log.get('proto’)

if protocol:
features["protocol type"]

protocol to number(protocol)

bytes toclient
bytes toserver

flow _data.get('bytes toclient

flow data.get('bytes toserver
packets toclient flow data.get('pkts_toclient
packets toserver flow data.get('pkts toserver
total bytes bytes toclient + bytes toserver

total packets packets toclient + packets toserver
duration flow_duration

> 0:

total packets / duration
packets_ toserver / duration
packets toclient / duration

if duration
rate
srate
drate

else:
rate,

drate o,

toclient

0, ©

/ duration

srate,

drate
else:
rate,

packets

drate =

srate, =0, o, o
duration

te

srate

drate

total bytes

features|["
features|
features|[
features["
features|["

duration"]
rate”)] r
srate™]
GR-R -0 |
tot_size

]

Calculate header
header_ length
features|["header

length
calculate header
length"] header

length(log)
length

Compute inter-arrival times (IAT)
features["iat"] duration / total packets

if total packets > 0O else ©
Handle protocol-specific
elif event type ‘alert”’
proto log.get('proto’,
if proto "tcp':
features["tcp
tcp flags log.get('tcp flags'
if '"F' in tcp_ flags:
features(["fin_flag
‘S*" in tcgg flags:
features(["syn_ flag
R" in tcp flags:
features["rst flag
‘P' in tcp_ flags:
features["psh_flag

l1ogs

') .lower()

] += 1

number
if
number™
number”

number®

A

features|

TR

features|

E"

features|

Ccr

features["cwr

elif proto

features|

elif proto

in tcp flags:
"ack flag
flags:
"urg flag
flags:
"ece flag
flags:
flag

number"®
in tcp
number
in tcp
number
in tcp
number
= ‘http':
http"]
‘https’

+

18

elif proto ‘http':
features["http"]
elif proto ‘https"’
features["https"] +
elif proto ‘dns’
features["dns"] +
elif proto ‘smtp’:
features["smtp"] +
elif proto ‘ssh':
features["ssh"] +=
elif proto ‘dhcp’
features["dhcp"] += 1
elif proto == ‘'icmp':
features["icmp"] += 1
elif proto ‘arp’
features["arp"] +=
elif proto ‘telnet’
features["telnet"]
elif proto ‘irc’
features["irc"] +=
elif proto ‘ipv':
features["ipv"] +
elif proto ‘1lc’
features["11lc"] +=

Statistical calculations

features["tot sum"] = float(np.sum(features["tot si
features["min"] = float(np.min(features(["tot size"]
features["max"] = float(np.max(features["tot size"]
features["avg"] = float(np.mean(features["tot size"
features["std"] = float(np.std(features["tot size"]

ze"1))

)) if features["tot size"] else 0.0
)) if features["] else 0.0
1)) if features["] else 0.0
)) if features[" else 0.0

Additional derived features
features["number"”] = len([features["tot size"]])

Calculate dynamic features
features["magnitue"”], features["radius"], features["covariance"], features|["variance™], f
features([features["tot size"]])) X

Convert all NumPy types to native Python types
for key in features:
if isinstance(features([key], np.generic):
features[key] = features[key].item()

o Features are passed to model in the order of top 20 for prediction. Along with that time
taken and CPU utilisation of ML model as well as Suricata are calculated using psutil
library as below.

o By using watchdog, we ensured that the only latest entries of eve.json are parsed.

for key in features:
if isinstance(features([key], np.generic):
features[key] = features|[key].item()

Replace 0 values with mean values
for key in features:
if features[key] © and key in mean_values:
features[key] mean_values[key]

Select only the specified features in the required order
ordered_features =
‘iat': features['iat'],
‘magnitue’: features['magnitue’'],
‘header_length’ features|['header_length'],
‘rst _count': features['rst count'],
‘protocol type': features|['protocol type'],
‘avg': features['avg'],
max': features['max'],
‘tot_size': features['tot_size'],
‘urg count': features['urg count'],
‘variance': features|['variance'],
‘tot sum': features['tot sum'],
‘min’': features['min'],
‘flow duration’ features['flow duration’
'syn_count': features['syn count'],
srate': features['srate'],
rate': features|['rate'],
radius': features|['rjidius’
‘std’': features['std’'],
ssh': features['ssh'],
weight': features['weight'],

}

return ordered_ features

Function to predict and measure time

def predict(features):
df features = pd.DataFrame([features])
start_time = time.time()
prediction = l1gbm model.predict(df features)
prediction_time = time.time() - start_ time
return prediction, prediction_time

19

prediction_time = time.time() - start_time
return prediction, prediction time

Function to get CPU and memory usage
def get resource usage(pid):
process = psutil.Process(pid)
cpu_usage = process.cpu percent(interval=1)
memory info = process.memory info()
memory usage = memory info.rss / (1024 * 1024) # Convert to MB
return cpu_usage, memory_ usage

Monitor fast.log for alerts
class FastLogHandler(FileSystemEventHandler)
def init (self, eve json path):
self.eve json path = eve json path
global initial eve json position
with open(eve json path, 'r') as file:
file.seek(©, 2) # Move the cursor to the end of the file
initial eve json position = file.tell()

def on_modified(self, event):
if event.src path == FAST LOG PATH:
with open(FAST LOG PATH, 'r') as fast log:
lines = fast log.readlines()
if lines:
Trigger prediction on new alerts
self.process alert()

def process alert(self):
global initial eve json position
with open(self.eve json path, 'r') as file:
file.seek(initial eve json position)
new lines = file.readlines()
initial eve json position = file.tell()
for line in new lines:
log = json.loads(line)
if log.get('in iface') in INTERFACES:
features = extract features(log) X
prediction, prediction time predict(features)
prediction label = "Benign" if prediction[0] == "Benign" else "Attack"
suricata cpu, suricata memory = get resource usage(SURICATA PID)
ml cpu, ml memory get resource usage(ML SCRIPT PID)
print(f"Prediction: {prediction label}, Time taken: {prediction time} sec

def on_modified(self, event):
if event.src_path FAST _LOG_ PATH:
with open(FAST LOG PATH, 'r') as fast log:
lines = fast log.readlines()
if lines:
Trigger prediction on new alerts
self.process _alert()

process _alert(self):
global initial eve json_ position
with open(self.eve json _path, 'r') as file:
file.seek(initial eve_ json_ position)
new lines = file.readlines()
initial _eve json_position = file.tell()
for line in new_ lines:
log = json.loads(line)
if log.get('in_iface') in INTERFACES:
features = extract features(log)
prediction, prediction time = predict(features)
prediction label = "Benign" if prediction[®] == "Benign" else "Attack"
suricata cpu, suricata memory = get resource usage(SURICATA PID)
ml cpu, ml memory = get resource usage(ML SCRIPT PID)
print(f"Prediction: {prediction_ label}, Time taken: {prediction_ time} seconds™)
print(f“"Suricata CPU: {suricata cpu}%, Suricata Memory: {suricata memory} MB")
print(f"ML Script CPU: {ml cpu}%s, ML Script Memory: {ml_memory} MB")

Start monitoring fast.log
def start _monitoring():
event handler = FastLogHandler (EVE_JSON_PATH)
observer = Observer(
observer.schedule(event handler, path=FAST LOG PATH, recursive=False)
observer.start()
try:
while True:
time.sleep(1l)
except KeyboardInterrupt:
observer.stop()
observer.join()

Start monitoring
start _monitoring()

10 Testing through attack simulations
e Ensure Kali Linux and smart home network can ping each other. Ideally if all steps are
followed as mentioned above it should work.
e Next in Kali Linux install the necessary libraries to perform DDoS attack on mininet

e Then by using the below command you can perform the attack on smart home devices.
e TCP flood attack:

devices.

20

e ICMP flood attack:
Results should show the detection time, CPU usage as well as memory usage as below:
2rediction: Attack, Time taken: 0.001219034194946289 seconds

Suricata CPU: 3.0%, Suricata Memory: 873.25 MB

ML Script CPU: 1.0%, ML Script Memory: 159.44140625 MB
e DNS tunnelling attack:
e First install iodine in Kali VM
e Similarly install the same on any of the smart home device.

e C(Create a DNS server in kali VM

e Again, login to the same device where iodine is installed and run the command below:

e Now the tunnel is established, which can be viewed using netcat server of kali.

e By just creating a tunnel the Suricata will alert the DNS tunnelling and also the script

i‘

should detect the attack and provide the time taken for detection as well as CPU usage
details as below.

IPrediction: Attack, Time taken: 0.0056536197662353516 seconds \

2848 root 20 © 1744M 837M 7972 S 0.7 21.4 0:00.22 suricata -c /et
3133 navya 20 ©@ 631M 159M 53396 S 0.7 4.1, 0:01.39 python3 pythonm

e Mirai botnet attack was not directly conducted on smart home network, rather pcap file
of Mirai attack traffic was collected and necessary network features were extracted into
a csv file. For this download the file from
https://mcfp.felk.cvut.cz/publicDatasets/loTDatasets/CTU-loT-Malware-Capture-34-
1/ (Stratosphere IPS, 2023).

21

https://mcfp.felk.cvut.cz/publicDatasets/IoTDatasets/CTU-IoT-Malware-Capture-34-1/
https://mcfp.felk.cvut.cz/publicDatasets/IoTDatasets/CTU-IoT-Malware-Capture-34-1/

pyshark
pandas as pd
numpy as np
nest_asyncio
asyncio

asyncio.apply()
extract_features_from_pcap(pcap_file):

cap = pyshark.FileCapture(pcap_file)

features = []

packet in cap:
if "IP' in packet:
pkt_features = {}
ip_layer = packet['IP']
transport_layer = packet.transport_layer

pkt_features['flow_durat N float(packet.sniff_time.timestamp())
pkt_features['header ngth int(ip_layer.hdr_len)
pkt_features['protocol_type'] = ip_layer.proto

pkt_features|[ratior = float(packet.sniff_time.timestamp())

pkt_features['tot ‘] = int(ip_layer.len)
pkt_features['r pkt_features['tot_size'] / pkt_features|

if len(features) > @:
prev_pkt = features[-1]
pkt_features[’ t = prev_pkt['tot_size']l / prev_pkt['duration']
pkt_features['drate'] = (pkt_features['tot_size'] — prev_pkt['tot_size

) / (pkt_features['duration'] — prev_pkt
pkt_features['srate’'] = @
pkt_features[' te'] =0

if transport_layer == 'TCP
pkt_features['fin_flag_number"'] int(getattr(packet.tcp,
pkt_features|['syn_flag_number'] int(getattr(packet.tcp,
pkt_features['rst_flag_number"'] int(getattr(packet.tcp,
pkt_features['psh g_number'] int(getattr(packet.tcp,
pkt_features|['ac lag ber'] int(getattr(packet.tcp,
1
1

pkt_features|['e g ber* int(getattr(packet.tcp,
pkt_features['cwr_flag_number int(getattr(packet.tcp,

pkt_features['fin_flag_num 1
pkt_features['syn_f1 number']
pkt_features['rst_ L]
pkt_features['psh_ Li -

pkt_features['ack]
pkt_features|[* flag_nt 1
pkt_features['cw 1

pkt_features[co - _number"']
pkt_features['syn_count' pkt_features|[' _f number"']
pkt_features|['fin_count’ pkt_features|['fin_flag_number"']
pkt_features|[' count'

pkt_features[_cour pkt_features['rst number"']

pkt_features['ht = 'HTTP' in packet
pkt_features ([’ f 'HTTPS' in packet else @
pkt_features[’ : ‘DNS' in packet else @
pkt_features['t 2t ‘ NET' in packet else @
pkt_features['smtp *SMTP' in packet else @
pkt_features['ssh’ . * in packet else @
pkt_features|[’ : 'IRC' in packet else
pkt_features ([’ ' transport_layer
pkt_features['udp’ transport_layer
pkt_features['dhcp 'DHCP' in packet e
pkt_features['arp’ 'ARP' in packet else
pkt_features [f 'ICMP' in packet e
pkt_features|["' : 1 if 'IPV' in packet else
pkt_features[(] N

features.append(pkt_features)

cap.close()
df = pd.DataFrame(features)

ze'].sum()
1.min()
ze'] .max ()
size'].mean()
‘l.std()

sration'].diff().fillna(e)
*].count()
iat']l.abs().sum()
np.sqrt((df(‘iat'] sk 2).sum())
'] = df['iat'].cov(df['tot_size'])
= df['iat'].var()
df['tot_s 1.sum()

df[*label’'] = 1

df.to_csv('extracted

return df
pcap_file =

features_df = asyncio.run(extract_features_from_pcap(pcap_file))

Then this file was used as input for saved model for prediction. The attack traffic was
predicted correctly by the model as in below screenshots and during which the time
for prediction on each sample as well as the CPU utilisation is calculated.

Single prediction time: 0.006418 seconds
CPU usage for prediction: 28.30%

Memory usage for prediction: 0.03 MB

The output shows as below where we can see that Mirai attack as well as other network

traffic attacks were predicted.

std iat
612.0909633 0
612.0909633 0.00499916
612.0909633 0.00175285
612.0909633 0.08069396
612.0909633 0.00024915
612.0909633 0.00075102
612.0909633 0.00024891
612.0909633 0.00150108
612.0909633'7.867813110
612.0909633 0.00099015
612.0909633.059396982
612.0909633"2.079813957
612.0909633'.079935073
612.0909633'8.160090923
612.0909633'3.117368936
612.0909633 0.00149608
612.0909633 8.52114201
612.0909633 0.01673889
612.0909633 0.00074911
612.0909633 0.00049996

"
219 AONNESS A AANTANA4

number

magnitude radius

228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.0713211541.907783
228469 '86397.07132"1541.907783
228469 '86397.07132"1541.907783
228469 '86397.07132"1541.907783
228469 "86397.0713211541.907783
228469 "86397.07132"1541.907783
228469 '86397.0713211541.907783
228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.07132"1541.907783
228469 "86397.0713211541.907783
228469 '86397.071341541.90778¢
228469 '86397.07132"1541.907783
228469 '86397.07132"1541.907783
228469 "86397.07132"1541.907783

nanoacnPocnar nr45aFiE 44 anT700

covariance variance
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 "10.26317902
-166.06847 "10.26317902
-166.06847 "10.26317902
-166.06847 "10.26317902
-166.06847 "10.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 110.26317902
-166.06847 "10.26317902
-166.06847 "10.26317902

120 neoar Fin nenaaana

weight label
118451876 BruteForce
118451876 BruteForce
118451876 Recon
118451876 BruteForce
118451876 Recon
118451876 BruteForce
118451876 Recon
118451876 BruteForce
118451876 Recon
118451876 Recon
118451876 Recon
118451876 Recon
118451876 Recon
118451876 Recon
118451876 DoS
118451876 Mirai
118451876 Recon
118451876 Recon
118451876 Recon
118451876 Recon

1410AC1070 DriknACavran

Below is the script used for this prediction and evaluation of Mirai attack.

23

pandas as pd
joblib
time

rt psutil

model_filename = 'lgbm_m

_model_top_feature

loaded_model = joblib.load(model_filenam

new_csv_path = 'extracted_features.csv'
new_data = pd.read_csv(new_csv_path)

top_20_features =

weigh
new_data_top_features new_dataltop_20_features]

example_data = new_data_top_features.iloc[0:1]

initial_cpu_percent psutil.cpu_percent(interval=h
initial_memory_info psutil.virtual_memory()

start_time = time.time()

prediction = loaded_model.predict(example_data)
end_time = time.time()

elapsed_time = end_time - start_time

start_time = time.time()

prediction = loaded_model.predict(example_data)
end_time = time.time()

elapsed_time = end_time - start_time

final_cpu_percent = psutil.cpu_percent(interval=
final_memory_info = psutil.virtual_memory()

cpu_usage = final_cpu_percent — initial_cpu_percent
memory_usage = initial_memory_info.used - final_memory_info.used

tion time: {elapsed_time:.6f} seconds")
e cpu_usage: .2f}%"
print(f"M : {memory_usage / (1024 x 1024):.2f} MB")

predictions = loaded_model.predict(new_data_top_features)
new_datal['label'] = predictions

output_csv_path = X
new_data.to_csv(output_cs: ath, index:)

print(f"Predictions saved to {output_csv_path}")

[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1

[LightGBM] [Warning] feature_fraction is set=0.8, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.8
[LightGBM] [Warning] bagging_fraction is set=0.8, subsample=1.0 will be ignored. Current value: bagging_fraction=0.8
Single prediction time: ©0.006418 seconds

CPU usage for prediction: 28.30%

Memory usage for prediction: 0.03 MB

References

docs.suricata.io. (2024). 3. Installation — Suricata 7.0.2-dev documentation. Available at:
https://docs.suricata.io/en/latest/install.html [Accessed 6 August 2024]

Mininet Team (2018). Mininet =~ Walkthrough - Mininet. ~ Available at:
http://mininet.org/walkthrough/ [Accessed 6 August 2024]

Neto, E.C.P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R. and Ghorbani, A.A. (2023)
‘CICIoT2023: A real-time dataset and benchmark for large-scale attacks in IoT environment’,
Sensors, 23(13), pp.5941. doi: 10.3390/523135941

nikitastsinnas (2024). IDS-8. Available at: https://www.kaggle.com/code/nikitastsinnas/ids-8
[Accessed 6 August 2024].

research.google.com. (2023) . Google Colab. Available at:
https://research.google.com/colaboratory/faq.html#:~:text=Colab%20is%20a%20hosted%20J]
upyter [Accessed 13 July 2024]

24

https://docs.suricata.io/en/latest/install.html
http://mininet.org/walkthrough/

Stratosphere IPS. (2023) Aposemat Project: loT Malware Datasets. Available at:
https://www.stratosphereips.org/datasets-iot [Accessed 22 Jul. 2024].

25

