
Configuration Manual

MSc Research Project

Cybersecurity

Saiprasad Salian
Student ID: x22183761

School of Computing

National College of Ireland

Supervisor: Michael Prior

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Saiprasad Salian

Student ID: x22183761

Programme: Cybersecurity

Year: 2024

Module: MSc Research Project

Supervisor: Michael Prior

Submission Due Date: 12/08/2024

Project Title: Configuration Manual

Word Count: 785

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sai Salian

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Saiprasad Salian
x22183761

1 Introduction

The study proposed an approach for Phishing Detection using DistilBERT for sentiment
analysis with SVM as a classifier. This documnet provides the different software and
hardware requirements required for the setup of the proposed design. We have included
the implementation as per the flow required below. The primary goal of the research is to
find out phishing emails from a dataset containing spam and real emails. All while using
the power of sentiment analysis and classification. The research proposes and implements
the methodology for a system that detects phishing emails. There are several key steps
to this implementation which we have covered below.

2 System Requirements

Given below are the hardware and software requirements to replicate the proposed ap-
proach.

2.1 Software Requirements

• Python v3

• Google Colab

• Google Drive

2.2 Hardware Configuration of Google Colab

• CPU RAM of 12.7 GB

• GPU RAM of 15 GB

• Disk Space of 78.2 GB

2.3 Base System Hardware configuration

• Processor -12th Gen Intel(R) Core(TM) i5-1235U 1.30 GHz

• RAM - 16.0 GB (15.7 GB usable)

• Hard Disk - 500 GB SSD

• OS - Windows 11 64 bit

1



2.4 Libraries

• Pandas

• NumPy

• NLTK

• Torch

• Joblib

• Scikit-learn

• Transformers

• Matplotlib

• Google Colab‘ (for cloud-based implementation)

3 Implementation

3.1 Preparing the Data

3.1.1 Mounting Google Drive

We start off by mounting the google drive so that we can access the dataset that we’ve
stored in the drive.

Figure 1: Mounting Google Drive

3.1.2 Importing Libraries:

Importing essential libraries is the next step to avoid any errors later. Libraries such as
NumPy, Transfromers, sklearn, torch and so on are imported.

2



Figure 2: Importing all the libraries

3.1.3 Downloading NLTK Data:

Using the NLTK we download stopwords which will be further used for preprocessing of
the data.

Figure 3: Downloading Stopwords

3.1.4 Loading the Dataset:

Next step is to load the dataset from the google drive and just to check is the dataset is
loaded we print the first few rows from the dataset.

Figure 4: Loading the Dataset

3.1.5 Keyword Frequency Analysis:

This analysis looks for and counts the instances of particular keywords , such ”money,”
”offer,” and ”urgent,” that are frequently linked to phishing attempts in a dataset of
emails. When these keywords are compared to their frequency in phishing and non-
phishimg emails, trends that highlight common phishing strategies are revealed. A bar
chart is used to illustrate the findings and display the frequency of these keywords in each
category.

3



Figure 5: Creating a bar chart

3.1.6 Text Preprocessing:

This part is very important in order to clean the raw text data from the email dataset.
All the test is first converted into lower case, then the punctuation marks are removed,
and common stopwords such as ’and’, ’the’, and ’is’ are filtered out to reduce the noise.
When we make sure that the data going as input to the models is clean it helps improve
the overall efficiency.

Figure 6: Preprocessing the text

3.1.7 Data Splitting:

Let’s split the datasets into training and testing sets. For this we use ’train test split’

from the module ’sklearn.model selection’. Using this makes sure that data has been
split randomly without any bias.

Figure 7: Splitting the data

4



3.2 Model Training

In this section we will explain the steps required for embedding generation using the
DistilBERT model and training the SVM classifier.

3.2.1 Loading the Tokenizer and Model:

It starts off with loading the pre-trained DistilBERT tokenizer and model.

Figure 8: Loading the tokenizer and model

3.2.2 Setting Up the Device:

Here we are using the GPU as it’ll be faster to run the DistilBERT model.

Figure 9: Using the GPU

3.2.3 Generating Embeddings:

Text data are transformed into numerical vectors that represent the context and meaning
of the words. Since DistilBERT can not be feed with regular data we first need to
tokenized them. The output of this model is then feed to the classifier for traininga nd
testing purpose.

Figure 10: Generating Embeddings

5



3.2.4 Converting Embeddings:

SVM doesn’t take in the embeddings as it is for input, so we need to convert them into
real number format and then use for classification.

Figure 11: Converting the embeddings

3.2.5 Training the SVM Classifier:

The numeral real number representation produced in the previous step is then feed to
the SVM classifier for the purpose of training. We are using the linear kernel SVM as it
helps maintain efficiency.

Figure 12: Training the SVM

3.3 Testing

Once the model is trained it’s time to test the model with the unseen data left after the
splitting.

3.3.1 Making Predictions:

Now, we predict the labels using the trained SVM model.

Figure 13: Making Prediction

3.3.2 Evaluating the Model:

After the prediction is done we evaluate the model by checking the metrics and confusion
matrix.

6



Figure 14: Confusion Matrix

Figure 15: Evaluation metrics

7



3.3.3 Saving and Loading the Model:

As the last step we saved the model using ’joblib’ library to be used in future without
having to retrain the model.

Figure 16: Saving the model

8


	Introduction
	System Requirements
	Software Requirements
	Hardware Configuration of Google Colab
	Base System Hardware configuration
	Libraries

	Implementation
	Preparing the Data
	Mounting Google Drive
	 Importing Libraries:
	Downloading NLTK Data:
	 Loading the Dataset:
	 Keyword Frequency Analysis:
	 Text Preprocessing:
	 Data Splitting:

	 Model Training
	 Loading the Tokenizer and Model:
	 Setting Up the Device:
	 Generating Embeddings:
	 Converting Embeddings:
	 Training the SVM Classifier:

	Testing
	Making Predictions:
	 Evaluating the Model:
	 Saving and Loading the Model:



