

Configuration Manual

MSc Research Project

Cyber Security

Suraj Suprabha Raju

Student ID: 23183462

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

……Suraj Suprabha Raju………………………………………………………………………

Student ID:

……23183462…………………………………………………………………………………..……

Programme

:

……MSc Cyber Security………………………………

Year

:

……2024………..

Module:

……MSc Research Practicum……………………………………………………….………

Lecturer:

……Khadija Hafeez………….…………………………………………………………….………

Submission

Due Date:

……12/08/2024………………………………………………………………………….………

Project

Title:

Enhancing Web Security: Detecting and Preventing Reflected Cross-

Site Scripting (XSS) Attacks

Word

Count:

……1037……………………………… Page Count: ……9…………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Suraj Suprabha Raju…………………………………………………………………

Date:

……12/08/2024………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Suraj Suprabha Raju

Student ID: 23183462

1 Introduction

This configuration manual will guide you to the entire information about the project. Project

name is “Enhancing Web Security: Detecting and Preventing Reflected Cross-Site Scripting

(XSS) Attacks”, which is a framework/model to effectively detect and prevent reflected XSS

attacks. Reflected XSS allows attackers to inject malicious scripts into the URL of legitimate

web servers. These scripts can play a major role to steal individual records, impersonate

customers, and perform distinctive malicious moves.

2 Hardware requirements

• System type: 64-bit Windows system, x64 based processor

• Processor: 11th Gen Intel(R) Core(TM) i5 @ 2.40GHz

• RAM: 8.0 GB

• Storage: 120GB SSD

3 Software requirements

Operating System: Windows 10

Languages: Python 3.12.5, Javascript and HTML, SQLLite

Framework: Python flask

IDE: Visual Studio Flask 1.91.1

4 Python Libraries

The following libraries are required to run this application in flask.

Flask

● re: regular expression library

● markupsafe

● sqlite3

● datetime

● Flask WTF

● Wtforms

2

Figure 1: Libraries

5 Implementation & Testing

After the installation of both visual studio code and python on your machine, we should make

sure that above said (see figure 1) python libraries are up to date on your system.

Figure 2: Function for checking XSS and sanitization of user input

Whenever a user gives input to this system this function (see figure 2) will compare with

regular expression patterns. These patterns are mainly designed to match and detect XSS attack

vectors. Because they will try to inject malicious scripts to exploit HTML tags. This function

detects the following.

3

Figure 3: User input - GUI

The above figure shows the home page of the model, where the user enters input through the

text box. This model is fully secured against reflected XSS attacks, SQL injection attacks, etc.

Figure 3: Real time monitoring - GUI

If a user provides malicious input to the web application, then this model immediately prevents

the same and stores its details into the log database as well as displays onto the real time

monitoring page.

4

Figure 3: Checking for reflected XSS attack in proposed system

As per the above figure 3, I have submitted an input to change the background colour of the

web page as yellow. The system has successfully detected the reflected XSS attack and the

same is displayed on the real time monitoring page.

For the comparison purpose I have developed a Vulnerable web application, which is

vulnerable to XSS and all other cyber attacks.

Figure 4: Checking for XSS attack in Vulnerable web application

Here I have submitted “<style> * { background-color: #FFFF00 } </style> “ input (Snyk, 2024)

to the vulnerable application. Then the color of the log monitoring page has been changed into

yellow. So that we can say that this application is vulnerable to XSS attacks. The same input

was given to the proposed system (see figure 3), which successfully detected & prevented

reflected XSS attacks.

5

Figure 5: Testing of the proposed system by Burp suite Professional tool

First of all, I have tested whether this application has reflected XSS vulnerabilities or not. I

Turned on the intercept feature in the Burp Suite tool and submitted the text “welcome” into

the web application. This user input is forwarded into the repeater and intruder of this tool.

Figure 4 shows the response part of the repeater does not have the user input, which is

“welcome”. So, the reflected XSS vulnerability is not present in this application.

6

Figure 6: Testing of the proposed system by Burp suite Professional tool

Used a payload set (Riodrwn Rio D. 2021) of 6613 scripts to attack the proposed system

through the intruder feature of the burp suite tool.

Figure 7: Testing Results - Burp suite Professional tool

Figure 8: Live monitoring page showing the detected XSS attacks.

After the successful attack implemented by the Burp Suite tool, only the XSS attacks detected

are shown in the live monitoring page. This helps the admin find out and filter the XSS attack

payload. As per the above results, the proposed system was successfully detected and prevented

the whole attacks with less response time. Size of the dataset (Riodrwn Rio D. 2021) was

6613. Logs regarding the detected attacks have been stored into the logs database and displayed

onto the real time monitoring page.

7

Figure 9: Testing - OWASP ZAP tool

During this testing using the OWASP ZAP tool, the following vulnerabilities were present in

the system.

● CSRF token was missing in the HTML submission form. So there was a chance for the

Cross site request forgery attack.

● The anti-clickjacking header was missing, so there was a possibility of anti-clickjacking

attacks.

I have fixed the above vulnerabilities by implementing both CSRF token and Content Security

policies (CSP). The CSRF token prevents any unauthorised commands being executed by any

other actor on behalf of the user. I have implemented Content Security policies for preventing

the anti-clickjacking attacks. The Content Security policies (CSP) will prevent the anti-

clickjacking attacks and other kinds of attacks including XSS attacks.

Again I had conducted another testing for finding the vulnerabilities.

8

 Figure 10: Another Testing - OWASP ZAP tool

In this testing, there was another vulnerability, which is “cookie without Same attribute”. So

there was a chance of a cross site request forgery attack. Here I have implemented CSRF

protection by setting the same site attributes for the session cookies. It ensures that cookies

are only transmitted via HTTPS which ensures confidentiality and authenticity of the input

(Amal Shaji. 2022).

Figure 11: Scanning - OWASP ZAP tool

9

Figure 12: Testing Results - OWASP ZAP tool

To fine tune the results I did multiple sample testing in order to make my proposed system a

secured one against not only reflected XSS attacks but other attacks too. Currently we can see

an alert raised for both http header and CSP header (as seen in figure 12), as it is running on

the Python flask and hosted on the local host system.

References

Amal Shaji, 2022. CSRF Protection in Flask. [Online] Available at:

https://testdriven.io/blog/csrf-flask/ [Accessed 30 July 2024].

Snyk, 2024. Cross-site scripting (XSS). [Online] Available at: https://learn.snyk.io/lesson/xss/

[Accessed 3 August 2024].

Riodrwn Rio D. 2021. Cross Site Scripting (XSS) Vulnerability Payload List. [Online]

Available at: https://github.com/payloadbox/xss-payload-list/tree/master/Intruder [Accessed 1

Aug 2024].

