

Configuration Manual

MSc Research Project
M.Sc. Cybersecurity

Himanshu Sharma
Student ID: 22220135

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Himanshu Sharma

Student ID: 22220135

Programme: M.Sc. Cybersecurity Year: 2023-24

Module: MSc Research Practicum

Lecturer: Prof. Vikas Sahni

Submission Due
Date:

16/09/2024

Project Title: Enhancing Biometric Security Systems Against Deepfake Threats

Word Count: 751 Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Himanshu Sharma

Date: 15/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

1

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

Configuration Manual

1. Introduction

Himanshu Sharma
22220135

This is a step by step tutotial to create, train and deploy a deepfake detection model using
Google Colab with TPU and Flask for API implementation. This manual is designed for
developers and data scientists, who want to train and integrate a deepfake detection model.

2. System Requirements

• Hardware:

o Google Colab with TPU v2 support for model training.

o Local machine for API deployment and testing.

• Software:

o Python 3.10.12

o Libraries: TensorFlow 2.17.0, NumPy 1.23.5, OpenCV 4.5.5.62, Flask 2.1.1,
and others as specified in the code.

o Ngrok for exposing the Flask API to the internet.

3. Mount Google Drive

• Purpose: Installing Google Drive is crucial to be able to call datasets stored in the
cloud and save the processed data, models, and output directly to the Drive.

4. Data Preprocessing

• Objective: Get frames from real and fake videos, resize them and store in smaller
sizes while processing to avoid memory issues.

• Steps:
1. Extract Frames: Video frames are extracted and resized to 224x224 pixels.
2. Save in Batches: Frames are saved in smaller batches (e.g., 10 videos per

batch) for both real and fake videos.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

2

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

5. Combine and Split Data

• Objective: Combine the smaller batches into larger datasets and then split the
combined data into training, validation, and test sets.

• Steps:

1. Combine Batches: Combine batches of real and fake frames.

2. Split Data: Split the combined data into training (80%), validation (10%), and
test (10%) datasets.

3. Save Split Data: Save the split datasets for efficient loading during model
training.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

3

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

6. Load and Prepare Data for TensorFlow

• Objective: Load the split datasets from .npy files and use them to create TensorFlow
Records datasets that are suitable for model training.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

4

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

• Steps:

1. Load Data: Load training, validation, and test datasets.

2. Create TensorFlow Datasets: Load the data and form TensorFlow data sets
which will involve shuffling and Batching so as to enhance the training
process.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

5

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

7. Model Training

• Objective: It is necessary to set the deep learning model based on MobileNetV2, train
it on the prepared datasets, and make evaluation.

• Steps:

1. Preprocess Dataset: Normalize image data to [0, 1] and ensure labels are
properly cast.

2. Define Model: Use MobileNetV2 as the base, add custom layers, and compile
the model.

3. Train Model: Train the model with early stopping and model checkpointing.

4. Evaluate and Save Model: Evaluate the model on the test set and save the
final trained model.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

6

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

8. Deploying the Model with Flask

• Objective - Convert the deployed deepfake detection model into the API using Flask
where user can upload the video files and in return, user will get the binary (real or
fake) and the confidence level.

• Steps -

1. Set Up Flask Application: Load the trained model, define the API routes, and
handle video file uploads.

2. Running the Flask App: Host the Flask application locally and optionally expose
it to the internet using Ngrok.

8.1 Code for Flask API

1. Flask App Setup:
o Create a Flask app that loads the trained model and sets up an endpoint to

receive video files, process them, and return predictions.

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

7

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

8.2 Running the Flask App:

• Run the Flask application locally using the following command:

8.3 Expose the Flask API Using Ngrok:

• Ngrok is a tool that creates a secure tunnel to your local server, making it accessible
over the internet.

• Install Ngrok: Download and install Ngrok from its official website.
• Run Ngrok: Expose the Flask API using Ngrok
• After running this command, Ngrok will provide a public URL that can be used to

access your Flask API.

8.4 Testing the API:

• Use curl or Postman to send a POST request to the /predict endpoint with a video
file.

curl --location 'https://your-ngrok-url.ngrok.io/predict' \
--header 'Content-Type: multipart/form-data' \
--form 'file=@"/path/to/your/video.mp4"'

http://www.kaggle.com/datasets/hungle3401/faceforensics/data

8

FaceForensics++ dataset. Available at: https://www.kaggle.com/datasets/hungle3401/faceforensics/data
GitHub Repository – https://github.com/himanshu5991/DeepfakeDetectionEBS.git

9. Conclusion

It has expanded the specified workflow from the development of a deepfake detection model
to the training of a deepfake detection model and its deployment through a Flask API. The
application uses TensorFlow for model training and evaluation, and for end-users, it is
possible to upload videos and obtain corresponding predictions using the Flask API layer.
Here, Ngrok is employed to expose the API for external access to facilitate testing and
demonstration.

References

Chollet, F. (2015). Keras: The Python Deep Learning library. Retrieved from https://keras.io

Grinberg, M. (2018). Flask Web Development: Developing Web Applications with Python.
O'Reilly Media. Retrieved from https://flask.palletsprojects.com/

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Retrieved from
https://arxiv.org/abs/1801.04381

TensorFlow Developers. (n.d.). TensorFlow. Retrieved from https://www.tensorflow.org

Google Research. (n.d.). Google Colaboratory. Retrieved from
https://colab.research.google.com

Hung, L. (n.d.) FaceForensics dataset. Available at:
https://www.kaggle.com/datasets/hungle3401/faceforensics/data (Accessed: 11 August 2024).

http://www.kaggle.com/datasets/hungle3401/faceforensics/data
http://www.tensorflow.org/
http://www.kaggle.com/datasets/hungle3401/faceforensics/data

