ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MS in Cybersecurity

Ranjith Kumar Saravanan
Student ID: X22209751

School of Computing
National College of Ireland

Supervisor: Khadija Hafeez

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
¢ Project Submission Shee
Ireland
School of Computing
Student Name: Ranjith Kumar Saravana
Student ID: X22209751
Programme: MS in Cybersecurity Year: 2023-2024
Module: Research Practicum
Lecturer: Khadija Hafeez
Submission Due
Date: 19/08/2024
Project Title: Optimizing Network Security: Performance Analysis of Neural

Network Models for Intrusion Detection

Word Count: 415 Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ranjith Kumar Saravana

Date: 19/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ranjith Kumar Saravanan
Student ID: X22209751

1 Introduction

This configuration manual can be used to run the code of the model. It has all the steps
mentioned to implement the model. This project is based on machine learning where two
algorithms have been used, the ANN algorithm and LTSM for intrusion detection.

2 Requirement of Hardware

Operating system: Windows 11 home (64 bit)

RAM: 8GB/16 GB

Storage: 1TB HDD or SSD

Processor: 11th gen - Intel core i7 @ 2.80GHz 2.80 GHz
System type: 64-bit operating system (x64-based processor).

3 Requirement of Software

The following are the software that must be installed to execute the project.

Software Version
Anaconda 245.0
Python 3.7

Anaconda distributed gives a platform to perform AI/ML projects. It has the capability to
handle large dataset and process them.

Jupyter Notebook is used for running the python code as it is an IDE, the python libraries can
be used in this the visualization and graphs are also supported in this.

Download Anaconda Distribution | Anaconda

Once the Anaconda is installed, the anaconda navigator should be opened and under that
Jupyter notebook option will be there it will open the IDE where the notebook can be open or
created it comes with pre-installed libraries and python.

https://www.anaconda.com/download

O

i) ANACONDA NAVIGATOR o

ﬂ watsonx

ORACLE &
Cloud Infrastructure .

4 Pre-requisite
Following libraries has to be installed for this project:

import pandas as pd

from pathlib import Path
import numpy as np

import matplotlib.pyplot as plt
import pickle

import yagmail

import warnings
warnings.filterwarnings("ignore")

import os

import pandas as pd

from pathlib import Path

pd.set option("display.max_columns", None)
import numpy as np

import matplotlib.pyplot as plt

from 1ib file import lib path

#matplotlib inline

import random

import seaborn as sns

import pickle

from sklearn.utils import resample

from sklearn.preprocessing import MinMaxScaler

from sklearn.model selection import train_test split

5 DataSet

In this project NSL-KDD dataset has been used, it has been taken from Kaggle it has about 41 features and
125,973 records. Each of the data have a label which marks them weather they are normal or malicious. This
data is good for intrusion detection system as it has all the information about the network.

https://www.kaggle.com/datasets/hassan06/nslkdd

6 Data Loading and Preprocessing
(1_IDS_Final Preprocessing_File.ipynb)

Data importing

v Data Loading

[] df = pd.read csv("concatenated file.csv")

df.shape

S+ (148517, 42)

Data Preprocessing

v Data Preprocessing

[] df.head(10)

=

duration protocol_type

[] 0 tcp fip_data
1 0 udp other
2 0 cp private
3 0 tcp http
4 1] tcp http
5 0 tep private
6 0 tcp private
7 0 tcp private
8 1] fcp remote_job
9 0 tcp private

Converting to string

[1 # check data type of 'labels’
print(df['labels’'].dtype)

SF
SF
S0
SF
SF
REJ
S0
S0
50
S0

491
146

o
232
199

o o o © o

0

]

o
8153
420

o o o o o

service flag src_bytes dst_bytes land wrong_fragment urgent

0

]
o
0
o
0
o
0
o
0

0] 0
0 0 0
0 0 0
0 0 0
0 0 L]
0 0 0
0] L]
0 0 0
0 0 0
0] 0
column

Convert to string if necessary

df['labels’] = df['labels'].astype(str)

Resampling the data

0

e © 0o o @ © @ o o

0

o © © © @ 2 =4 ©o o

0

o © © o © o © © ©

0

o o o ©o @ © © © ©

0

o © ©o © © © © © ©

hot num_failed_logins logged_in num_compromised root_shell su_attempted num_root

o © © © @ & @ @ © ©

https://www.kaggle.com/datasets/hassan06/nslkdd

[1 label counts = df['labels'].value counts()

Step 2: Define labels to keep
labels_to_keep = label counts[label counts >= 1@80@].index

Step 3: Filter data to keep only the selected labels
cleaned data = df[df['labels’].isin(labels to keep)]

Step 4: Resample each label to have exactly 5e0e samples
resampled_data = []
for label in labels to keep:
label data = cleaned_data[cleaned_data['labels’] == label]
if len(label data) < 5600:
Upsample if there are fewer than 5000 samples
resampled label data = resample(label data, n_samples=5800, replace=True)
else:
Downsample if there are more than 5000 samples
resampled_label data = resample(label data, n_samples=5000)

resampled data.append(resampled label data)

Combine the resampled data
final data = pd.concat(resampled data, ignore index=True)

Print the shapes and counts
print("Filtered data shape:", final_data.shape)
print(”Label counts:\n", final data['labels’].value counts())

Spliting the dataset

[1 x train, X test, y train, y test = train_test split(X, y, test size=0.2, shuffle=True, stratify=y)
print(X_train.shape, y train.shape, X test.shape, y test.shape)

Sv (32000, 41) (32000, 1) (80ee, 41) (8000, 1)

7 Model Training and
Testing(2_IDS_Final_ModelTraining.ipynb)

Algorithm: ArtificialNeuralNetwork

o from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, BatchMormalization, Dropout, Input
from tensorflow.keras.regularizers import L2
from tensorflow.keras.optimizers import Adam, RMSprop
from tensorflow.keras.callbacks import EarlyStopping

o model = Sequential()
model . add(Input(shape=(X_train.shape[1],)))

model . add(Dense(units=128, activation='relu', kernel regularizer=L2(12=0.0001)))
model . add(BatchNormalization())
model . add(Dropout(6.3))

model . add(Dense(units=256, activation="relu’, kernel regularizer=L2(12=0.0001)))
model . add(BatchNormalization())
model . add(Dropout(6.3))

model .add(Dense(units=256, activation="relu’, kernel regularizer=L2(12=0.0001)))
model .add(BatchNormalization())
model . add(Dropout(6.3))

model .add(Dense(units=256, activation="relu’, kernel regularizer=L2(12=0.0001)))
model .add(BatchNormalization())
model . add(Dropout(6.3))

model .add(Dense(units=512, activation="relu’, kernel regularizer=L2(12=0.0001)))
model .add(BatchNormalization())
model . add(Dropout(6.3))

model.add(Dense(units=8, activation='sigmoid'))

Adding optimizer
optimizer = Adam(learning_rate=0.001)

v Result Analysis

[] ANN accuracy = accuracy_score(
y_true=true_ labels,
y_pred=predicted labels

)
print(f"validation accuracy of ArtificialNeuralNetwork model is {ANN_accuracy*1ee:.2f}%")

S5+ validation accuracy of ArtificialNeuralNetwork model is 66.70%

Algorithm:2 LongShortTermMemory
[1 # x train=np.reshape(a=X train.values,newshape=(X train.shape[@],X train.shape[1],1))
x_test=np.reshape(a=X_test.values,newshape=(X_test.shape[®],X test.shape[1],1))

time_steps = 1
num features = X train.shape[1] # 41

X_train_reshaped = np.reshape(X_train.values, (X_train.shape[©], time steps, num features))
X_test reshaped = np.reshape(X_test.values, (X test.shape[@], time_steps, num_features))

print(X train reshaped.shape, X test reshaped.shape) # Should print (86845, 1, 41) and (21712, 1, 41)

[1 y train np = y train.values.flatten()
y test np = y test.values.flatten()
num classes = len(np.unique(y train np))
num classes
print("Unique values in y train np:", np.unique(y train np))
print("Unique values in y test np:", np.unique(y test np))

num_classes = len(np.unique(y train_np))

y_train_one hot = to categorical(y train np, num classes=num_classes)
y test one hot = to categorical(y test np, num classes=num classes)

print(y_train one hot.shape, y test one hot.shape)

[

Unique values in y train np: [@8 1 2 3 4 5 6 7]
Unique values in y test np: [123 456 7]
(32000, 8) (8000, 8)

v Result Analysis

Accuracy Score

[1 1lstm accuracy=accuracy score(y true=y true,y pred=lstm _pred)
print("LSTM model accuracy is {:.2f}%".format(lstm accuracy*100.0))

3~ LSTM model accuracy is 99.10%

Comparision of both the models

)

Accuracy comparision of used models v B &R

LongShortTermMemory

ANN

0.0 0.2 0.4 0.6 08 1

8 Inference File (3_Final_TestFile-checkpoint.ipynb)

o Real time Intrusion detection: The LSTM model has been implemented on the
inference system for the monitoring of network traffic.

o Treat response: The system first checks the IP is present in the block list if not it
immediately adds the IP to the block list.

o Better Accuracy: With LSTM model the system can be able to protect the network
more accurately and efficiently.

Load trained model

[1 # Load the LSTM model
model = load model('models/LongShortTermMemory model.hs', compile=False)

Checking if the IP is present in the Blocklist

° def phase_1_verification(filepath):
df = pd.read csv(filepath)
ip_df = pd.read_csv("Block IP List.csv")
input_ip address = df.pop('ip address').values[@].strip()

if input_ip_address in ip_df['IP Address'].values.tolist():
history attack = ip df.loc[ip df['IP Address'] == input_ip address]['Found Attack'].values[@]

return {"STATUS": True, "IP ADDRESS": input ip address, "ATTACK": history attack}
else:

return {"STATUS": False}

Model prediction

o if result["sSTATUS"] == False:
Reshape input data to match the expected shape of the LSTM model
input _data reshaped = np.expand dims(input data.values, axis=1)

Make predictions with the reshaped data
prediction = model.predict(input_data reshaped)
prediction = np.argmax(prediction, axis=1)

ClassIndex = prediction[®]

ClassLabel = class labels[ClassIndex]

if ClassLabel != "normal’:
print(f'Model predicted class is: {ClassIndex}')
print(f'Model predicted label is: {ClassLabel}')
blockIP = f"{df['ip _address'][@]} IP Address is added in Block List."
ip = df['ip_address'].tolist()
print(blockIP)

else:
print(f'Model predicted class is: {ClassIndex}')
print(f'Model predicted label is: {ClassLabel}')
blockIP = f"{df["ip_address®]|[@]} is a Genuine IP Address.”
print(blockIP)

else:
print(“Blocked Client Found.™)

4

Model predicted class is: 3
Model predicted label is: nmap
192.168.1.21 IP Address is added in Block List.

[1 if result["STATUS"] == False:
def update logfile(ip address=None, predicted attack=None):
new data = {'IP Address': [str(ip address).strip()],
"Found Attack': [predicted attack]}
new row df = pd.DataFrame(new _data)

try:
df = pd.read csv("Block IP List.csv")
except FileNotFoundError:
df = pd.DataFrame(columns=["'IP Address’, 'Found Attack'])

df = pd.concat([df, new row df], ignore index=True)
df.to _csv("Block TP List.csv"”, index=False)
return True

if ClassLabel != "normal’:
update logfile(ip address=ip[®], predicted attack=ClasslLabel)
print("It's a Attack File & IP Address added in Block List")
else:
print("It's a Normal File.")
else:
print(“"Blocked Client Found."™)

=¥ It's a Attack File & IP Address added in Block List

