

Enhancing Web Security: Detecting and

Preventing Reflected Cross-Site Scripting

(XSS) Attacks

MSc Research Project

Cyber Security

Suraj Suprabha Raju

Student ID: 23183462

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Suraj Suprabha Raju

Student ID:

23183462

Programme

:

MSc Cyber Security

Year

:

2024.

Module:

MSc Research Practicum

Supervisor:

Khadija Hafeez

Submission

Due Date:

12/08/2024

Project

Title:

Enhancing Web Security: Detecting and Preventing Reflected Cross-

Site Scripting (XSS) Attacks

Word

Count:

………5192……………………… Page Count………………19………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Suraj Suprabha Raju…………………………………………………………………

Date:

……12/08/2024………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Enhancing Web Security: Detecting and Preventing

Reflected Cross-Site Scripting (XSS) Attacks

Suraj Suprabha Raju

23183462

Abstract

Cross-Site scripting attacks are a significant threat to web application security. This

research focuses on the detection and prevention of reflected XSS attacks through a

different approach which makes use of different methods. By implementing security

methods such as input filtering, sanitization, output encoding, CSRF protection a

framework is developed which is successful in preventing XSS attacks. The proposed

model also includes live monitoring which allows for a quick response to detected threats.

This study enhances web security by preventing and mitigating the risks posed by XSS

attacks to web applications.

Keywords: XSS attacks, web security, Cross-Site Scripting (XSS), CSRF

protection, Artificial intelligence (AI)

1 Introduction

Importance of web applications has been growing day by day in this world, because it has more

functionality in terms of interaction, communication etc in the online business enterprise.

However, this surge in internet software utilization has concurrently caused a boom in the

variety and complexity of cyber threats. Among the threats, Cross-Site Scripting (XSS) sticks

out as one of the most common and dangerous vulnerabilities. XSS vulnerabilities allow

attackers to inject malicious scripts into web pages, primarily to get unauthorized access to

sensitive data and session hijacking (Geeksforgeeks, 2023). This thesis focuses on growing a

whole method for the detection and prevention of Reflected XSS assaults in internet packages.

1.1 Background
Cross-site scripting is a form of protection vulnerability typically located in net programs. One

of the types of Cross-site scripting attack is Reflected XSS, which is the most common kind

of attack, while an attacker sends malicious input to an internet software, which right now

reflects the input lower back to the individual's browser. The browser then executes the

malicious script within the context of the sufferer's session (OWASP, 2021). Reflected XSS

allows attackers to inject malicious scripts into the URL of legitimate web servers. These

scripts can play a major role to steal individual records, impersonate customers, and perform

distinctive malicious moves.

Some of the recent XSS attacks & vulnerabilities are as follows.

● Nearly 75% of large companies in Europe and North America were hit by online cyber-

attacks in 2019 with cross site scripting used in 40% of incidents (Kass, 2020).

● Compromised 65 job sites in Asia in 2023 using XSS attacks by the attackers and they

had Stolen personal data of over two million job seekers (Bleepingcomputer, 2024).

● British Airways was faced XSS cyber-attack on 2018, where data breach had affected

380,000 booked transactions (Matteson, 2018)

● Joomla fixes XSS flaws in 2023 that could expose sites to remote code execution (RCE)

attacks (Toulas, 2024).

● GitLab patched a high-severity vulnerability in 2024, there was a possibility that

unauthenticated attackers could exploit it to take over user accounts (Gatlan, 2024).

1.3 Problem statement

Despite significant advancements in cybersecurity where the process of detecting and

mitigating attacks is being made by advanced methods, reflected cross-site scripting (XSS)

remains a persistent threat to web applications. Existing methods such as dynamic and static

analysis, the use of AI to detect and mitigate XSS attacks have shown a weakness in real time

scenarios (Rodríguez et al. 2020). This shows that it lacks precision in identifying these types

of attacks. AI and machine learning based approaches have proven to be effective, but the lack

of datasets and computational power of certain organizations lead to potential inaccuracies.

This study aims to address these challenges by developing a framework/model for the

prevention and detection of reflected XSS attacks through advanced sanitization, output

encoding, pattern matching, real time monitoring and other advanced methods. This

framework/model will be evaluated for its effectiveness in detecting XSS attacks and it will

also focus on minimizing false positives and ensuring that a wide range of potential attack

vectors are covered also it will help software developers to build secure web applications.

1.4 Research questions

How can we lift the bar of detection and prevention of such attacks called Cross-Site Scripting

that appears in web applications?

What are the detection & prevention strategies to mitigate the impact of Reflected XSS attacks

on internet applications?

What strategies and tools can effectively support developers in creating secure web

applications?

2 Related work
Authors from (Iman Fareed Khazal et al. 2021) uses a combination of URL Analysis,

Sanitization and Server-side Processing for detecting XSS attacks. Here the URL is checked

whether it comes from a trusted source or not and the URL is also checked for harmful code

which is sterilized before allowing user access. This analysis and sanitization are performed

on the server side to reduce the load on the client’s browser thereby enhancing the performance.

This study (Tan et al. 2023) makes use of the Paths-Attention Model which uses advanced

natural language processing techniques to enhance vulnerability detection. The authors make

use of a dataset to detect the XSS vulnerabilities, addressing the issue of imbalance of positive

and negative samples. After this the experimental results were analyzed in two parts: semantic

extraction results and XSS vulnerability detection results. Authors from (Rodríguez et al. 2020)

uses a combination of content analysis, input validation, pattern analysis, web scanners,

artificial intelligence methods and cookie analysis. Where they used methods including

machine learning techniques such as Support Vector Machines, Random Trees and classifiers

to predict and detect vulnerabilities. (Chrisando Ryan Pardomuan et al. 2023) The methods

used include Detection System Design, Evaluation Process and Payload Sources. The system

was designed to detect XSS attacks rather than prevent them. Then the accuracy of the

detection system is evaluated using a confusion matrix which focuses on the false positives

and false negatives. Evaluation involved simulating HTTP requests to a vulnerable web

application. They used the dataset of 499 requests. Authors from (Santithanmanan, K et. al

2024) used machine learning methods, such as k-Nearest Neighbours(k-NN), Decision Tree,

Support Vector Machine (SVM), Gaussian Naive Bayes (GNB). The dataset consisted of both

benign and malicious URLs. The models were evaluated using 10-fold cross validation to

determine the performance metrics which includes accuracy, precision, recall and F1 score.

This paper (Tadhani, J.R. et. al 2023) used different methods to secure XSS attacks on web

applications, which includes Deep learning approach, dataset creation, benchmark datasets and

comparison with traditional methods.

2.1 Critical Analysis

The existing methods rely heavily on server processing capabilities which leads to delays when

the traffic is high. The automatic URL sanitization method used can lead to false positives

sometimes which may lead to blocking legitimate users from accessing the content. The current

approach focussed on reflected XSS attacks and did not take into account other types like

DOM-based vulnerabilities and broader attack vectors. The use of imbalanced datasets affects

the accuracy and reliability of the proposed systems. To implement the proposed methods the

organizations will require high computational power which may not be feasible for all

organizations. The static and dynamic methods used are not effective in real time applications.

The proposed AI methods show promise, but the lack of comprehensive datasets may affect

the reliability or may not be successful in identifying zero-day vulnerabilities. Most of the

proposed models only focus on the detection of the XSS attacks and not preventing them. The

non-standard encoding of malicious payloads results in a large number of false negatives.

To overcome the challenges mentioned above I am proposing a comprehensive

framework/model for the detection and prevention of reflected XSS attacks. Advanced

sanitization and Output encoding is done to reduce the risk of false positives which ensures

that legitimate users are not blocked from accessing the content. The model is designed to

cover a broader range of vulnerabilities, including reflected XSS attacks and other

vulnerabilities. The accuracy and reliability of the model is improved by using balanced and

comprehensive datasets. This model does not need high computational power which makes it

feasible for a wide range of organizations. Combining dynamic and static analysis the model

ensures better real time detection and reduces the risk of false negatives. The model is

optimized for real time monitoring which allows for better detection and mitigation of XSS

attacks irrespective of the traffic load.

Paper Methods

Used

Main Results Benefits Limitations

(Iman

Fareed

Khazal

et al.

2021)

URL

Analysis,

Sanitizatio

n and

Server-side

Processing

for

detecting

XSS

attacks.

The method

reduced the risk

of XSS attacks

by allowing only

the sanitized

URLs to the

users which

enhanced the

overall web

application

security.

This method is used

where the sanitization

is done by the server

side thereby

improving the

browser performance.

This solution does

not rely on specific

server-side practices

which makes it

versatile among

different web

applications.

If there is a high load of

traffic, there can be

some delays from the

server side.

Potential false positives

of automatic

sanitization may prevent

legitimate users from

accessing the content.

It only focuses on XSS

attacks, it may be

vulnerable to other

forms of attacks.

(Tan et

al.

2023)

Paths-

Attention

Model,

dataset to

detect the

XSS

vulnerabilit

ies.

The processing

speed of 1000

samples/second

was achieved by

the Paths-

Attention model.

Higher F1 score

than other

models.

Paths-Attention

model Process large

number of samples in

a very short time.

The higher F1 score

is evidence that there

were not many false

positives detected

which makes it more

accurate and precise.

The study focuses on

mainly reflected XSS

and does not cover other

XSS vulnerabilities.

Required larger

computational power.

The study faced

challenges with

imbalanced datasets

used which could affect

the result.

(Rodrí

guez et

al.

2020)

Content

analysis,

input

validation,

pattern

analysis,

web

scanners,

AI

methods

and cookie

analysis,

Support

Vector

Machines,

Random

A lower tendency

was observed in

the use of AI

methods despite

their potential for

enhancing

detection

capabilities. This

shows that the

traditional

methods to detect

vulnerabilities

are more

commonly

employed than

artificial

The input validation

ensures no invalid

data is processed.

Pattern analysis

proves to be effective

in identifying XSS

attacks of the same

pattern. Automated

and comprehensive

scanning capabilities

of web scanners

makes it easier to

identify

vulnerabilities across

large scale

applications.

The Dynamic analysis

used is not efficient in

real time applications.

The static analysis lacks

precision in identifying

XSS attacks. The AI

methods are effective

but the lack of datasets

to train them may prove

to be faulty in the

longer run. A similar

problem occurs in

cookie analysis which

shows that there is a gap

in identifying XSS

vulnerabilities.

Trees and

classifiers.

intelligence

methods.

(Chris

ando

Ryan

Pardo

muan

et al.

2023)

Detection

System

Design,

Evaluation

Process

and

Payload

Sources.

The detection

system used

achieved an

accuracy of 88%.

It was successful

in detecting 180

out of the 239

malicious

payloads.

59 false

negatives

The proposed

methods had a

higher accuracy

than the other

models

(PHPIDS, XSS

Auditor).

The system showed a

high accuracy rate of

88% which indicates

its effectiveness in

detecting malicious

payloads.

This is done on the

server side which

means that there are

no delays from the

client side.

The server side can

analyze requests

before it reaches the

client thereby

reducing the potential

XSS attacks.

The system showed a

large number or false

negatives which was

due to the challenges in

handling non-standard

encoding of malicious

payloads. This system is

designed solely for the

purpose of detecting

XSS attacks. There are

no measures

implemented to prevent

it. The time taken can

vary depending on the

processing capabilities.

(Santit

hanma

nan, K

et. al

2024)

k-Nearest

Neighbour

s(k-NN),

Decision

Tree,

Support

Vector

Machine

(SVM),

Gaussian

Naive

Bayes

(GNB).

k-NN: Accuracy

of 99.99% with a

prediction time

of 3.3689

seconds.

SVM: Accuracy

rate of 99.6%

Random forest:

99.5%

Linear kernel

SVM: 96.32%.

The confusion

matrix shows that

the k-NN model

had the least fale

positives

indicating its

effectiveness in

detecting XSS

attacks.

k-NN model showed

a very high accuracy

which is one of the

benefits of this

model. The rapid

prediction time of the

model allows real-

time analysis of

URLs also making it

user friendly. The use

of a diverse set of

features allows the

model to understand

the different types of

malicious URLs.

The dataset though

diverse was small which

indicates that there

could be a novelty for

zero-day vulnerabilities.

The models may

struggle to identify new

types of XSS attacks

which are not included

in the dataset. The study

suggests real time

detection capabilities

while implementing

them in real life may be

a challenging task. And

eventually it comes

down to performance

capabilities of the OS.

(Tadha

ni, J.R.

et. al

2023)

Deep

learning

approach,

dataset

creation,

benchmark

datasets

and

compariso

n with

99.84% accuracy

on the SQL-XSS

Payload dataset.

99.23% accuracy

on the Testbed

dataset.

99.77% accuracy

on the HTTP

CSIC 2010

dataset.

The model's high

accuracy, low false

positive rates and

versatility can be

applied to various

network security

applications

including IDS and

WAFs.

The SQL injection

statements in production

environments can be

very complex which

makes it difficult for

standardization. The

model's performance

depends on the quality

of the dataset used. For

the model to give

traditional

methods

similar results in real

time a more

comprehensive dataset

which covers all

possible attacks must be

used. Though the model

performs very well on

the datasets provided,

its performance in real

world scenarios with

different attack vectors

may vary.

Table 1: Literature review

3 Research Methodology

Web utility safety is still threatened via Cross-Site Scripting (XSS), in which attackers may

want to insert harmful scripts into pages that other users view on the net. These cyberattacks

take advantage of flaws in internet packages that deal with human beings entering incorrectly,

that may compromise distinct statistics and erode confidence in on-line services. The purpose

of this paper is to apply Python to create a framework/model for the detection and prevention

of reflected XSS attacks and also it will prevent all other attacks. So, this model will be helpful

for the web developing industry to develop a secure web application.

3.1 Research design

This study layout combines exploratory and experimental strategies to very well have a look

at XSS attack routes and create a beneficial device for detection and mitigation. With the goal

of creating a good-sized contribution to internet application protection, this dual method

ensures an intensive investigation of XSS vulnerabilities and related mitigation techniques

(Kaur et al. 2023).

Exploratory and Experimental: Investigate XSS attack vectors and develop a Python-based

detection and prevention model.

Figure 1: This shows how Reflected XSS works (Meghan Jacquot, 2024)

Reflected XSS happens when a web server application accepts all user inputs and quickly

renders back to the client in an unsafe way. Reflected XSS attacks occur when malicious

injection affects client users, then the attacker will be able to access all confidential data from

the client end (Meghan Jacquot, 2024).

3.2 Detection Mechanism

Heuristic-based analysis and sample popularity are protected within the detecting procedure.

Heuristic analysis improves detection accuracy by seeing suspicious styles and behaviors

suggestive of XSS assaults, while regular expressions are used to discover malicious XSS

payloads in HTTP requests (Younas et al. 2024). Implement regular expressions and heuristic-

based detection to identify XSS payloads in HTTP requests. Implement strict input validation

the usage of a whitelist method, regular expressions and input sanitization. The custom script

is for real time detection and anomaly monitoring.

3.3 Prevention mechanism

In order to mitigate XSS vulnerabilities, powerful preventative strategies are crucial. Robust

sanitization methods, along with output encoding and input validation, are the principle subject

matter of this work. By screening and sanitizing person inputs and encoding outputs to forestall

script execution in online packages, those techniques neutralize feasible XSS vectors (Kshetri

et al. 2024). Sanitization techniques are used for input validation and output encoding to

neutralize potential XSS vectors in web applications. Robust security methods like CSRF

protection and same site attributes for session cookies (ensures that cookies are only

transmitted via HTTPS which ensures confidentiality and authenticity of the input) are used

(Amal Shaji. 2022). The CSRF token prevents any unauthorised commands being executed by

any other actor on behalf of the user.

3.4 Testing Environment

Deploy the tool in a controlled web application environment to monitor and test its

performance against various XSS attack scenarios. To prove the web application or the

proposed model is safe, thorough testing is conducted through tools like OWASP ZAP and

BurpSuite Professional tools.

3.5 Evaluation Metrics

The method used to evaluate the device's efficacy is quantitative evaluation. Important metrics

are the detection charge of vulnerabilities, the variety of false positives, the accuracy with

which XSS attacks are diagnosed, and the general overall performance of the gadget in various

assault eventualities. The effectiveness and dependability of the technology are thoroughly

found out by way of these indicators (Chaudhary et al. 2023).

Quantitative Analysis: Measure accuracy, detection rate, false positives, and system

performance under different attack simulations.

4 Design Specification

4.1 System Architecture

The system comprises a web application (client) and a Python-based detection and prevention

tool (server). The client sends HTTP requests to the server for processing.

Figure 1: System diagram

The above diagram shows the architecture of the web application. The user data is collected

through URL parameters such as search boxes which are then managed and prepared for

display. The web application uses the method of input sanitation, output encoding and

sanitization libraries to ensure the security conditions are met and the website is free from XSS

attacks. To prove the website is safe, thorough testing is conducted through tools like OWASP

ZAP and BurpSuite Professional tools. The real time monitoring with logging and anomaly

detection makes sure that the user’s activities are kept on track and also any suspicious activity

is reported. With real time monitoring enabled alerts can be created in case of malicious

activities. This overall approach ensures that the web application is thoroughly protected from

any kind of XSS attacks.

The diagram illustrates the architecture of a web application with a focus on security

mechanisms, data processing, and testing tools.

4.2 Development Environment

Languages and Tools: Python, Flask (web framework), Regex (pattern matching), SQLite

(database for logging).

4.3 Detection Module

To identify XSS payloads in HTTP requests from the users or clients, the detection module is

mainly including the regular expressions and heuristic-based detection. So, pattern matching

is the major feature, where it utilizes regular expressions to detect known XSS patterns in

HTTP requests. Moreover, this module includes strict input validation, the usage of a whitelist

method and input sanitization. The custom script is for real time detection and anomaly

monitoring.

4.3.1 Activity Logging & Real time Monitoring

Log details of detected and prevented XSS attempts in an SQLite database and the real-time

monitoring of HTTP requests and responses to identify and mitigate potential attacks promptly.

If a client provides malicious input to the web application, then this model immediately

prevents the same and stores its details into the log database as well as displays onto the real

time monitoring page.

4.4 Prevention Module

Ensure all user inputs are validated and sanitized to prevent malicious scripts. Strong

sanitization methods, along with output encoding and input validation, are the principle subject

matter of this work. Encode dynamic content before rendering in the web browser to prevent

script execution. By screening and sanitizing person inputs and encoding outputs to forestall

script execution in online packages, those techniques neutralize feasible XSS vectors (Kshetri

et al. 2024). Sanitization techniques are used for input validation and output encoding to

neutralize potential XSS vectors in web applications. Regarding the Test Scenarios, develop

test scenarios covering various types of reflected XSS attacks with the help of Burp Suite

Professional Tool and dataset.

4.6 Performance Metrics

Accuracy: Measure true positive rate (correct detections) and false positive rate (incorrect

detections).

5 Implementation
Python Flask is used to mimic internet requests and responses, which lets in a sizable controlled

environment checking out of the device's efficacy (Abhishek et al. 2023). Regular expressions

are used within the implementation to mix pattern recognition techniques by way of scanning

HTTP requests for known XSS patterns and signatures. By assessing contextual information

and user behaviour, heuristic evaluation improves detection accuracy and will increase the

tool's capacity to become aware of diffused or changing XSS assault vectors. Implementing

sturdy sanitization strategies is crucial to the manner. The internet application handiest accepts

safe and anticipated statistics codecs since enter validation strategies are cautiously created to

clear out and sanitise consumer inputs (Sharma et al. 2023). Before doubtlessly dangerous

scripts are rendered in customers' browsers, output encoding techniques convert them into safe

strings, thereby lowering the danger of cross-web site scripting attacks (Hannousse et al. 2024).

Figure 2: User input - GUI

The above figure shows the home page of the model, where the user enters input through the

text box. This model is fully secured against reflected XSS attacks, SQL injection attacks, etc.

Figure 3: Real time monitoring - GUI

If a user provides malicious input to the web application, then this model immediately prevents

the same and stores its details into the log database as well as displays onto the real time

monitoring page.

6 Evaluation

Web programs are at serious risk from Reflected Cross-Site Scripting (XSS) attacks, which

permit attackers to run malicious scripts within the consumer's browser. Ensuring the safety

and integrity of online programs requires the timely detection and prevention of such threats.

The evaluation standards, which encompass robustness, scalability, usability, detection

accuracy, performance, and assessment analysis, provide a radical framework for evaluating

the efficacy of technology meant to counteract reflected XSS attacks.

Evaluation Criteria Description

Detection Accuracy Measure the true positive rate (correct detections) and false positive

rate (incorrect detections) of the tool in identifying XSS attacks.

Efficiency Assess the tool's impact on web application performance, including

response time and resource utilization under various load

conditions.

Robustness Evaluate the model’s ability to handle different types of reflected

XSS attacks, including common payloads and obfuscation

techniques.

Scalability Test the model’s performance and effectiveness in larger web

application environments with higher traffic volumes.

Table 2: Evaluation

6.1 Baseline Measurements

A preliminary vulnerability scan of the net utility using both automated technology and human

processes becomes the first step inside the baseline measures. The intention of this thorough

analysis is to locate modern-day XSS vulnerabilities, which may range from trustworthy script

injections to sophisticated exploits that target distinct application components (Hannousse et

al. 2024). Prior to the implementation of any security features, the experiment gave an accurate

view of the utility's security posture. To nicely prioritise remediation efforts, crucial

vulnerabilities were classified based totally on severity levels.

6.2 Post Implementation Testing

OWASP ZAP and Burp Suite professional tools have been used to do a comprehensive testing

of this system. The motive of this put up-implementation testing segment was to evaluate how

well the safety controls that have been put in place mitigated vulnerabilities that had already

been located (Al-Haija et al. 2023). The reason for the retest turned out to be to verify that the

number of XSS vulnerabilities had reduced and to assess any new or lingering risks which

could be added at some point of the implementation system.

To verify the outcomes of automated gear, manual penetration testing and code reviews have

been completed similarly to automatic scans. Using input fields, URLs, and different software

interfaces as goals for XSS attacks. By ensuring a radical assessment of the application's safety

posture after implementation, manual verification showed the efficacy of the proposed

techniques to protect against reflected XSS attacks.

6.2.1 Testing - Burp suite Professional tool

Figure 4: Testing of the proposed system by Burp suite Professional tool

First of all, I have tested whether this application has reflected XSS vulnerabilities or not. I

Turned on the intercept feature in the Burp Suite tool and submitted the text “welcome” into

the web application. This user input is forwarded into the repeater and intruder of this tool.

Figure 4 shows the response part of the repeater does not have the user input, which is

“welcome”. So, the reflected XSS vulnerability is not present in this application.

Figure 5: Testing of the proposed system by Burp suite Professional tool

Used a payload set (Riodrwn Rio D. 2021) of 6613 scripts to attack the proposed system

through the intruder feature of the burp suite tool.

Figure 6: Testing Results - Burp suite Professional tool

Figure 7: Live monitoring page showing the detected XSS attacks.

After the successful attack implemented by the Burp Suite tool, only the XSS attacks detected

are shown in the live monitoring page. This helps the admin find out and filter the XSS attack

payload. As per the above results, the proposed system was successfully detected and

prevented the whole attacks with less response time. Size of the dataset (Riodrwn Rio D. 2021)

is 6613. Logs regarding the detected attacks have been stored into the logs database and

displayed onto the real time monitoring page.

6.2.2 Testing - OWASP ZAP Tool

Figure 8: Scanning - OWASP ZAP tool

Figure 9: Testing Results - OWASP ZAP tool

To fine tune the results, I did multiple sample testing in order to make my proposed system a

secured one against not only reflected XSS attacks but other attacks too. Currently we can see

an alert raised for both http header and CSP header (as seen in figure 9), as it is running on the

Python flask and hosted on the local host system.

6.3 Results

Existing Models Proposed Model

Fails to detect and prevent Reflected XSS

attacks.

It is successful in detecting and preventing

Reflected XSS attacks.

Fails to provide live monitoring of the

detected XSS attacks.

It provides live monitoring and notifies the

user in case of XSS attacks.

Filtering and sanitization of user input is not

done.

Filtering and sanitization of user input is

done.

Such robust security methods are not used

which may indicate vulnerabilities in the

model.

Robust security methods like CSRF

protection and same site attributes for

session cookies (ensures that cookies are

only transmitted via HTTPS which ensures

confidentiality and authenticity of the input)

are used (Amal Shaji. 2022).

No such methods are implemented. The CSRF token prevents any unauthorised

commands being executed by any other

actor on behalf of the user.

Table 3: Comparing the existing and proposed models

7 Conclusion and Future Work

This research shows the advantage of using a different approach to detect XSS attacks which

uses a list of different methodologies to enhance the detection and prevention of XSS attacks

particularly the reflected variant. By combining methods like input sanitization, CSRF

protection and secure cookie attributes the proposed and developed model is successful in

detecting and preventing XSS attacks while ensuring the confidentiality and authenticity of

the user. The model also has live monitoring which shows the XSS attacks thus reducing the

time to mitigate them. The model is thoroughly tested for vulnerabilities and constantly

updated with security features. These findings suggest that this model can greatly assist web

developers to create more secure web applications ultimately raising the bar for detection

and prevention of XSS attacks across the internet. The future work includes exploration of

Content Security Policies (CSP) and the enforcement of HTTPS for secure communication.

These features can further increase the security of the web applications.

References

Abhishek, S., Ravindran, R., Anjali, T. and Shri Amrut, V., 2023, March. Ai-driven deep

structured learning for cross-site scripting attacks. In 2023 International Conference on

Innovative Data Communication Technologies and Application (ICIDCA) (pp. 701-709).

IEEE.

Al-Haija, Q.A., 2023. Cost-effective detection system of cross-site scripting attacks using

hybrid learning approach. Results in Engineering, 19, p.101266.

Amal Shaji, 2022. CSRF Protection in Flask. [Online] Available at:

https://testdriven.io/blog/csrf-flask/ [Accessed 30 July 2024].

Bleepingcomputer, 2024. Hackers steal data of 2 million in SQL injection, XSS attack.

[Online] Available at: https://www.bleepingcomputer.com/news/security/hackers-steal-data-

of-2-million-in-sql-injection-xss-attacks/ [Accessed 5 June 2024].

Chaudhary, P., Gupta, B.B. and Singh, A.K., 2023. Adaptive cross-site scripting attack

detection framework for smart devices security using intelligent filters and attack ontology.

Soft Computing, 27(8), pp.4593-4608.

Chen, H.-C. a. N. A. a. D. C. a. C. P.-H., 2021. Detection and Prevention of Cross-site Scripting

Attack with Combined Approaches. In: 2021 International Conference on Electronics,

Information, and Communication (ICEIC). s.l.:IEEE, pp. 1-4.

Chrisando Ryan Pardomuan, A. K. M. Y. D. M. A. M. A. a. Y. M., 2023. Server-side Cross-

site Scripting Detection Powered by HTML Semantic Parsing Inspired by XSS Auditor.

Pertanika Journal of Science & Technology, 31(3).

Cui, Y. a. C. J. a. H. J., 2020. A Survey on XSS Attack Detection and Prevention in Web

Applications. In: Proceedings of the 2020 12th International Conference on Machine Learning

and Computing. Shenzhen, China: Association for Computing Machinery, p. 443–449.

Meghan Jacquot, 2024. Differences of Stored XSS and Reflected XSS. [Online] Available at:

https://www.inspectiv.com/articles/differences-of-stored-xss-and-reflected-xss [Accessed 5

June 2024].

Gatlan, S., 2024. High-severity GitLab flaw lets attackers take over accounts. [Online]

Available at: https://www.bleepingcomputer.com/news/security/high-severity-gitlab-flaw-

lets-attackers-take-over-accounts/ [Accessed 5 June 2024].

Geeksforgeeks, 2023. Geeksforgeeks. [Online] Available at:

https://www.geeksforgeeks.org/the-importance-of-security-testing-in-todays-digital-age/

[Accessed 5 June 2024].

Hannousse, A. a. Y. S. a. N.-H. M. C., 2024. Twenty-two years since revealing cross-site

scripting attacks: A systematic mapping and a comprehensive survey. Computer Science

Review, Elsevier BV, p. 100634.

Iman Fareed Khazal, Mohammed Abdulridha Hussain, 2021. “Proposed Method to Detect and

Prevent Reflected Cross-Site Script Attack”

Kass, D. H., 2020. Study: Cross-Site Scripting Nearly 40% of All Online Cyber Attacks in

2019. [Online] Available at: https://www.msspalert.com/news/study-cross-site-scripting-

attacks [Accessed 21 June 2024].

Kaur, J., Garg, U. and Bathla, G., 2023. Detection of cross-site scripting (XSS) attacks using

machine learning techniques: a review. Artificial Intelligence Review, 56(11), pp.12725-

12769.

Kshetri, N., Kumar, D., Hutson, J., Kaur, N. and Osama, O.F., 2024, April. algoXSSF:

Detection and analysis of cross-site request forgery (XSRF) and cross-site scripting (XSS)

attacks via Machine learning algorithms. In 2024 12th International Symposium on Digital

Forensics and Security (ISDFS) (pp. 1-8). IEEE.

Matteson, S., 2018. British Airways data theft demonstrates need for cross-site scripting

restrictions. [Online]

Available at: https://www.techrepublic.com/article/british-airways-data-theft-demonstrates-

need-for-cross-site-scripting-restrictions/ [Accessed 5 June 2024].

OWASP, F., 2021. OWASP Top Ten 2021. [Online] Available at: https://owasp.org/www-

project-top-ten/ [Accessed 5 June 2024].

Rodriguez, G. a. T. J. a. F. P. a. B. E., 2019. Cross-Site Scripting (XSS) Attacks And

Mitigation: A Survey. Computer Networks, Volume 166, p. 106960.

Riodrwn Rio D. 2021. Cross Site Scripting (XSS) Vulnerability Payload List. [Online]

Available at: https://github.com/payloadbox/xss-payload-list/tree/master/Intruder [Accessed 1

Aug 2024].

Santithanmanan, K., Kirimasthong, K., Boongoen, T. 2024. Machine Learning Based XSS

Attacks Detection Method, Advances in Computational Intelligence Systems. UKCI 2023.

Advances in Intelligent Systems and Computing, vol 1453. Springer

Sharma, S. and Yadav, N.S., 2023. A multilayer stacking classifier based on nature-inspired

optimization for detecting cross-site scripting attacks. International Journal of Information

Technology, 15(8), pp.4283-4290.

Tadhani, J.R., Vekariya, V., Sorathiya, V. et al. Securing web applications against XSS and

SQLi attacks using a novel deep learning approach. Sci Rep 14, 1803 (2024).

https://doi.org/10.1038/s41598-023-48845-4

Tan, Xiaobo and Xu, Yingjie and Wu, Tong and Li, Bohan, 2023. Detection of reflected XSS

vulnerabilities based on paths-attention method. Applied Sciences. Applied Sciences, Volume

13.

Toulas, B., 2024. Joomla fixes XSS flaws that could expose sites to RCE attacks. [Online]

Available at: https://www.bleepingcomputer.com/news/security/joomla-fixes-xss-flaws-that-

could-expose-sites-to-rce-attacks/ [Accessed 5 June 2024].

Younas, F., Raza, A., Thalji, N., Abualigah, L., Zitar, R.A. and Jia, H., 2024. An efficient

artificial intelligence approach for early detection of cross-site scripting attacks. Decision

Analytics Journal, 11, p.100466.

