
1

Configuration Manual

MSc Research Project

MSc Cyber-security

Viral Sonavadia

Student ID: X23103116

School of Computing

National College of Ireland

Supervisor: Niall Heffernan

2

National College of Ireland

Project Submission Sheet

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the references section. Students are
encouraged to use the Harvard Referencing Standard supplied by the Library. To use
other author's written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature: Viral Sonavadia

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project submission,

to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient

to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Student Name: Viral Sonavadia

Student ID: X23103116

Programme: MSc in Cybersecurity Year: 2023-2024

Module: MSc Research Project

Lecturer: Mr. Niall Heffernan

Submission Due

Date:

12th August 2024

Project Title: HARNESSING EVOLVING MACHINE LEARNING TECHNIQUES FOR

ENHANCED INTRUSION DETECTION SYSTEM

Word Count:

918 Page Count: 12

3

Configuration Manual

1. Introduction

The project "Harnessing Evolving Machine Learning Techniques for Enhanced Intrusion

Detection System" aims to improve Intrusion Detection Systems (IDS) capabilities using

advanced machine learning techniques This document describes the necessary hardware and

software configuration, dataset description and deployment steps using Jupyter Notebook.

2. Overview of the program

This project involves the analysis and classification of network access data using various

machine learning models. The workflow includes data pre-processing, feature engineering,

training multiple machine learning models, and testing their performance on test data. The goal

is to identify intrusions and correctly classify them into normal and discrete groups.

3. Hardware/software requirements

3.1. Hardware production

The following hardware settings are recommended for smooth operation.

• Processor: Intel Core i5 or higher (using i5)

• RAM: 8 GB or more (16GB)

• Storage: 100 GB free space (400GB free)

• GPU (optional, for fast model training): NVIDIA GTX 1050 Ti or better (Intel® Iris®

Xe Graphics)

3.2. Software

The following software is required for the project:

• Jupyter Notebook: Used to run and write code.

• Anaconda: To manage the Python environment and dependencies.

Version Requirements:

• Jupyter Notebook: Version 6.0 or later

• Anaconda: Version 2020.11 or later

Ensure that the necessary Python libraries are installed. These include panda, numpy,

mutplotlib, seaborn, scikit-sua, and tensorflow.

4. The data set

The dataset used for this project came from Kaggle. The data are divided into training and

testing phases:

As they were imported on the online Jupyter

• Training information: /Train_data.csv

• Data Test: /Test_data.csv

4

The dataset is downloaded from Kaggle and add it to the IDS_dataset directory in project

folder.

5. Implementation of Project in Jupyter

Explanation of the Code

5.1. Import Libraries

• pandas: It is used for data manipulation and analysis.

• numpy: This library is for numerical operations.

• matplotlib.pyplot: A visual library that allows these kinds of charts to be implemented,

be it in static, interactive, or animated forms.

• warnings: And this aspect is about warning messages. Moreover

,'warnings.filterwarnings ('ignore')' is the line to switches them off.

• seaborn: Doing statistical data visualization.

• LabelEncoder: It converts the categorical labels into numerical format.

5.2. Load and Inspect Data

• pd.read_csv: Admit a method from our operating activity and a testing one into pandas

DataFrames.

• head(): It is to look at the first few rows of the DataFrames for a quick inspection.

•

5

5.3. Data Overview

• info(): This is a DataFrame method that [sic] it summary the dataframe including the

number of non-null entries.

• isnull().sum(): It checks the missing value of each column.

5.4. Data Visualization

Protocol Type-wise Duration

6

• groupby(): It takes in the 'protocol_type' and 'duration.' The function sums the 'duration'

for each type.

• plt.pie(): It shows the pie chart to visualize the proportional of total IDS duration per

protocol type.

Flag-wise Duration

• groupby(): This is taking the data and grouping it by the 'flag.' Then it sums up the

'duration'.

• plt.bar(): It generates the bar chart for the total IDS duration per flag.

Protocol Type-wise Source Bytes

• groupby(): We are referring to the 'protocol_type' and running the 'src_bytes' total.

• plt.plot(): It levels the line plot to indicate the entire source bytes per protocol type.

7

Protocol Type-wise Destination Bytes

• groupby(): It actually means that the groups of data are made by 'protocol_type' and

they are summed up by 'dst_bytes'.

• plt.fill_between(): It shows an area plot of the total destination bytes per protocol type.

Class Distribution

• value_counts(): The incidence of every class is aggregated respectively.

• plt.pie(): This even pegs the pie chart to teach the elegance of each class.\

8

5.5. Pre-processing

Label Encoding

• mean(): This operation is about getting the mean of the columns.

• fit_transform(): The transformation is taken out on the striking features.

Mapping Class Labels

• map(): The mapping of class labels to binary values (0 for 'normal', 1 for 'anomaly') is

carried out.

9

Dropping Unnecessary Columns

• drop(): It uses the built-in drop function to remove the columns you indicated from the

DataFrame.

Correlation Matrix

• corr(): It is no surprise that it gives the correlation matrix.

• sns.heatmap(): It forms a heatgrams that are meant to be visually appealing.

10

6. Model Training and Evaluation

Splitting Data

• train_test_split(): Refers to the process of dividing the dataset into two groups, the

training set and the testing set.

K-Nearest Neighbors (KNN)

• KNeighborsClassifier(): Here, we start KNN with the actual KNN classifier.

• fit(): Our model is ready for training.

• predict(): We will be getting the model's predictions over the corresponding original

data set.

• accuracy_score(): This function is used to find out how many times our model was

correct in its predictions.

• classification_report(): The care, coverage, and F1-metric are all included here.

11

Decision Tree

• DecisionTreeClassifier(): This part of code illustrated making a new classifier based

on a Decision tree.

Random Forest

• RandomForestClassifier(): The Random Forest classifier is initialized.

• fit(), predict(), accuracy_score(), and classification_report(): These are the same

functions that are used in KNN.

12

Support Vector Machine (SVM)

References:

Alhajjar, E., Maxwell, P. and Bastian, N., 2021. Adversarial machine learning in network

intrusion detection systems. Expert Systems with Applications, 186, p.115782.

Alotaibi, A. and Rassam, M.A., 2023. Adversarial machine learning attacks against intrusion

detection systems: A survey on strategies and defense. Future Internet, 15(2), p.62.

Mahanta, K. and Maringanti, H.B., 2024. Machine learning approaches for intrusion

detection. Cognitive Machine Intelligence: Applications, Challenges, and Related

Technologies, p.199.

Moizuddin, M.D. and Jose, M.V., 2022. A bio-inspired hybrid deep learning model for network

intrusion detection. Knowledge-based systems, 238, p.107894.

Okoli, U.I., Obi, O.C., Adewusi, A.O. and Abrahams, T.O., 2024. Machine learning in

cybersecurity: A review of threat detection and defense mechanisms. World Journal of

Advanced Research and Reviews, 21(1), pp.2286-2295.

	6. Model Training and Evaluation
	Splitting Data
	K-Nearest Neighbors (KNN)
	Decision Tree
	Random Forest

