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Abstract 
Smart home devices and their integration with IoT has increased cyber-attacks 

significantly. Therefore, there is need for efficient Network Intrusion Detection systems 
(NIDS). Currently available IDS are not great because they produce number of false 
alarms and resource utilisation is high making them not suitable for smart homes where 
the computational power is limited. Hence, there is a need for Intrusion Detection Systems 
(IDS) that are quick in identifying attacks and use less computational resources. In this 
study, a hybrid machine learning model is integrated with Suricata to address the 
drawbacks of conventional IDS. Our model utilises the advantages of two algorithms, 
Random Forest (RF) for feature selection and LGBM (Lightweight Gradient Boost Model) 
for prediction. The models are trained on latest CICIoT2023 dataset and tested in a 
simulated smart home network by attack simulation. The enhanced model showed notable 
results especially with DDoS (Distributed Denial of Service), DNS tunnelling, and Mirai 
botnet attacks. Significant improvement in detection time and resource efficiency is 
observed. These studies provide notable advancement in IDS for real-time detections in 
resource constraint environments. Despite the success, the model needs performance 
improvement in few attack categories and analysis of commercial application is needed.  

 

1 Introduction 
 
Smart homes are becoming more popular these days and the reason for this is convenience. 
Humans like to have convenience and controllability on the devices. At present 360.72 million 
smart homes are observed as per statistics and is expected to increase by 86.74% by 2027. 
These smart homes have become smart because of the integration of IoT (Internet of Things). 
IoT is the concept where every device is connected to internet and smart home is just one of 
the applications of IoT (Alasmari and Alhogail, 2024). Smart homes have devices such as 
cameras, lights, fridge, thermostat, automatic door etc as in Figure 1 which are becoming IoT 
compatible. These devices communicate with each other by sharing information for effective 
working (Alghayadh and Debnath, 2020). Therefore, these devices are prone to risk as they 
deal with sensitive information over internet, and this motivated the researchers to analyse the 
security of smart home IoT devices. It is observed that the global security market of smart 
home has reached $4.3 billion from 2018 to 2022 which shows the importance of security 
(Alasmari and Alhogail, 2024). Providing security to smart homes is not simple as the security 
devices available in market are not compatible with IoT devices. Smart home does not have 
enough resources and even IoT devices are designed to work with less computational power. 
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Usually, security devices require significant resources to complete their latency-sensitive tasks. 
One more reason is that the devices in smart home are different from each other (In terms of 
hardware, software and protocols). Hence they demand specific security devices which makes 
it even more complicated to design computationally efficient security solution. Based on this 
we can say that traditional IDS cannot be used (Anthi et al., 2019). 

 
 Figure 1: Smart Home 

Traditional IDS are basically of two types, signature and anomaly based. Signature based 
IDS matches the network traffic patterns with already available signatures and alerts if there is 
a match thus having high accuracy. But there is no scope of detecting latest attacks as signatures 
will not be available. Whereas to detect new attacks anomaly-based IDS can be used, but they 
produce many false alarms. Additionally, traditional IDS are designed to work in high resource 
networks. Thus, an IDS should be designed specifically for smart home IoT network. This can 
be achieved with the help of ML (Machine Learning) techniques known to learn and predict 
with higher accuracies when trained with quality data. Employing these techniques can help 
with the diverse nature of IoT devices (Javed et al., 2024). Different attacks like DDoS, botnet, 
unauthorized access etc., were analyzed to create an IDS for smart homes by past researchers. 
They aimed to train ML models on variety of datasets for higher accuracy and precision. But 
they did not address the computational drawbacks of smart homes. Also, they did not validate 
their work in real-time or simulated smart home networks. 

In this paper the critical need for a better security solution in smart homes is addressed by 
integrating a hybrid ML model for a well-known open-source IDS Suricata. The algorithms 
are selected for better accuracy, speed and consume less resources in IoT environment. The 
main aim of this study is to use hybrid machine learning and implement it in simulated 
environment. In this study we answer the major concerns of smart homes by developing an 
affordable yet efficient model that can be used by security providers, smart home users and IoT 
manufacturers. Hybrid model using RF and LGBM, later integrating this with Suricata is 
proposed in this study after analysing the gaps in past research. The drawbacks of past research 
as in Rani et al., (2023), Khan and Sharma (2024) are addressed. Suricata is chosen for its 
higher accuracy and capability of handling network traffic (Andrew DeVito, 2024). Main 
objective of this research is to develop a lightweight model which is accurate, fast and 
computationally efficient. The successful implementation of this approach can provide a better 
security solution which will be adaptive and capable of identifying various cyber-attacks in the 
evolving smart homes. This research also helps the security researchers to emphasise more on 
the diversity of smart homes and to verify their models with real-time scenarios. 
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The basic problem with smart home devices is the heterogeneity meaning the hardware, 
software, protocols etc are different for each device. Thus, researchers identified the need for 
ML to solve the issue (Rani et al., 2023). But, resource constraints of smart home are neglected. 
Algorithms were selected based on accuracy rather than its computational efficiency. On the 
other hand, there was no practical implementation of the developed IDS in real world nor in a 
simulated smart home network. Considering all these research gaps below mentioned research 
question and objectives are addressed in this study.  
Research Question: “How can the integration of a hybrid machine learning model with 
Suricata enhances the accuracy, detection speed, and resource efficiency of network intrusion 
detection systems in a simulated smart home environment?” 
Objectives: 
• Training a hybrid ML model (RF and LGBM) using CICIoT2023 dataset. 
• Trained model should be integrated with Suricata. 
• Smart home should be simulated and monitored through ML integrated Suricata.  
• Analyse time of detection and resource efficiency of Suricata-ML by attacking the smart 

home. Results should be compared for both Suricata and ML and with previous work to 
ensure ML took less time and resources for attack detection. 
Therefore, in this study hybrid machine learning model, where layer 1 is trained using 

Random Forest algorithm known for its accuracy and features are extracted, layer 2 is trained 
using LGBM known to be computationally efficient, thus addressing the major concerns of IoT 
smart homes. Smart home network is simulated using Mininet. Suricata is configured to 
monitor and log the network traffic and ML model is integrated with it enabling real-time 
detection by analysing the network traffic. 
Limitations: 

1. Model trained on CICIoT2023 dataset meaning it might not work well for few attack 
types as the data in real world is vast. 

2. Performance of model might vary in real-world as we tested it on simulated network. 
3. Attacks performed during evaluation are considered as if the attacker knows the 

dataset. 
4. Computational power and speed will be different in real-world.  
5. Unable to perform few attacks as it is a simulated network. 
Further sections of paper are organised as, first section explains the literature review 

conducted on variety of papers by analysing the IDS in smart home, noting the limitations and 
taking ideas. In the Research Methodology section selection of ML algorithms, datasets used, 
dataset processing and how exactly the model is trained and implemented in simulated network 
is presented. Under Design Specification section the architecture of the proposed model and its 
components will be explained. In Implementation, the integration of model with Suricata, 
simulated setup and its real-time detection capabilities will be provided. Evaluation section 
provides comprehensive details about the model’s performance with respect to different 
metrics as well as speed and resource efficiency. Finally, Conclusion and Future Work gives 
summary of the model’s performance in simulated network and scope for future improvements. 

 

2 Related Work 



 

4 
 

 

2.1 DDoS detection using ML 
 
In this study authors performed a comparative analysis on different standard and boosting 
algorithms to enhance IoT security from DDoS attacks. Models’ accuracy was given paramount 
importance and based on the results boosting algorithms produced better accuracy which 
should be noted. Even though many datasets and algorithms were used nothing was done to 
enhance the resource efficiency (M, P and M, 2023). Similarly Das, Krishnamurthy and Das. 
(2022) also designed an IDS by comparative analysis. Instead of standard algorithms ensemble 
algorithms were used. Additionally, they used an IoT specific dataset and emphasised on false 
alarms. Feature selection techniques were put forth in this study. Ashraf and Elmedany (2021) 
did comprehensive research on DDoS attacks and types of algorithms that can be used. This 
paper gives detail knowledge about the past research, but no new ideas were implemented. In 
contrast to all the papers above, this paper used Deep Learning (DL) instead of just ML 
techniques for DDoS detection in IoT. This paper mentioned about the time efficiency and used 
BoT-IoT dataset, but resource constraints of IoT and real-time implementation is missing 
(Almaraz-Rivera, Perez-Diaz and Cantoral-Ceballos, 2022). In summary performance of 
different algorithms can be analysed from these researchers which helps us in choosing the 
right one for IoT environments. 

2.2 SDN based solutions 
 
Researchers of this study proposed an intrusion detection and prevention model using 
Software-Defined Networking (SDN) based deployment architecture specifically for smart 
homes. ‘For better accuracy better feature detection is needed’ was the motto of this paper and 
they evaluated the work using different models. Feature analysis was conducted from real smart 
home testbed and NSL-KDD dataset. Only accuracy was considered as evaluation metrics (Illy 
et al., 2022). On the other hand, this study was focused on DDoS attack detection using SDN 
unlike Illy et al., 2022. They extracted the traffic during DDoS attacks and used standard 
algorithms for training and also employed SNORT an IDS for better detections (Garba et al., 
2024). De Melo et al. (2022), also used SDN to manage and analyse the home network flow 
called 'FamilyGaurd’ emphasising dimensionality reduction using high end algorithms but are 
complex to deploy. Even though the work was comendable in all papers they used components 
which are computationaly intensive and can add extra time for detection, but using real data 
for training and common attacks on smart home were emphasised.  

2.3 Deep Learning models 
 
This paper emphasized on deep learning methods usage in smart homes and used only LSTM 
(Long short-term memory) as IDS. They proposed this model to ensure there is very less 
training time. There is neither model’s performance evaluation in real world nor focused on 
computational efficiency. But they have used real time data for training, therefore the model is 
reliable (Azumah et al., 2021). Unlike Azumah et al. (2021) research in this study focused on 
computational efficiency which was the major concern of smart homes. They used neural 
networks for feature extraction from a simulated network and used LSTM model for training. 
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They integrated firefly swarm optimization to reduce computational power and tested their 
model on public datasets (Alqahtani, 2022). But they evaluated for accuracy and F1-score 
rather than speed and computational power usage, thus not answering the main objective.  

This paper addressed the impact of high dimensional network traffic on IDS. They 
utilized deep learning techniques for dimensionality reduction by ensuring the depth of the 
layers are optimized. Necessity of using algorithms with reduced time complexity in smart 
homes was emphasized alongside false positive reductions (Hu and Hu, 2023). However, they 
did not use IoT specific dataset and not tested their work in simulated smart home. But their 
model provided 60% accuracy for few novel attacks which should be noted. In contrary to the 
above presented work, the researchers in this paper used the combination of ML and DL 
methods. LSTM, KNN (k-nearest neighbors) and DT (Decision Tree) were used together as 
IDS in smart homes. More details about overfitting/underfitting of models is provided which 
are advantageous for my work. Additionally feature selection and hyper parameter tunings 
importance is emphasized (Butt et al., 2022). Despite the model is trained and tested on IoT 
dataset there was no focus on real time evaluation. 

2.4 Machine Learning Approaches for IDS 
 
This study provides the details about various types of IDS available, and which can be used 
better in smart home environments. Along with that the authors also explains about the 
algorithms available and applicable for smart home IDS (Prasad et al., 2022). Apart from this 
knowledge nothing practical has been done hence this was used for initial understanding. In 
contrast (Khan and Sharma, 2024; Sarwar et al., 2023; Khare and Totaro, 2020) tried to develop 
an IDS using standard ML as well as DL techniques using IoT specific datasets and achieved 
very high accuracies above 99%. However, the time and computational concerns are ignored. 
Additionally higher training and testing accuracies may indicate overfitting of the model, and 
they have not evaluated the performance in any real-time smart homes. Similar approaches 
were used by (Rahim et al., 2023) in their study alongside a facial recognition model was 
established. But even their work did not answer the major concerns of smart home IoT devices. 

In contrary to the all above mentioned past research (Rani et al., 2023) and (Javed et al., 
2024) are the two researchers who focused mostly on the time efficiency of the model alongside 
the accuracy. Rani et al. (2023) captured traffic from real time smart home sensors for model 
training and used Raspberry Pi 4-based adversary for real time testing. Alongside accuracy and 
time efficiency, False Positive Rate (FPR) was also calculated. The model showed 99% 
accuracy meaning there might be overfitting, and the inference time was around 1.456 seconds. 
But the computational efficiency was not highlighted here, so to address this Javed et al. (2024) 
utilised many feature selection techniques like PCA and Chi-square alongside XGBoost 
providing tremendous results. Inference time of  the better performing model was 0.003 
seconds with FPR of 0.04%. But the computation power usage was way too high which was 
around 82.7%. Hence these two papers answered major concern’s but still there is a room for 
improvement. 

2.5 Signature and Behaviour-Based Models 
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Fairly a different approach was followed by Visoottiviseth et al. (2020) for IDS development 
in smart homes. The advantage of signature based, and behavior based are combined to develop 
a cost-effective model. But the CPU utilization of the model was 25.85% for few of the attacks 
and the model is not evaluated for the detection speed even though it was highlighted at the 
beginning of the paper. However, this motivated my work to utilize the benefits of signature-
based model’s accuracies. 

2.6 Protocol-Specific Model 
 
This paper was mainly focused on a single protocol used in IoT environment MQTT (Message 
Queuing Telemetry Transport). However, the important concepts such as over sampling and 
under sampling techniques for data balancing were covered. Additionally automatic feature 
engineering was used for improving models’ performance and they have emphasized reduced 
time on classifying attacks (Alasmari and Alhogail, 2024). However, the times calculated were 
for training and testing rather than the time for predictions. Many things such as computational 
efficiency and implementation was also ignored. But other techniques were scrutinized for my 
work.  

2.7 Specific Techniques and Applications 
 
The authors followed unique approach to address smart home attacks. Li et al. (2022) proposed 
a solution of using User-Command-Chain (UCC), where the model is trained using the three 
attack types collected from the traffic of smart home testbed. Raspberry Pi within the HAN 
(Home Area Network) was implemented for evaluating the model and achieved 98.8% 
accuracy, but it was only for three attacks. Additionally, an email notification to customer was 
implemented. But the algorithms used were standard and no emphasis on resource constraints 
were made. In similar fashion novel techniques like using a self-learning model was developed 
by Wang, Yang and Weng. (2023) by highlighting the impotance of telemetry data in smart 
homes. But both used transofrmer based models making them more computationally intensive 
and time taking. The evaluation of model was generic and nothing new.  

2.8 Feature selection 
 
All the three authors have analyzed the importance of feature selection for models’ accuracy 
and resource efficiency. Thus, this analysis provided us great insights on various feature 
selection techniques. Li, Hong and Yu. (2020) used Kolmogorov Smirnov (KS) test for 
selecting the features and implemented this technique in two layers of the proposed model. 
Similarly, Spanos et al. (2020) also extracted traffic and conducted time-series analysis for 
feature extraction using edge computing. PCA(Principle Component Analysis) feature 
selection was used. Even though every one used the general metrics for evaluation and ML/DL 
algorithms the feature importance method used by Gazdar (2022) was quite different and used 
public IoT dataset containing various attack types. In his work RF feature importance was used 
for better performance and proved ML outperforms DL, thus helping us to select RF and ML 
combination for my work.  
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Table 1: Summary of Literature 
Authors (Year) Aim of study Models Used Dataset Findings Drawbacks 

M et al. (2023) DDoS attacks in IoT RF, ADA Boost, XG 
Boost and more 

NSL-KDD, KDD-
CUP 99, UNSW-
NB15 CICDDOS-
2019 

Boosting algorithms 
performs better than 
standard algorithms 

Dataset is not IoT sepcific 

Das et al. (2022) DDoS attacks in 
smart homes Ensemble ML IDS 

NSL-KDD, UNSW-
NB15, CICIDS2017, 
DS2OS 

Ensemble models 
outperforms single models 
with 99.5 F1-score, 0.05 
false alarm rate 

No IoT-specific dataset, high 
computational complexity and 
no implementation 

Ashraf and 
Elmedany (2021) 

DDoS detection in 
IoT 

Review of various ML 
algorithms - 

Different ML algorithms 
efficiency on DDoS 
detections 

No novel techniques, only 
reviews existing work 

Almaraz-Rivera et 
al. (2022) 

DoS & DDoS 
detection in IoT 

Decision Tree and Multi-
Layer Perceptron Bot-IoT 

99% accuracy, data 
balancing techniques, 
evaluating more than 1681 
flows/sec 

Not real-time implementation 

Illy et al. (2022) Enhanced IDPS with 
SDN 

DT, KNN, RF, Bagging 
etc NSL-KDD Quality feature selection is 

highlighted 

Increased computational 
power with SDN, high 
complexity 

Garba et al. (2024) 
DDoS detection in 
SDN-enabled smart 
homes 

SVM, LR, DT, KNN Real-time data 
Real time detection facility 
and 99.57% accuracy with 
DT 

High computational needs, 
limited attack focus 

De Melo et al. 
(2022) 

Anomaly detection 
in home networks OCSVM, LOF, IF Self-generated Validated with Raspberry Pi, 

cost-effective 
High computational power, 
not diverse datasets 

Hu and Hu (2023) Hybrid neural 
network IDS 

Deep learning, fuzzy 
neural network (LSTM, 
CNN) 

KDDCUP99 94% detection accuracy for 
DoS, illegal remote access 

High initial computational 
power and non IoT data 

Alqahtani (2022) Hybrid IDS for 
smart homes LSTM, FSO, CNN CIDCC-15, UNSW-

NB15, NSL-KDD 
High accuracy, reduced 
computational overhead 

Complex model, non-IoT-
specific datasets 

Azumah et al. 
(2021) 

LSTM-based 
anomaly detection LSTM No dataset 

mentioned 
Adaptability to new threats 
and high dimensional data 

Resource-intensive, 
challenging to deploy 

Butt et al. (2022) Anomaly-based IDS 
for smart homes KNN, DT, LSTM CIC-IDS2022 High performance, feature 

selection importance 
Lack of hyperparameter tuning 
details, high complexity 

Rani et al. (2023) Accurate and time-
efficient IDS LR, RF, XGB, LGBM DS2OS Great accuracy and time 

efficiency 

Resource efficiency not 
calculated and not 
implemented the model 

Javed et al. (2024) Two-layered IDS for 
smart homes XGBoost Raspberry Pi-based 

99.50% accuracy for DoS 
and Man in the Middle 
attack 

Cloud dependency 

Rahim et al. (2023) Facial recognition 
for smart homes LR, XGB, GBC, CNN Labelled datasets 94% anomaly detection, 

88% facial recognition 
No real-time data, no focus on 
computational power 

Prasad et al. (2022) Survey on IDPS in 
smart environments 

Various IDS and IPS 
techniques - Overview of IDS needs and 

attacks on IoT Lacks implementation details 

Sarwar et al. (2023) IDS using multiple 
ML models 

RF, DT, ADA, LSTM, 
ANN UNSW BoT IoT 100% accuracy for RF, DT, 

ADA Focus on just botnets 

Khare and Totaro 
(2020) 

Ensemble learning 
for anomaly 
detection 

AdaBoost DS2OS Improved detection of 
multiple attack types 

No real-world testing, lacks 
computational efficiency 

Visoottiviseth et al. 
(2020) 

Low-cost IDPS for 
smart homes 

Signature and behaviour-
based detection - Efficient detection, web 

monitoring 
No detection speed, 
computational power  

Khan and Sharma 
(2024) 

Preventing 
unauthorized access 
in IoT 

XGBoost, SNN, 
GaussianNB, LR Aposemat IoT-23 99% accuracy for XGBoost, 

SNN 
No CPU usage and 
implementation 

Alasmari and 
Alhogail (2024) 

MQTT-based IDS 
for IoT smart homes 

Naïve Bayes, GLM, LR, 
RF, GBT 

MQTT-IoT-
IDS2020 100% accuracy with GLM No CPU and speed aspects 

Li et al. (2022) 
Anomaly-based 
NIDS for smart 
homes 

ML with UCC Simulated test bed 98.8% accuracy Not applicable for different 
devices 
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Wang et al. (2023) 
Transformer-based 
NIDS for smart 
homes 

Self-attention, 
Transformer model Ton IoT 97.95% binary, 95.78% 

multi-class 
High computational power, 
No real world evaluation 

Li et al. (2020) IDS for smart homes 
Supervised ML, low-
complexity feature 
selection 

- 98.7% and 98.99% accuracy 
with 29 and 9 features 

Limited attack types used for 
training 

Gazdar (2022) IDS for IoT-enabled 
smart homes 

RF, DL models, feature 
selection IoT/IIoT dataset Device-specific model, 

effective feature selection 
high initial computational 
power as DL used 

Spanos et al. (2020) Lightweight 
anomaly detection 

Statistical and ML 
techniques, edge 
computing 

- Improved detection time 
with edge computing 

Focus on time-series data, not 
real-world suitable 

 

2.9 Research Niche 
 
Significant gaps were identified from past research. Most of the study was focused on model 
performance. In few of the papers the IDS was trained for smart homes, but the datasets used 
were irrelevant. Algorithm selection was focused on accuracy and other ML metrics rather than 
the computational necessities. Most of the papers did not consider evaluating the model based 
on prediction time as it is important for the model to be quick enough in real-time. There is a 
lack of testing in simulated real-world IoT scenarios. However, few papers suggested the need 
of feature selection for lightweight models which can provide insights for my work. Thus, my 
research aims to use a hybrid ML model to address computational overhead and detection speed 
issues in IoT smart home environments. I will use a lightweight model utilizing the latest IoT-
specific dataset CICIoT2023. Suitable feature selection methods for dimensionality reduction, 
will be employed. My work will replicate an IoT smart home network, integrating the ML 
model with Suricata for real-time intrusion detection aiding the signature-based detection and 
testing against attacks by evaluating computational requirements for real-time application. 
 
3 Research Methodology 
 
In this section, the structure of the research methodology is described. There are five main 
stages to the methodology; First stage is pre-processing the dataset, where data-cleansing and 
balancing is performed for model reliability and accuracy. In the second stage, the dataset is 
transformed with the help of feature selection for better performance using RF (Random Forest) 
algorithm. The dataset resulted from feature selection is passed to the third stage, namely the 
training and testing stage. In this stage, LGBM was used to train and test for better accuracy 
and speed. Trained model is integrated with Suricata an IDS to monitor traffic in simulated 
smart home in the fourth stage. In the final stage the implemented model will be evaluated for 
FPR (False Positive Rate), detection speed and computational power usage in smart home 
network through attack simulation. 

3.1 CICIoT2023 Dataset 
 
The dataset used in this paper is CICIoT2023 which is one of the latest datasets by Neto et al. 
(2023). The dataset is created by analysing the traffic of various IoT devices including the 
devices from smart home such as indoor cameras, smart lights, coffee maker, TV, speakers etc. 
While data collection many attacks were performed. So, there are total of 33 attack scenarios 
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considered in this dataset which can be broadly classified into 8 classes benign, Mirai, spoofing, 
brute force, web-based, recon, DoS, and DDoS attacks. The column of the dataset contains the 
features extracted from network traffic like flow_duration, protocol_type, header_legnth, 
duration, tcp flags, rate, variance, magnitude etc which are captured from network pcap files 
(Thereza and Ramli, 2023). 

3.2 Dataset Preprocessing 
 
The dataset was pre-processed in two stages. In first stage by using python scripts, we analysed 
the dataset for any empty/NA/Missing values and removed them. Later this dataset is again 
processed in such a way that the 33 attack types are transformed into 8 higher level classes. 
Then the count of 8 classes were printed to understand the balance of data. Counts of each class 
are DDoS: 9361472, DoS: 2227900, Mirai: 725551, Benign: 302896, Spoofing: 134176, 
Recon: 97110, Web-based: 6850 and BruteForce: 3590. As these classes show imbalance by 
using techniques like under sampling and oversampling we balanced it. To reduce the classes 
with higher counts RandomUnderSampler is used and to increase the classes with lower counts 
Synthetic Minority Over-sampling Technique (SMOTE) is used. Now the balanced dataset can 
be used for efficient ML training. 

3.3 Machine learning Algorithms 
 
Machine learning classification algorithms are of two types. Single classifiers use one 
algorithm whereas ensemble methods use many models and provide the results by combining 
the outputs. Hence we can say that ensemble classifiers are accurate than single classifiers. 
Multiple decision trees are combined for better accuracy in ensemble methods. There are two 
main types of ensemble methods: bagging and boosting. Bagging algorithms constructs all 
models simultaneously and reduce variance, while boosting algorithms reduce bias by building 
each model sequentially based on error of the previous model (Rani et al., 2023). Therefore, 
ensemble models are used to reduce errors, hence in this paper two ensemble methods are used. 
Random Forest: RF is a bagging method where it uses multiple decision trees. These trees are 
created by splitting the dataset into many subsets and the model is trained on all these. 
Advantages of RF are that it works well with high dimensional data, it is accurate as it uses 
many trees and avoids overfitting. Additionally, it is very good for feature selection as it uses 
different features in each subset of data and provides accurate feature importance. But it takes 
significant resources to train which is a drawback. (Rani et al., 2023). 
LGBM: LGBM is a histogram-based algorithm. It also uses decision trees but carefully 
considers the splits. Main advantage of LGBM is that it is lightweight algorithm and known to 
work well with large data. Accuracy is also major benefit of it. LGBM can be used for 
classification and decision-making problems as it is accurate. Even compared with other 
boosting algorithms it is good. (Rani et al., 2023). 

3.4 Feature Selection 
 
Reducing features is very important as it helps with accuracy which was mentioned in past 
works. Also, by reducing features the burden on the algorithm can be reduced so the 
computational power will be reduced addressing our need. In this paper we used RF for feature 
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selection. As explained RF is known for its feature importance properties as it has built-in 
methodology for it. Therefore, by using this method we reduced the features from 46 to 20 
before training the LGBM model. The idea behind choosing RF for feature selection is obtained 
from the work proposed by Gazdar (2022). Hence by following this approach we reduced the 
computational usage on the final model. 

3.5 Training and Testing 
 
Now the dataset is split into 70-30 ratio after balancing and pre-processing. During split 
stratification is used to ensure proper proportions of classes. By doing so we can ensure that 
training and testing are conducted on different data and the performance can be evaluated 
accurately and we can rely on model. Process followed is shown in Figure 2.  
Phase 1: First RF model is trained and tested on dataset. While training this we measured 
accuracy by tuning few parameters like n_estimators, max_depth, min_samples_split, 
min_samples_leaf, boot_strap, random_state. Once the desired results are obtained the top 20 
features are printed out and passed on to phase 2. 
Phase 2: Similarly in phase 2 the top 20 features are used for training the LGBM model on 
80% of data. Even in this stage for better accuracy and detection speed, parameter tuning is 
considered and is done on number of leaves, maximum depth, learning rate, number of 
estimators, and regularization parameters (L1 and L2) (Rani et al., 2023).  
Cross-Validation: Cross validation is a technique where the dataset is divided into many splits 
or folds and these are used for training and testing the model. By doing so we can improve and 
understand the performance of the model. In addition to that we can know if the model is 
overfitting (Rani et al., 2023). In this paper we used StratifiedKFold method with 5 splits. 
 

 

Figure 2: Model Training process 

3.6 Evaluation Metrics 
 
Different metrics are chosen to evaluate the model’s performance. CICIoT2023 dataset is used 
to understand the efficiency of trained model. Detailed analysis is provided in evaluation 
section.  
Classification Report: We included metrics such as accuracy, precision, recall, F1-score to 
analyse model's performance for each class. 
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• Accuracy: Accuracy is the calculation of correctly classified attacks to the total number 
of cases (Alasmari and Alhogail, 2024). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

• Precision: Percentage of accurate prediction of an attack over total number of samples 
predicted as attacks (Alasmari and Alhogail, 2024). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

• Recall: Percentage of accurate prediction of an attack over total number of actual 
attacks (Alasmari and Alhogail, 2024). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

• F1 Score: Combination of precision and recall which explains if the model has correctly 
classified malicious input while minimizing false positives and false negatives rates 
(Alasmari and Alhogail, 2024). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

Confusion Matrix: It provides the detailed analysis on the correct and wrong predictions of 
every class. (Rani et al., 2023).  
ROC Curve and AUC: For every class Receiver Operating Characteristic (ROC) curve and 
Area Under the Curve (AUC) is found. These metrics are used for analysing the performance 
of classification models (Rani et al., 2023).  
Training and Testing Accuracy: To check if the model is overfitting we have analysed the 
accuracy for both testing and training data, and ensured the difference does not exceed 0.05.  
Time taken for single prediction: During evaluation to check the detection speed we used 
python library ‘time’. This is calculated for single prediction so that we will know if this model 
is fast enough.  
Model Saving and Loading: The trained model is saved for smart home implementation.  

3.7 Implementation and Integration with Suricata 
 
Firstly, by using Mininet a smart home network is simulated and ensured the traffic of smart 
home contains all the necessary features. In next step Suricata a well-known IDS is installed 
and configured to monitor all network interfaces of smart home. Later, the Suricata is integrated 
with the saved model. This is achieved by extracting appropriate logs from Suricata and feeding 
those as features to the ML model for analysis and prediction. The detailed integration 
mechanism is explained in the Implementation section. 

3.8 Evaluation and Analysis 
 
The proposed model is evaluated in the simulated smart home network. This is achieved by 
simulating attacks on the smart home and the ability of the ML model along with Suricata to 
detect the attacks is analysed. The model is evaluated in two steps: 

1. First the computational power used by Suricata alone to detect an attack is calculated. 
2. Then the time and computational power used by ML to detect an attack is calculated. 
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Thus, by comparing the computational power used by Suricata and ML, we want to show that 
ML takes very less resources and is fast. And we evaluated the performance by comparing with 
previous work and proving the proposed model’s applicability in smart homes. 
 

4 Design Specification 
 
In this section all components of the proposed model’s architecture are put forth as in Figure 
3. The ultimate goal is to develop an efficient model and integrate it with Suricata for network 
logs processing and detect attacks on smart home. This section provides detail explanation 
about the hardware and software of each component. Along with that the experimentation setup 
such as Virtual Machines (VM’s) configurations, smart home simulation will be explained. 

 

Figure 3: Architecture Diagram 

 
Host Machine: Mac M1 Pro 
MacBook Pro M1 was used for complete solution. It is of 8-core processor, 8GB RAM, and 
256GB SSD, running macOS Sonoma version 14.5. Anaconda Navigator (v2.0.4) was installed 
for python programming, and it comes with Jupyter notebook which is used for data pre-
processing and cleaning. Later, VMware Fusion (v13.5.0) is installed for VM’s setup. 

4.1 Dataset Preprocessing 
 
Jupyter Notebook (v6.3.0) is used for dataset cleaning and balancing. Many libraries were used 
for this such as: OS1 a built-in library of python is used for accessing environment variables of 
the host machine; Glob2 a built-in library which is used for matching paths to access dataset 
files; Pandas3 (v1.2.4) is used for dataset manipulation such as cleaning, processing etc.; Joblib4 
(v1.4.0) is used for saving the model; Imblearn5 (v0.12.3) is used for data balancing 
(imblearn.under_sampling, imblearn.over_sampling.SMOTE). 

4.2 Model Training 
 

 
1 https://docs.python.org/3/index.html 
2 https://docs.python.org/3/index.html 
3 https://pypi.org/project/pandas/ 
4 https://joblib.readthedocs.io/en/stable/ 
5 https://imbalanced-learn.org/stable/ 

https://pypi.org/project/pandas/
https://joblib.readthedocs.io/en/stable/
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Google Colab is a service which provides free access to computing resources like GPUs and 
TPUs. It is similar to Jupyter Notebook and can be used for ML (research.google.com, 2023). 
As this does not need any prior setup, we used this for model training. Libraries used during 
the model training were: Pandas (v2.0.3)  for dataset manipulation; scikit-learn6 (v1.2.2) for 
model building (RF), training, cross-validation; lightgbm7 (v4.1.0) for importing the LGBM 
algorithm and training; Joblib (v1.4.2) for model saving and pipelining; seaborn8 (v0.13.1) for 
creation of heatmap; matplotlib9 (v3.7.1) for graphical representation of models performance; 
time10 (built-in) is used to calculate time taken for prediction of single sample. 

4.3 Virtual Machine Setup 
 
VMware Installation: Installed VMware (v13.5.0) on host machine to have two VM’s for 
smart home and attacker machine. 

4.3.1 VM1: Kali Linux 
To attack the smart home network Kali Linux was installed, as it comes with many tools which 
are used for attacking. We installed few more tools for attacking. Nmap11 (v7.94SVN) is used 
for initial scan. Hydra12 (v9.5) is installed for performing Brute-Force attacks. Hping313 
(v3.0.0-alpha-2) is used to perform DDoS attacks on smart home via TCP flood as well as 
ICMP flood. Iodine14 (v0.7.0) is installed for DNS tunnelling attacks. 
Network Configuration: A Static IP is configured for Kali Linux for consist experimentation. 
Additionally, a route has been added to ensure Kali Linux can attack simulated smart home as 
the simulation was done using Mininet inside a different VM.  

4.3.2 VM2: Ubuntu Server 
The Ubuntu Server is chosen for the installation of Mininet a known network simulator and 
Suricata is also installed for monitoring smart home network. Ubuntu server is used as it is a 
light weight and easy to configure operating system, hence it was chosen for experimentation 
and lab setup. 
Tools Installed: 

• Suricata (version 7.0.6): It is an open-source IDS, IPS and network security 
monitoring engine which performs good. When compared with its competitors it is a 
lightweight and fastest system (Andrew DeVito, 2024). 

• Mininet (version 2.3.0): Mininet is a network emulator that helps building virtual 
network including hosts, switches, controllers, and links. Standard Linux network 
software is used by Mininet hosts. OpenFlow is supported by its switches for Software-
Defined Networking and flexible routing. It helps doing everything in a single PC or 
laptop (mininet.org, 2022).  

 
6 https://scikit-learn.org/stable/getting_started.html 
7 https://lightgbm.readthedocs.io/en/stable/ 
8 https://seaborn.pydata.org 
9 https://matplotlib.org 
10 https://docs.python.org/3/index.html 
11 https://nmap.org/book/toc.html 
12 https://hydra.cc/docs/intro/ 
13 https://linux.die.net/man/8/hping3 
14 https://gist.github.com/nukeador/7483958 

https://scikit-learn.org/stable/getting_started.html
https://seaborn.pydata.org/
https://matplotlib.org/
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Network Simulation: The smart home network is simulated in Mininet using python 
programming where 5 smart home devices, two lights, one camera, one thermostat and one hub 
were simulated as in Figure 3. A virtual ethernet connection was established between Mininet 
and Ubuntu host to ensure the connectivity. Additionally, static IP is assigned to the Ubuntu 
Server for consistency and virtual ethernet routes are configured for smart home connectivity.  
 

5 Implementation 
 
This section explains the detailed steps of model implementation along with the integration of 
ML with Suricata. 

5.1 Suricata 
 
Suricata is an open-source NIDS. It can act as IPS (Intrusion Prevention System) and network 
security monitoring engine based on its application. It uses multi-threaded architecture 
meaning it can process multiple tasks together making it faster in performance. It works by 
analysing the network packets and also it can be used for extracting logs, pcap files etc which 
will be useful for ML integration. (Andrew DeVito, 2024). 

5.2 YAML Configuration 
 
Suricata should be configured to monitor the smart home network and rules should be updated 
for signature-based detection. To achieve this suricata.yaml file should be configured. 
suricata.yaml file is the main file of Suricata, containing all the settings that needs to be 
configured as per the need (docs.suricata.io, 2024). Therefore, suricata.yaml file is modified to 
monitor each interface of the smart home under pcap section of the file. This ensures that 
network packets for these interfaces are monitored and captured for malicious activity 
verification. Packets captured are matched with the signature base for alerting. 

5.3 Integrating the ML Model with Suricata 
 
The integration of the trained model is conducted in two steps. In the first step we have 
configured Suricata to extract the necessary logs later these logs are passed on to model for 
prediction. 
suricata.yaml configuration: This file contains multiple sections which can be modified 
based on the users need. So we have modified few sections of this file to extract the logs based 
on the 20 features used for model training. These changes should be done manually and if we 
perform these changes all the network logs will be extracted into a file named eve.json. These 
logging changes should be performed under 'outputs' section of file (docs.suricata.io, 2024). 
All these 20 features are added by analysing the CICIoT2023 dataset. Few traffic flow logs that 
we added in 'outputs' section are flow_duration, http logs, dns logs, tls logs, smtp, mqtt and 
more which will be logged under eve.json. 
Model Deployment: To deploy the model we have saved the model during training. The logs 
extracted from eve.json are parsed and transformed into dataframes for each event and will be 
passed to model for predictions. 
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eve.json Parsing: Python programming was used to continuously monitor eve.json log file 
generated by Suricata in order to integrate ML model. Eve.json file was parsed, which has 
comprehensive network information captured as stated in suricata.yaml configuration, to 
extract the appropriate features for the model. To ensure real-time monitoring, only newly 
generated logs were handled. Watchdog library was used to monitor the real time logging. 
Feature extraction: First a python function was written to get the necessary features. This 
function works to analyse each line of eve.json file and extract features such as flow time, 
protocol type, header length, and different flag counts. Other features like magnitude, radius, 
covariance etc are calculated dynamically. Therefore, by doing this all features necessary for 
models prediction were extracted. 
Passing features to the Model: After the extraction of features from eve.json they were 
arranged into pandas dataframes and used as input for the pre-trained ML model which was 
saved using joblib library during the training. The collected features were given as inputs to 
the model for prediction for every new entry in the log file. 
Prediction Logic: As the model is trained it will predict the attacks based on the features 
extracted from the traffic captured in eve.json file. Additionally python libraries were used to 
predict time taken for predicting each log entry. This was calculated by analysing the time 
intervals before and after the model's prediction function was called. Both the prediction and 
time taken for prediction were printed together as the output. This real-time monitoring helps 
to identify suspicious activities without fail by ML model.  

5.4 Tools and Languages Used 
 
Several tools and libraries were used in the process of integrating the saved model with the 
Suricata. We have used python programming for the integration and to do the job of eve.json 
parsing. Detailed list of tools and the purpose of use are; Json15 (built-in) library is used for 
parsing the eve.json file generated by Suricata and extract the features in the format expected 
my ML; time (built-in) library provides various time related functions and we have used this 
to calculate the time taken for prediction for real-time analysis; Joblib (v1.4.2) is used to load 
the saved model and use it for real-time prediction; NumPy16 (v1.26.4) is used for computing 
the statistical features from the extracted features; Pandas (v2.2.2) is used for creation of data 
frames from the extracted features before feeding them to ML model; datetime17 (built-in) is 
used to calculate the durations and times from the log entries, such as calculating network 
flows; Watchdog18 (v4.0.1) is used to detect new entries in log files and trigger processing, 
parsing and predictions. Lightgbm (v4.4.0) is used for model working.  
 

6 Evaluation 
 
The model is tested in two stages. Firstly, it is evaluated using CICIoT2023 dataset for the 
general ML performance metrics such as accuracy, precision, F1-Score etc. In the next stage 
the model is tested for its real-time applicability after integrating it with Suricata by attacking 

 
15 https://docs.python.org/3/library/json.html 
16 https://numpy.org/doc/stable/user/absolute_beginners.html 
17 https://docs.python.org/3/library/datetime.html 
18 https://pypi.org/project/watchdog/ 
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smart home network. In this stage we evaluated detection time and computational efficiency. 
During the training the dataset is split into 70-30 and the trained model is evaluated on 30% 
unseen data. 
Confusion matrix: The results of confusion matrix are shown in Figure 4. Based on the results 
we can say that the model is performing quite good as the dark blue instances in the matrix 
shows the correct prediction numbers and remaining values explains the wrong predictions. 
Based on the data it can be said that DDoS, DoS and Mirai classes have very less mis-
predictions. But spoofing, Recon and Benign classes need little improvement. 
ROC AUC Curve: The area under the curve explains the accuracy for each class and it can be 
seen that the accuracy is 100% for DDoS, DoS and Mirai classes as in Figure 4. Even the other 
classes show higher accuracies which is greater than 90%. Thus, based on this data we can say 
that the overall performance of the model is quite good. 
 

 
 

 
Classification Report: The training and testing values for precision, recall and F1-score are 
extracted and represented in a table while evaluating the model on test data as in Table 2. All 
three parameters are showing 100% for DDoS, DoS and Mirai attacks. Even the other classes 
are showing better values which is above 80%. In addition to this the overall accuracy of the 
model was evaluated which was 91.99% for testing data and 95.44% for training data which 
means the models accuracy is also good and it is not overfitting as the difference between 
accuracies is not greater than 5%. But we can observe that there is still need of improvement 
in few classes.. 

Table 2: ML metrics for each attack class 

Class Precision Recall F1-score 
Training Testing Training Testing Training Testing 

Benign 0.91 0.87 0.95 0.92 0.93 0.90 
Brute Force 0.95 0.90 0.95 0.89 0.95 0.90 
DDoS 1.00 1.00 1.00 1.00 1.00 1.00 
DoS 1.00 1.00 1.00 1.00 1.00 1.00 
Mirai 1.00 1.00 1.00 1.00 1.00 1.00 
Recon 0.95 0.89 0.89 0.82 0.92 0.85 
Spoofing 0.96 0.91 0.89 0.83 0.93 0.87 
Web-based 0.88 0.80 0.96 0.90 0.92 0.85 
 

Figure 4: Confusion Matrix and ROC-AUC Curves 
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Error Rate: The difference between predicted and actual values is obtained from Mean 
absolute error (MAE). Square difference between predicted and actual values is mean squared 
error (MSE) and the average value of MSE is root mean squared errors (RMSE). These 
calculations help analyse the error-rates of the model and it should be less for better accuracy 
(Rani et al., 2023). These values are very less for the proposed model as shown in the Table 3 
explaining the models efficiency. 

Table 3: Error-Rate 
Algorithm MAE MSE RMSE 
LGBM 0.377 0.377 0.1943 

 
TPR vs FPR: True positive rate (TPR) and false positive rate (FPR) explains the rate of  
detections. Another name for TPR is sensitivity and recall (Rani et al., 2023). Table 4, shows 
the results of TPR and FPR. FPR is 0.0363 which is less.  
 

Table 4: TPR vs FPR 
TPR 0.9523 
FPR 0.0363 

 
Prediction Time: The time taken by model for single prediction was calculated during the 
model evaluation. By doing this we understood the speed of detection as this helps in real-
world implementation. Faster detecting IDS are always better for security so we selected this 
metric. The average time taken for making a single prediction per sample is 0.004501 seconds, 
thus making it suitable for real-time detections and efficient for implementation. 

To ensure the models real world applicability we implemented it in a smart home network 
for network monitoring. By performing different attacks, the model’s capability of detection is 
analysed. Additionally, the speed of detection and resource efficiency were calculated for each 
attack. Computational usage is calculated using both code as well as monitoring the resources 
in ubuntu server. 

6.1 Experiment 1: DDoS attack 
 
First experiment was conducted by performing DDoS attack on smart home from Kali VM. 
DDoS is chosen as it is well-known attack on smart homes in the recent days and many 
researchers focused on this particular attack (Ashraf and Elmedany, 2021). During the attack 
we observed that the ML took 0.001219 seconds for detection. The CPU usage of ML is 1% 
and Suricata used 3%. Even the memory usage is lesser in ML which is 159.44 MB and Suricata 
used 873.25MB. 

6.2 Experiment 2: DNS tunnelling attack 
 
Second experiment was DNS tunnelling on one of the smart home devices. The time taken for 
prediction is 0.0056 seconds. The CPU utilisation of ML and Suricata is 4.1% and 21.4% 
respectively. Memory usage is 873 MB by Suricata and 159 MB by ML. 
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6.3 Experiment 3: Mirai Botnet 
 
Third attack opted was Mirai botnet as this is also one of the popular attacks on IoT devices. 
Instead of direct attacking we downloaded a pcap file containing the traffic of Mirai attack 
from the Aposemat Project 2023 (Stratosphere IPS, 2023). From this pcap file we extracted the 
features that should be needed by ML for prediction. We analysed the CPU usage and time 
taken for detection. For this detection ML took 0.0064 seconds. Memory and CPU usage is 
0.03 MB and 28.3% respectively. From this it can be analysed that the model took little high 
amount of CPU for this experiment. This is all done in google colab. 
 

 

Figure 5: speed, memory and CPU utilization for experiments 

6.4 Discussion 
 
In this section the detailed discussion of the results will be provided. We aim to give complete 
idea on the results obtained by comparing the results with the previous papers and also with 
our own work. Both the strengths and weaknesses of the proposed model will be explained. 
Strengths: The model showed 91.99% accuracy for unseen data which is good when it is seen 
on its own. As we compared the training and testing accuracies we can say that the model is 
not overfitting and is performing good. This explains the model’s generalisability. The 
proposed model is tested in simulated smart home network by real-time attacks, and it has 
shown promising results as explained in the above sections. In addition, we have also tested 
the model by using a pcap file which is selected from entirely different project and 
environment. DDoS attack shows that the proposed model used 4% of CPU together Suricata-
ML which is very less and making this suitable for smart homes. The time taken for predictions 
is also very less and the maximum time taken is in Mirai attack which is 0.0064 seconds. When 
compared with the past research conducted by Rani et al., (2023) where LGBM model is used 
the time taken for predictions was 1.465 seconds meaning our model is better. We also 
compared the MAE and RMSE from Rani et al., (2023) even these results are better in our 
model. Even the Suricata's resource usage is very less which is not more than 25%. The other 
major benefit is the advantage of signature-based detection for higher accuracies. FPR of the 
proposed model is 0.0363 and it is around 0.04 by the best model proposed by Javed et al., 
(2024). The models proposed by Javed et al., (2024) took more than 80% of CPU but our 
models CPU utilisation along with Suricata has not exceeded 30%. Based on all these values it 
can be said that the proposed model has better accuracy, speed of detection and resource 
efficiency making it well suitable for real world application. 



 

19 
 

 

Weaknesses: Accuracy of most of the models from the past research was nearly 99%. So, 
when compared the model presented in this paper has showed less accuracy of 91.99%. In 
addition to that few classes were not performing well considering the precision, F1-Score and 
Recall like Brute Force, Benign etc. Thus, there is a need to improve all these aspects. Even 
though FPR is better than one of the previous papers it is not sufficient. It is always good to 
have lesser FPR rates for practical implementations. The computational power usage for Mirai 
botnet attack was little high at 28.3% as shown in Figure 5 and it should be reduced. The model 
is tested on a simulated smart home network, but it is not sufficient as there will be limitations 
in simulated networks. The model is trained on single dataset which is not sufficient as it will 
not contain all the attacks in the world. So, there are high chances that the model might fail in 
few attack scenarios. 
 

7 Conclusion and Future Work 
 
The primary question addressed in this study is on how we can use hybrid machine learning 
with Suricata to enhance the accuracy, detection speed and resource efficiency of an IDS. To 
answer this question, we have established few objectives like training an ML model, integrating 
it with Suricata and using this as IDS for a simulated smart home. Later we tested the model 
by simulating attacks on the smart home network. The developed model was almost successful 
in answering the established question. The ML model integrated with Suricata demonstrated 
notable accuracy, speed and resource efficiency. This was concluded through extensive 
evaluation including real-time attack simulations. Model evaluation has proved that it can 
predict most of the classes with accuracy above 95% and the detection speed was also very less 
during the attack simulation. In addition, resource utilisation was very less making the model 
suitable for smart homes. Compared to Suricata the model alone added very less computational 
power and memory.  

Despite the success there are few limitations which can be observed for the proposed 
model. The model seems to be less accurate for few classes. Furthermore, the overall accuracy 
of the model should also need betterment. The model is tested in the simulated network with 
attack simulations and also for malware pcap files, but there is need to evaluate model for more 
diverse datasets and attacks to understand its capability. Additionally, the network simulation 
should be of more diverse and there is a room to add more devices and protocols for better 
testing. Therefore, in future I would like to implement the model in an advanced simulated 
smart home or real smart home network. In addition to that, I would test the model’s 
performance on different datasets and on different types of attacks for generalizability. 
Adaptive learning techniques will be implemented on this model to make it more efficient and 
robust over time. This model can also be commercialized by creating a user interface and 
putting the entire solution in a package for smart home security system. This includes 
communicating with latest smart home companies and developing a simple easy to use security 
solution for non-technical users. In summary, the proposed model has provided significant 
improvement in IDS detection capabilities in smart homes making it more viable in resource 
restrictive environments with no cost. 
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