

Configuration Manual

MSc Research Project

Master of Science in Cyber Security

Shifan Anwar Sayyed

Student ID: 22193162

School of Computing

National College of Ireland

Supervisor: Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Shifan Anwar Sayyed

Student ID:

22193162

Programme:

Master of Science in Cyber Security

Year:

2023 - 2024

Module:

MSc Research Practicum

Lecturer:

Jawad Salahuddin

Submission Due

Date:

12th August 2024 14:00

Project Title:

Anomaly Detection Method for OT/ICS Environment Using

Ensemble Learning

Word Count:

1342 Page Count: 13

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Shifan Anwar Sayyed

Date:

12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Shifan Anwar Sayyed

Student ID: 22193162

1 Introduction

The research papers motive is to develop an Anomaly Detection System using Ensemble

Learning methods. This configuration manual presents the information regarding the

hardware equipment used for performing the experiment and the software application,

languages and their libraries that are used for executing the machine learning code. This

document also explains the machine learning code and in which sequence were they were

executed.

2 Hardware Configuration

The main hardware equipment used for implementing the experiment and executing the

machine learning code is an ASUS laptop.

Laptop Model: ASUS TUF FX506HF-HN076W

Device name: LAPTOP-GFH5JVBM

Processor: 11th Gen Intel(R) Core (TM) i5-11260H @ 2.60GHz 2.61 GHz

Installed RAM: 16.0 GB (15.7 GB usable)

System type: 64-bit operating system, x64-based processor

Figure 1: ASUS Laptop Specification.

Edition: Windows 11 Home Single Language

2

Version: 22H2

Installed on: 19-07-2023

OS build: 22621.2428

Experience: Windows Feature Experience Pack 1000.22674.1000.0

Figure 2: Device Operating System Specification.

3 Software Specification

Anaconda Navigator was used as the Integrated Development Environment (IDE) for

implementation of the research project and the programming language used is Python which

comes already installed with Anaconda Navigator. Python was selected as it is the most

commonly used for machine learning experiments and it has many libraires and packages for

machine learning. Jupyter Notebook was used as the platform from within Anaconda

Navigator to execute the machine learning code written in Python.

3.1 Software and Libraries Version

• Anaconda Navigator Version: 2.5.0

• Python Version: 3.11.5

• Jupyter Notebook Version: 6.5.4

• Pandas version: 2.0.3

• Numpy version: 1.24.3

• Scikit-learn version: 1.3.0

4 Implementation

4.1 Data Pre-processing

First, we import all the libraries required for performing data pre-processing. Figure 3.

displays all the imported libraries for pre-processing.

3

Figure 3: Importing Required Pre-Processing Libraries.

Then we store the path of the original dataset into a variable.

Figure 4: Storing File Path of the Original Dataset.

Then we create a dictionary where we mention each label along with the count it will be

under sampled to. Here we will be Under Sampling Normal Traffic to 50,00,000 and

Combined Attack traffic to 50,00,000 datapoints.

Figure 5: Defining Dictionary for Target Count.

Then we create a dictionary to store the under sampled datapoints of each label. As the

dataset is huge it can’t be stored directly in a single dataframe hence we mention the chunk

size in the variable chunk_size.

Figure 6: Defining Dictionary for Under Sampled Datapoints.

4

First, we create a For loop for processing the dataset in chunks of 2000000 then a nested For

loop for looping through each label mentioned in the target_count variable. Then we filter the

datapoints of the current chunk to the corresponding label. Then we calculate the number of

under sampled datapoints for the current label and if the datapoints is less than the count

mentioned in the target_count variable then we calculate the remaining required datapoints

and then append it to the sample data.

Figure 7: Under Sampling the Datapoints.

Once all the chunks are processed, we concat all the sample data for each of the label into a

dataframe and then we randomize the sequence of the datapoints and finally export the under

sampled dataframe to a CSV.

Figure 8: Concatenating all the under sampled labels.

Then we load the Under sampled and balanced dataset into a dataframe using the

pd.read_csv() method.

Figure 9: Loading Dataset into Dataframe.

Performing feature selection where we remove irrelevant feature and features with string

values using the drop() method.

5

Figure 10: Feature Selection.

Performing label encoding where we map the label string values to numeric values. Here we

map Normal traffic to 0 and Attack traffic to 1. After that we remove the original label

column which has string label values.

Figure 11: Label Encoding.

Here first we replace infinity values with NaN (Not a Number) values and then drop rows

with NaN values.

Figure 12: Handling Missing and NaN values.

Next we perform standardization of the features. So first we separate the features and the

label and then initiate StandardScaler(). Then we standardize the features and then convert

them into a dataframe and at the last step we concat the original label with the standardized

features.

Figure 13: Performing Standardization.

6

Finally, we export the pre-processed dataframe to a CSV.

Figure 14: Exporting the Pre-Processed Dataframe.

4.2 Ensemble Learning Code

First, we import all the libraries required for performing the experiment. Figure 3. Displays

all the imported libraries for the experiment.

Figure 15: Importing Required Libraries.

Then we load the pre-processed dataset into a dataframe using the pd.read_csv() method.

Figure 16: Loading Dataset into Dataframe.

Next, we must create training and testing subset of the dataset. For that first we must separate

the features and labels from the dataset and store them in variable. Where features are stored

in variable X and label is stored in variable y.

Then using the train_test_split library we create training subset - X_train and y_train and

testing subset X_test and y_test. For parameters, we keep the test_size which is the

percentage of split between training and testing subsets as 70% training subset and 30%

testing subset and random_state as 42 for reproducibility.

7

Figure 17: Creating Training and Testing Subsets.

Here we initiate all the 7 base classifiers, for utilizing multiple threads of the CPU parallelly

we keep the parameter of n_jobs=-1 for the base classifiers which support it,

random_state=42 for reproducibility, max_iter for specifying the maximum number of

iteration for optimization and n_estimators for specifying the number of trees.

Figure 18: Initiating Base Classifiers.

Here we train all the 7 base classifiers on training subsets - X_train and y_train.

Figure 19: Training Base Classifiers.

Here we predict all the 7 base classifiers on test subset - X_test which only contains the

features.

Figure 20: Predicting Base Classifiers.

For the evaluation part, we first initiate classification report which contains the evaluation

metrics like Precision, Recall and F-1 Score. The parameter of output_dict=True converts

the classification report in dictionary, this is done so later we can extract metrics of a specific

class. Values of classification report are stored in variable named with each base classifier.

Then we extract the metrics from these variables of the positive class which is the attack

class/1.

Then we extract the values of TP, TN, FP and FN for each base classifier via initiating the

confusion matrix where the parameter ravel() is used for convert the values from confusion

matrix into 1-Dimension array.

8

Figure 21: Evaluation of Base Classifiers Part - 1.

Then we calculate the Accuracy, False Positive Rate (FPR) and False Positive Rate (FNR)

and extract the metric values of Precision, Recall and F-1 Score.

Figure 22: Evaluation of Base Classifiers Part – 2.

9

Figure 23: Evaluation of Base Classifiers Part – 3.

Then a dataframe is created to arrange and display the output metrics for each base classifier.

Figure 24: Evaluation of Base Classifiers Part – 4.

10

Then we initiate, train and predict the ensemble technique Voting with parameter of

voting=hard for majority voting and n_jobs=-1 for multipe threads usage.

Figure 25: Initiating, Training and Predicting Voting Ensemble Technique.

Next we initiate, train and predict the ensemble technique Stacking with parameter of

final_estimators=LogisticRegression() for specifying the meta-classifer algorithm and

n_jobs=-1 for multipe threads usage.

Figure 26: Initiating, Training and Predicting Stacking Ensemble Technique.

Next we initiate, train and predict the ensemble technique Bagging with parameter of

base_estimator=DecisionTreeClassifier(random_state=42) for specifying the base model

algorithm, random_state=42 for reproducibility and n_jobs=-1 for multipe threads usage.

Figure 27: Initiating, Training and Predicting Bagging Ensemble Technique.

11

Then we initiate, train and predict the ensemble technique Boosting with parameter of

base_estimator=DecisionTreeClassifier(random_state=42) for specifying the base model

algorithm, random_state=42 for reproducibility, n_estimators=100 for specifying the

number of trees and n_jobs=-1 for multipe threads usage.

Figure 28: Initiating, Training and Predicting Boosting Ensemble Technique.

Then we carry out the same evaualtion process as carried out for base classifiers, only this

time for Ensemble Techniques.

Figure 29: Evaluation of Ensemble Techniques Part – 1.

12

Figure 30: Evaluation of Ensemble Techniques Part – 2.

13

Figure 31: Evaluation of Ensemble Techniques Part – 3.

After executing the above code you will get the output for Ensemble Techniques.

