*

N
National
College o

[reland

Configuration Manual

MSc Research Project

Cyber Security

Suraj Suprabha Raju
Student ID: 23183462

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

“
\ National

National College of Ireland College of
MSc Project Submission Sheet [reland
School of Computing
Student = ... Suraj Suprabha RajU......ccceiiiiiiic e
Name:
Student ID: ... 23183462, e e e e e g reen
Programme MSc Cyber Security......cccocevvvevieeciiecieenen, Year ... 2024...........
Module: ... MSc Research PractiCuUmi.......ccocuviiciiii e
Lecturer: ... Khadija Haf@ezZ.......coooe i e
Submission
Due Date: ... 1270872024 ...t
Project Enhancing Web Security: Detecting and Preventing Reflected Cross-
Title: Site Scripting (XSS) Attacks
Word
Count: ... 1037, Page Count: O

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ... Suraj Suprabha Raju.......cocveiiiiiiiie e
Date: = ... 1270872024 ...t et

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Suraj Suprabha Raju
Student ID: 23183462

1 Introduction

This configuration manual will guide you to the entire information about the project. Project
name is “Enhancing Web Security: Detecting and Preventing Reflected Cross-Site Scripting
(XSS) Attacks”, which is a framework/model to effectively detect and prevent reflected XSS
attacks. Reflected XSS allows attackers to inject malicious scripts into the URL of legitimate
web servers. These scripts can play a major role to steal individual records, impersonate
customers, and perform distinctive malicious moves.

2 Hardware requirements

* System type: 64-bit Windows system, x64 based processor
* Processor: 11th Gen Intel(R) Core(TM) i5 @ 2.40GHz

* RAM: 8.0 GB

* Storage: 120GB SSD

3 Software requirements

Operating System: Windows 10

Languages: Python 3.12.5, Javascript and HTML, SQLLite
Framework: Python flask

IDE: Visual Studio Flask 1.91.1

4 Python Libraries

The following libraries are required to run this application in flask.
Flask
e re: regular expression library
markupsafe
sglite3
datetime
Flask WTF
Wtforms

from flask import Flask, request, render_template_string, jsonify, make_response
import re

from markupsafe import escape

import sglite3

from datetime import datetime

from flask_wtf import FlaskForm

from wtforms import StringField, SubmitField

from wtforms.validators import DataRequired

from flask_wtf.csrf import CSRFProtect

Figure 1: Libraries

5 Implementation & Testing

After the installation of both visual studio code and python on your machine, we should make
sure that above said (see figure 1) python libraries are up to date on your system.

def check_xss(input_text):
xss_patterns = [

P'<. FPscript. > *¥2¢/ ¥ Pscript. ¥,
r'<.¥Pstyle. . ®*?> ¥/ ¥ Pstyle. . *2> ",
r'<.*?img.*?src.*?=.*?javascript:.*?>",
P'<.¥Piframe.*?> . *¥?¢/ . *¥Piframe.*¥?> ",
r'<.*?a.*?href.*?=_*?javascript:.*?>",
r'javascript:.*®',
r'(<|%3C) . *Pscript.*?(>|%3E) ",
r'(<|%3C).*Pimg. *? (> |%3E).*?src=.*?javascript:.*? (> |%3E)"’

for pattern in xss_patterns:
if re.search(pattern, input_text, re.IGNORECASE):
return "XSS Detected!"
sanitized_input = escape(input_text)
return "No XSS Detected."”

Figure 2: Function for checking XSS and sanitization of user input

Whenever a user gives input to this system this function (see figure 2) will compare with
regular expression patterns. These patterns are mainly designed to match and detect XSS attack
vectors. Because they will try to inject malicious scripts to exploit HTML tags. This function
detects the following.

<« G @ 127.0.0.1:5000 T m 9 [s]

Reflected XSS Detection & Prevention

Enter Text: [hsllo H Submit l

No XSS Detected.

View Logs

Figure 3: User input - GUI
The above figure shows the home page of the model, where the user enters input through the
text box. This model is fully secured against reflected XSS attacks, SQL injection attacks, etc.

Figure 3: Real time monitoring - GUI

C ® 127.0.0.1:5000/monitor g w0} e
XSS Logs Monitoring
Timestamp Input Result
-08- <scri —taxt/iavaserintalert('xss'):
{2)(6)%4;20:23:42.495068 <f§§f§gpe fextiavascriptalert(xss): XSS Detected!
-08- <scri —ttext/iavascrint™alert('xss"):
{ZJ?L%%IO:(%SQS.SOBSSI 5555;?96 fextlavaseriptalent(ss: XSS Detected!
-07- <scri —text/iavascrint™alert('xss'):
28%10:26:53.216765 <f§é§§°$gpe fextiasascrptalen (s XSS Detected!
-07- <scr —text/iavaserint=alert("xss'):
igﬁzg:gmm.mwm <?§§f§gpe fextiavaserptalert(xss): XSS Detected!
-07- <scri —taxt/iavaserint>alert(xsg):
gg%ﬁ£;9:46.529435 <s%§c1;?;tt>ype fextiavasCrptalert(xes): XSS Detected!
-07- <scri —ttext/iavascrint™alert('xss"):
53%0;9;21.176245 <«§§c1;?;t-t>ype fextiavascriptaleri(xss: XSS Detected!
-07- <scr —text/iavascrintalert('xss'):
égﬁzt);22;53.468123 <?§$§5°§gpe fextiasascrptalen (s XSS Detected!
-07- <scri —taxt/iavascrint™alert('xss'):
53%120:22:04,003194 <_?§§f§gpe fextiavascrptalert(xss): XSS Detected!
07 cser ottt alert (s
ggﬁ%z:mmsws <?§clf$gpe fextiavascrptalent(s: XSS Detected!
-07- <scri —text/iavascrint=alert('xss'):
?g%‘;1():;5:56.031684 <?§é§§°$gpe fextiavascrptalen (s XSS Detected!

If a user provides malicious input to the web application, then this model immediately prevents
the same and stores its details into the log database as well as displays onto the real time
monitoring page.

v @ Reflected XSS Detection & Prev X 4+ = a]

<« C @ 127.00.1:5000 * =m0

Reflected XSS Detection & Prevention

Enter Text: |<style> * { background-color: #FFFF00 } </style> || Submit
XSS Detected!

View Logs

X

v @ XSS Logs (Real-time Monitorin: X =

c 0

127.0.0.1:5000/monitor

XSS Logs Monitoring

Timestamp
2024-08-
11T23:36:53.647749

2024-08-

11T02:24:22.003937
2024-08-
11T02:23:51.333169

23:13.990896

2024-0
11T01:53:34.020270
2024-08- .
11T01:33:08.090555
2024-08- .
11T01:33:04.647957

<style> *
<style> * {
<style> * {
<style> * |

<script type="text/javascript’

Input

<style> * | background-color: #FFFF00 | -

<script type="text/javascript'>alert('xss');-

<script type="text/javascript">alert('xss');«
<script type="text/javascript">alert('xss");-

<script type="text/javascript">alert('xss');-

script>alert('XSS')</script>

script>alert('XSS')</script>

| background-color: #FFFF00 | <
background-color: #FFFF00 | <
background-color: #FFFFO00 | <
background-color: #FFFFO00 | -

alert('xss');

script>

script>

script>

script>

script>

Figure 3: Checking for reflected XSS attack in proposed system

style>

style>
style>
style>

style>

&

Result
XSS
Detected!
Xss
Detected!
XSS
Detected!
Xss
Detected!
XSS
Detected!
XSS
Detected!
XSS
Detected!
Xss
Detected!
Xss
Detected!
XSS
Detected!
XSS
Detected!
XSS
Detected!

As per the above figure 3, | have submitted an input to change the background colour of the
web page as yellow. The system has successfully detected the reflected XSS attack and the
same is displayed on the real time monitoring page.

For the comparison purpose | have developed a Vulnerable web application, which is
vulnerable to XSS and all other cyber attacks.

<« (¢}

Vulnerable application

Enter Text

<style> * { background-colo] | Submit

View Logs

© 12700.1:5000 * WD @

C @ 127.00.1:5000/monitor e

Logs Monitoring

Timestamp

2024-08-11 02:19:23.314013
705 No XSS Detected.

2024-08-11 02:18:33,741
2024-08-11 02
2024-08-11 02
2024-08-11 02:15:5
2024-08-11 02:15:3
2024-08-11 02:15:22,
Go Back

Result
XSS Detected!

Input

XSS Detected!
XSS Detected!

Figure 4: Checking for XSS attack in Vulnerable web application

Here I have submitted “<style>* { background-color: #FFFF00 } </style> * input (Snyk, 2024)
to the vulnerable application. Then the color of the log monitoring page has been changed into
yellow. So that we can say that this application is vulnerable to XSS attacks. The same input
was given to the proposed system (see figure 3), which successfully detected & prevented

reflected XSS attacks.

Bup Bt Inwude Repeate Vew Hep P Sus - =] *
Darocans Target Inuer Fecerwe Cotsnormma Sequencer Decoder Comparer Logger Crganizer [[B sewen @) Semege
1x + o1
[ses G} Targets tpyn27.00.05000 P wren (3)
a:- - =
Inspector 'n I T e x e
Request Respomse
— R R @ v = Sreny s Rarder e»= , — - §
B
Flaguedt quary pacameters - =
Ragues body paramems w
B
Racorss coshns v =
3
=64} AppleWelKin/ 537,36 Reguert Fasders -
f537.30
sl dumd , appl dcon 1, gm0, 8, image/ svif, image/ wabp Raiponss hasden 5 -
cab i/ signed-exchange veb1, q=0.7
. = o Enter Teat: <ingus ® * mama=tusar_input s
e geip, deflave, ba Cingut ype=trubmit® values*Tubmis >
Famnesnivnc Rirpcalion / Larma
wren_inguer swalcane ‘
">
O@c ongrigrs | (DB €[[wecomd o macras
Dons S48 Bynes | 151 mills

Figure 5: Testing of the proposed system by Burp suite Professional tool

First of all, I have tested whether this application has reflected XSS vulnerabilities or not. |
Turned on the intercept feature in the Burp Suite tool and submitted the text “welcome” into
the web application. This user input is forwarded into the repeater and intruder of this tool.
Figure 4 shows the response part of the repeater does not have the user input, which is
“welcome”. So, the reflected XSS vulnerability is not present in this application.

Burp Project Intruder Repeater View Help - O
Dashboard Target Intruder P C S ,O Search @ Settings
Decoder Comparer Logger Organizer Extensions Learn
g % 2 x + Jo I
Positions Payloads Resource pool Settings
(®) Payload sets Start attack

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab.
Various payload types are available for each payload set and each payload type can be customized in different ways.

Payload set 1 v Payload count 6613

Payload type: | Simple fist o 1l Request count 6613

Payload settings [Simple list]

This payload type lets you configure 2 simple fist of strings that are used as payloads.

Paste
Load .
Remove

Clear

Deduplicats

Add

Add from fist

Event log (1) *

@ Payload processing

You can define rules to perform various processing tasks on each payload before it is used.

Allissues (2) ®

“-prompt(g)-"

-prompt(g)-'

“a=prompta{)//

‘a=prompta(y//

-eval(“window[pro'%28'mpt](8)")-"
“-eval("window[pro%2B8'mpt](8)")-"
“onclick=prompt(8)> " @xy

Pt(8)> <svg/onload=p
<image/src/onerror=prompt(8)>
<img/src/onerror=prompt(g)>

“onciick=p pt(8)>_

@® Memory: 2033MB

Figure 6: Testing of the proposed system by Burp suite Professional tool

Used a payload set (Riodrwn Rio D. 2021) of 6613 scripts to attack the proposed system
through the intruder feature of the burp suite tool.

Attack Save 3 tp//127.00.1:5000 - [m] X
Q 3. Intruder attack of http://127.0.0.1:5000 Anack v Save v ®
Results Positions Payloads Rescurce pool Settings
V' Intruder attack results filter: Showing all items
Request Payload Status code Response_ Emor Timeout Length Comment
3 “;a=prompta()// 400 57 479
4 2=promptal/; a0 a0 4
5 -eval{"window[pro %528 mpt_. 400 58 47
6 -eval"window[pro9%62B'mpt_ 400 74 4m
7 “onclick=prompt(8)>"@xy 400 62 i
8 “onciick=prompt(8)> <svg/o.. 400 68 4m
9 <image/src/onemor=prompt_ 400 70 'y}
10 <img/src/onemor=prompt(g_. 400 ag 479
1 <image src/onemror=prompt_. 400 0 v}
12 400 55 479
3 <image src =g onerror=pro_. 400 56 47
T <img src =q onerrar=promp... 400 54 Fr]
15 </scrip</script>t> <img src . 400 52 a7
16 <svg onload=zlen{1)> 400 49 479
17 “><svg onload=alert| 400 59 470
18 “onmouseover=alert 400 66 479
19 “autofocus/onfocus=ale: (. L) 479
20 “-alert{1 400 6 479
2 400 70 47
2 / 400 -] 479
23 ipt> <svg onload=alert(_ 400 B 47
24 <x contenteditable onblur=a_ 400 n 470
25 T amn
2% <x oncopy=slent(1)>copy th_ 400 81 %
27 <x oncontextmenu=alert(1).. 400 76 479

Figure 7: Testing Results - Burp suite Professional tool

v @ XS5 Logs (Real-time Monitorine X 4 = a X
C @ 127.0.0.1:5000/monitor * W 30

2024-08-11T01:33:08.090555 <script=alert('XSS')</script> XSS Detected! =
2024-08-11T01:33:04.647957 <script>alert("’XSS')</script> XSS Detected!

2024-08-11T01:33:06.870107 <script>alert("XSS')</script> XSS Detected!

2024-08-11T01:33:08.656110 <script=alert(’XSS')</script> XSS Detected!

2024-08-11T01:33:08.411416 <script>alert('XSS')</script> XSS Detected!

2024-08-11T01:33:04.157705 <script>alert('XSS")</script> XSS Detected!

2024-08-11T01:33:08.347503 <script=alert('XSS')</script> XSS Detected!

2024-08-11T01:33:08.200490 <script=alert("XSS')y</script> XSS Detected!

2024-08-11T01:33:07.338815 <script>alert(" rpt> XSS Detected!
2024-08-11T01:33:06.062890 <script>alert(" script= XSS Detected!
2024-08-11T01:33:07.181614 <script=alert('XSS')y</script> XSS Detected!
2024-08-11T01:33:07.479574 <script>alert("> </script> XSS Detected!
2024-08-11T01:33:06.273642 <script=alert(’XSS')</script> XSS Detected!
2024-08-11T01:3. 164618 <script>alert('XSS")</script> XSS Detected!

2024-08-11T01:33:06.551839 <script>alert('XSS')</script> XSS Detected!
2024-08-11T01:33:05.816711 <script=alert('XSS'")</script> XSS Detected!
2024-08-11T01:33:06.551839 <script=alert("XSS')y</script> XSS Detected!
2024-08-11T01:33:06.831402 <script>alert("XSS')</script> XSS Detected!
2024-08-11T01:33:06.615306 <script=alert('XSS')</script> XSS Detected!

2024-08-11T01:33:06.679318 <script>alert('XS'

</script> XSS Detected!

2024-08-11T01:33:06.551839 <script>alert("XSS')</script> XSS Detected!
2024-08-11T01:33:05.918624 <script=alert('XSS")</script> XSS Detected!
2024-08-11T01:33:05.197416 <script=alert("> </script> XSS Detected!
2024-08-11T01:33:06.314824 <script>alert("XSS')</script> XSS Detected!
2024-08-11T01:33:06.139718 <script=alert('XSS")</script> XSS Detected!

2024-08-11T01:33:04.836843 <script=alert('XS! seript> XSS Detected!
2024.08-11TN1:33:02 8N9451 <eerint=alert(" XSS < /aerint> XSS Detected! -

Figure 8: Live monitoring page showing the detected XSS attacks.

After the successful attack implemented by the Burp Suite tool, only the XSS attacks detected
are shown in the live monitoring page. This helps the admin find out and filter the XSS attack
payload. As per the above results, the proposed system was successfully detected and prevented
the whole attacks with less response time. Size of the dataset (Riodrwn Rio D. 2021) was
6613. Logs regarding the detected attacks have been stored into the logs database and displayed
onto the real time monitoring page.

“Unlit\ed Session - 20240724-162907 - ZAP 2.15.0 - o X
File Edit View Analyse Report Tools Import Export Online Help

Standard Mode [~ B ITEEEOREE Ade Ve % @ me® 1€
" Quick Start =b Request = Response °/ Requester =
Header: Text ~ Body: Text] @

HTTP/1.1 200 OK

Server: Werkzeug/2.2.3 Python/3.11.7
Date: Wed, 24 Jul 2024 15:33125 GMT
Content-Type: text/html; charset=utf-g8
Content-Length: 356

Connection: close

</head>
<body>
<hi>Reflected XSS Detection & Prevention</hi>
<form method="post">

Enter Text: <input type="text" name="user_input">
<input type="submit" 1e="submit">
</Form
<pr</p>
view Logs</a»
® History © Search [WAerts g* Output 3 AJAX Spider 2 Active Scan =+
ee J é¢ WASCID: 9
Al Source: Passive (10202 - Absence of Anti-CSRF Tnkensi
L Aerts (5) e
1 Absence of Anti-CSRF Tokens (2) dgaflanr
Description:

1 Content Security Policy (CSP) Header Not Set (3)
1l Missing Anti-clickjacking Header (3)

1l Server Leaks Version Information via "Server" HTTP Response |
1l X-Content-Type-Options Header Missing (3)

No Anti-CSRF tokens were found in a HTML submission form.
A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a target destination without their knowledge or intent in
order to perform an action as the victim. The underlying cause is application functionality using predictable URL/form actions in a repeatable way. The nature

Other Info:
No known Anti-CSRF token [anticsrf, CSRF Token, __RequestVerificationToken, csrfmiddiewaretoken, authenticity_token, OWASP_CSRFTOKEN, anoncsrf,
csrf token. csrf. csrfSecret csrf maoic. CSRF. token. cstf token] was found in the followina HTML farm: [Form 1: "user inout" 1

Alerts [io FU3 [L2 [0 Main Proxy: localhost 8080 CurrentScans 40 &0 @0 H 0 @0 0 #o #oO

Figure 9: Testing - OWASP ZAP tool

During this testing using the OWASP ZAP tool, the following vulnerabilities were present in
the system.
e CSRF token was missing in the HTML submission form. So there was a chance for the
Cross site request forgery attack.
e Theanti-clickjacking header was missing, so there was a possibility of anti-clickjacking
attacks.

| have fixed the above vulnerabilities by implementing both CSRF token and Content Security
policies (CSP). The CSRF token prevents any unauthorised commands being executed by any
other actor on behalf of the user. | have implemented Content Security policies for preventing
the anti-clickjacking attacks. The Content Security policies (CSP) will prevent the anti-
clickjacking attacks and other kinds of attacks including XSS attacks.

Again | had conducted another testing for finding the vulnerabilities.

] Q) Edit Alert x |2
File Edit View Analyse Report Tools Import Export Online Help
: o T — __ -
Standard Mode | | L L doEoEEEE A & § URL: http://127.0.0.1:5000/
| " Quick Start =b Request = Response ¥ Requester = Risk: Low v
Confidence: Medium ~
Header: Text ~ Body: Text [] []] -
CUNLENL Lengun, Vs Parameter; session v
Content-Security-Palicy: default-sre 'self': serint-sec self': stvle-see 'self': dme-see sl oo
YOCTYPE hitml> Evidence: Set-Cookie: session
<html> &
<head> CWEID: 1275 ¢
<title>Reflected XSS Detection & Prevention</title> WASCID: | 13 P
</head> i
<body> Description:
chisRaflactad vCs Doteckion 2 Oeauantions/his « Acookie has been set without the SameSite attribute, which means that the cockle can be sent
= History &, search](me * | output 4 AJAX Spider 2 Active Scan + as a result of a 'cross-site’ request. The SameSite attribute is an effective counter measure to
o N cross-site request forgery, cross-site script inclusion, and timing attacks.
@ @ / & Cookie without SamesSite Attribute Other Info:
URL: http://127.0.0.1:5000/
Alerts (7) ’
) CSP: Wildcard Directive (3) P Il Low
£ CsP. Wie Confidence: Megium
|1 Cookie without SameSite Attribute . o
Parameter: session
GET: hitp://127.0.0.1:5000/ |nctack: Solution:
I Server Leaks Version Information via | o oo o Set-Cookie: session Ensure that the SameSite attribute s set to either 'lax’ or ideally 'strict’ for all cookies.
|-l X-Content-Type-Options Header Miss CWE ID: 1275
Ftl Session Management Response Iden WASC “'3, 13
[User Agent Fuzzer (12) Source: Passive (10054 - Cookie without SameSite Attribute) |~ Reference
FJ‘J User Controllable HTML Element Attri . ;
Alert Reference: 10054-1 t ! letf. letf-httpbis-cooki it
Input Vector:
Description:
A cookie has been set without the SameSite attribute, which means{ Ajert Tags: fer
measure to cross-site request forgery, cross-site script inclusion, ang +
Other Info Key Value =
OWASP_2021_A01 https://owasp.org/Top10/A01_2021-Broken__.
Mlerts W0 |41 [U3 3 Main Proxy: localhost 080 | cance! cave |) SO0 o0

2 BWAL=C2® VI ICAGWE ~ ~oi vaw , S0am
Figure 10: Another Testing - OWASP ZAP tool

In this testing, there was another vulnerability, which is “cookie without Same attribute”. So
there was a chance of a cross site request forgery attack. Here | have implemented CSRF
protection by setting the same site attributes for the session cookies. It ensures that cookies
are only transmitted via HTTPS which ensures confidentiality and authenticity of the input

(Amal Shaji. 2022).

¥ Untitled Session - 20240724-162007 - ZAP 2.15.0

File Edt View Analyss Repot Tools Import Export Oniine Help

Standord Mode = LT

B Eo

? .7 QuickStat = Reguest = Responsa 0 Requester o

Hesoer: Text || Boay: Text ~ [] (1]
HITP/1.1 200 06
server: Werkzeug/2.2.3 Python/3.11.7

L AL AUE 2024 1313721 61
Type: text/hml; charset-utf-g

</head>

S Hsoy O Sewch MMAerns | Oupwt % AWK Spder o 3

48 New Scan (1] Crawled URLs:20 & Export

Processed =3 Req, Timestemp Method
- 1103 11108724, 23721 pm GET
@ 1,104 1108724, 23722 pm GET
@ 1,108 1108724, 23722 pm GET
) 1.106 11/08724, 23722 pm GET
@ 1,107 1108724, 23722 pm GET
@ 1.108 1170824, 237:22pm GET
@ 1,108 1108724, 23722 pm GET
@ 1110 1108124, 23722 pm GET
@ 1111 1108724, 23722 pm GET
@ 1112 1170824, 23722pm GET
@ 1,113 1108724, 23722 pm GET
- 1114 110824, 23722 pm GET
@ 1115 1108724, 23722 pm GET
@ 1,116 110824, 237:22pm GET

werts (o 1 [U3 2 Main Proxy: localmost;8080

itlerReflected X55 Detection & Prevention</titles

hapi127.0.0.1:5000/
hitp:/1127.0,0.1:5000/
hitp://127.0.0.1:5000/
hitp:/127.0.0.1:5000/
ntpA127.0.0.1:5000/
hitp:/127.0,0.1:5000/
hitp:/1127.0.0.1:5000/
hitp:/127.0.0.1:5000/
ntp1127.0,0.1:50000
hitp:/127.0.0.1:5000/
hitp:/1127.0.0.1:5000/
hitp://127.0.0.1:5000¢
IpI127.0,0.1:5000/
htp:f127.0.0.1:5000/

Lt QL -CFCowm
Figure 11: Scanning - OWASP ZAP tool

EEmE4 & Ve

) AdveScan o

URL Code Resson
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK
200 OK

e Feas

- =] x
% m me® e
RTT Size Resp Header Size Resp Body HighestAlert Note Tegs =
16ms 609 bytes 622 bytes o Meium Fom. Hidden, Set.
12ms 609 bytes 622 bytes £ Megium Fom. Hidden, St..
20ms 609 bytes 522 bytes i Medium Form. Hidden, Set
20ms 608 Bytes 522 bytes Medium Form_ Hidden, Set.
1Bms 609 bytes 622 bytes o Medlum Fom. Hidden, Set.
16ms 609 bytes 622 bytes o Megium Fom. Hidden, St.
3ms 608 bytes 822 bytes P Medlum Fom. Hidden, Set.
12ms BOS bytes 522 bytes u Medium Form_ Hidden, Set
Tms 603 bytes 622 bytes o Meium Fom. Hidden, Set.
16ms 609 bytes 622 bytes o Medium Fom. Hidden, Set.
1ms 609 bytes 822 bytes o Medlum Form,. Hidden, Sat.
12ms B0S bytes 522 bytes Medium Form_ Hidden, Set
Sms G03bytes 622 bytes o Medtum Fom. Hidden, Se.
16ms 609 bytes 622 bytes o Medium Fom. Hidden, Set.
Current Scans @0 B0 B0 B0 @0 40 Mo o
NG 1501

! g Ao N PR et O

W) Untitled Session - 20240724-162907 - ZAP 2150

- =] X
Fils Ect View Analyse Repori Tools Import Esport Onine Help
Standard Mode & [@i tEpEan 1 & @ ® = = -
Quick Start =5 Request = Response Requester
goay: Text]
the/; Samesitestax
17 t-src “self'; style-src 1 g 'self"; font-src *sel! 3 i stor t 1
hi>Reflected Xs5 Detection & Preventionc/hi»
form >
input fd="csrf_token® nane toke hidden
= History . Search MU mens g Output ¥ AJAX Spider X Actve Scan o
e J ¥
Hers (5)
[csP:- Wildzard Directive (3) Solution

O e oy P12 Ensure that your web servar, application server, load balancer. atc.

is configured to suppress the *Server” header or provice gensric
catails

tions Header Missing (3)
nt Response Identifled (18) o
J User Agent Fuzzer (12) bl

hitps:/1eam. jprevi pandp.10)
hitps:/ww royhunt com/shhih-dont-iet-your-responss-haaders/
Aerts [0 1 U3 2 Main Proxy localhostB080 CurentScans @0 B0 ®0 10 @0 /0 W0 Mo

£ @aQuzC€o® Q0XSCAIWE - oW oo e
Figure 12: Testing Results - OWASP ZAP tool

To fine tune the results I did multiple sample testing in order to make my proposed system a
secured one against not only reflected XSS attacks but other attacks too. Currently we can see

an alert raised for both http header and CSP header (as seen in figure 12), as it is running on
the Python flask and hosted on the local host system.

References

Amal Shaji, 2022. CSRF Protection in Flask. [Online] Available at:
https://testdriven.io/blog/csrf-flask/ [Accessed 30 July 2024].

Snyk, 2024. Cross-site scripting (XSS). [Online] Available at: https://learn.snyk.io/lesson/xss/
[Accessed 3 August 2024].

Riodrwn Rio D. 2021. Cross Site Scripting (XSS) Vulnerability Payload List. [Online]

Available at: https://github.com/payloadbox/xss-payload-list/tree/master/Intruder [Accessed 1
Aug 2024].

