
Configuration Manual

MSc Research Project

Cybersecurity

Piyush Raut
Student ID: 22184791

School of Computing

National College of Ireland

Supervisor: Kamil Mahajan

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Piyush Raut

Student ID: 22184791

Programme: Cybersecurity

Year: 2023-2024

Module: MSc Research Project

Supervisor: Kamil Mahajan

Submission Due Date: 2/9/2024

Project Title: Configuration Manual

Word Count: 3092

Page Count: 30

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 25th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Piyush Raut
22184791

1 Introduction

This configuration manual outlines the setup and deployment of an intelligent filter solu-
tion for Docker container that uses multiple open-source IDS tools to detect DoS attacks.
The solution integrates Snort, Suricata, and Zeek within a Docker container environment,
utilizing the ELK Stack for log management and real-time monitoring. This manual will
guide you through the necessary system configurations, deployment steps, and evaluation
methods used in this research project.

2 System Configuration

This section describes the details on system configuration and installation of Docker,
Suricata, Snort, Zeek, and the ELK stack.

2.1 Host System Configuration

� OS: Windows 11 64-bit

� Virtualization Hypervisor: VirtualBox

� Processor: Intel Core i9

� RAM: 16 GB

� Storage: 1TB SSD

2.2 Virtual Machines

The research project involves the configuration of two main Virtual Machines (VMs) on
VirtualBox: the first is an Ubuntu VM that hosts the Docker containers as well as the
implemented solution, and the second is a Kali Linux VM, which acts as an attacker
machine to launch DoS attacks on the Ubuntu VM.

1. Ubuntu 23.01 VM (Host VM)

� RAM: 9 GB

� Processors: 5

� Storage: 45 GB

1



2. Kali Linux 2024.2 (Attacker VM)

� RAM: 2 GB

� Processors: 2

� Virtual Storage: 80 GB

2.3 Docker Containers

Docker container and Docker-compose is installed on Ubuntu OS using the following
command :

Figure 1: Installation of Docker and Docker-compose on Ubuntu 23.01

2.4 Installation of Suricata IDS

Here, the installation and automated execution of Suricata in Docker container is ex-
plained.

The Dockerfile provided below is used to create a Docker container with Suricata
installed and configured. The Docker container is built using a base image called docker-
suricata that already has Suricata installed, and it customizes the setup by adding specific
rules and configuration files. (Ish, 2024)

The Dockerfile used to set up Suricata in a Docker container begins by using the base
image jasonish/suricata:latest, which already includes Suricata pre-installed. (Ish;
2024) This approach simplifies the setup process as it eliminates the need to manually in-
stall Suricata within the Docker image. To organize the environment within the container,
the RULES DIRECTORY and LOGS DIRECTORY ENV variables are defined to
specify where Suricata should place its rules and logs. The Dockerfile then copies the
necessary files, including the suricata.rules file into the Suricata rules directory and

2



Figure 2: Dockerfile used to install Suricata IDS on Docker container

the suricata.yaml configuration file into the appropriate configuration directory. A logs
directory is created within the container with write permissions. At the end the default
command to run Suricata with the custom suricata.yaml configuration file is set, that
enables it to listen on the enp0s3 interface.

Figure 3: runsuricata.sh bash script to build and execute the Suricata Docker container

To automate the process of building and running the Suricata Docker container, a
bash script called ‘runsuricata.sh’ is used. It executes the ‘docker build -t suricata-
custom . command’ which builds the Docker image using the Dockerfile. The docker
run command to run the Suricata container is used with several options which are –rm
automatically removes the container once it stops, -it runs the container in interactive
mode with a terminal attached, –net=host shares the host’s network stack with the con-
tainer, allowing Suricata to monitor network traffic directly, –cap-add=NET ADMIN
grants network administration privileges to the container, –cap-add=SYS NICE al-
lows the container to modify process priorities; and -v $(pwd)/logs:/var/log/suricata
maps the host’s logs directory to the container’s /var/log/suricata directory, enabling
constant storing of Suricata logs.

3



2.5 Installation of Snort

The Dockerfile used to configure Snort IDS within a Docker container. The configuration
files including ‘snort.conf’ are copied into the container, which sets up the necessary rules
and configurations for Snort to function as an IDS and IPS.

Figure 4: Dockerfile used to install Snort IDS on Docker container

Figure 5: runsnort.sh bash script to build and execute the Snort Docker container

To automate the deployment process, a bash script ‘runsnort.sh’ is utilized. The
script begins by building the Docker image with the command docker build -t snort-ips

4



., which constructs the image and tags it as snort-ips. Once the image is built, the script
sets up iptables rules on the host system to redirect traffic toNFQUEUE, allowing Snort
to inspect packets. Specifically, the script adds rules to redirect both incoming (INPUT)
and outgoing (OUTPUT) traffic to NFQUEUE with the queue number set to 0. Following
this setup, the script runs the Snort Docker container using the command ’docker run
–net=host –privileged -it -v $(pwd)/logs:/var/log/snort snort-ips’, where the
–net=host option shares the host’s network stack with the container, and –privileged
grants the container necessary permissions. The container is run interactively (-it), and
the logs are stored constantly. After Snort stops running, the script automatically cleans
up the iptables rules by deleting the previously added NFQUEUE rules for both INPUT
and OUTPUT. (Snort Setup Guides for Emerging Threats Prevention; n.d.)

2.6 Installation of ELK stack

The ELK stack is installed on Docker container using the docker-compose file. The
docker-compose.yml file states the necessary configurations for Elasticsearch, Logstash
and Kibana by ensuring that they work together to process and display logs from Suricata,
Zeek and Snort. (Lapenna; 2024)

To automate the deployment of the ELK Stack, the ‘runelk.sh’ bash script is used.
This script contains the command sudo docker-compose up, which launches all the services
defined in the Docker Compose file. By using Docker Compose, Elasticsearch, Logstash,
and Kibana are started up together with a single command. This approach not only
automates the setup but also ensures that each component of the ELK stack is configured
correctly and starts in the proper order i.e first Logstash, then Elasticsearch and finally
Kibana.

2.7 Installation of Zeek

Due to resources and operation time limitations, Zeek is installed on Ubuntu machine
itself rather than installing on Docker container, as building a Zeek image on Docker
requires about 2283s time, which is not feasible for the proposed solution. Here, first all
the required dependencies for Zeek are installed. Further the zeek repo is cloned from
the official Github repo of Zeek and installed using make tool. (Haque; 2023)

5



Figure 6: Docker-compose file used to install and configure ELK stack on Docker

6



Figure 7: runelk.sh bash script

Figure 8: Installing the dependencies for Zeek

7



Figure 9: Verifiying the installation of Zeek

3 Configuration of the installed tools

In this section, the details on the configuration of Suricata, Snort, Zeek and ELK stack
are described.

3.1 COnfiguration of Suricata

The suricata.yaml file is used to configure Suricata to monitor and detect, by defining
crucial network variables and port groups. Here, HOME NET has specific IP addresses
within the Docker environment, such as 10.0.2.15, 172.7.0.3, and 172.7.0.2, which
represent different containers and network interface used by DOcker containers. The
configuration enables Suricata to closely monitor HTTP traffic on port 80. The
logging setup is also done by utilizing eve.json for detailed JSON event logging, this
is ideal for integration with monitoring tools like ELK Stack, and fast.log for quick
reference alerts. The packet capture is configured for performance using the af-packet
mode on the enp0s3 interface for efficient traffic analysis.

8



Figure 10: Configuration file for Suricata - suricata.yaml

9



After this configuration is done, the custom rules to detect DoS attack packets are
defined in the suricata.rules file. the rules are designed to identify the DoS attacks that
use ICMP, TCP SYN, UDP, HTTP, and DNS floods attacks. Each of these rules sets
specific thresholds, such as detecting more than 20 packets per second, to ensure that
Suricata accurately identifies these attacks. These rules include alerts for container-to-
container communication, that alert potential unauthorized access or lateral movement
within the network. For example, traffic between 172.7.0.2 and 172.7.0.3 triggers alerts,
indicating possible container-to-container communication, which could be a sign of an
attack.

Figure 11: Customized rules file for Suricata - suricata.rules

3.2 Configuration of Snort

In this setup Snort acts as IDS as well as IPS to detect as well as prevent incoming
DoS attack packets. The snort.conf file is used to configure the operational paramet-
ers of Snort. It begins by specifying the paths for essential rule files, such as dos.rules,
which is the customized rules file that has specific detection rules used in this configura-
tion. The file sets up key network variables, where HOME NET includes IP addresses
10.0.2.15, 172.7.0.3, and 172.7.0.2 for different Docker container. EXTERNAL
NET is configured to monitor all traffic not originating from these internal addresses,
ensuring comprehensive monitoring of external threats.

Moreover, Snort is configured to operate in inline mode, enabling it to function as
both an IDS and IPS. This mode allows Snort not only to detect suspicious traffic but
also to block it in real-time, providing an active defense mechanism against potential
attacks. The configuration includes preprocessors for stream reassembly of TCP, UDP,
and ICMP protocols, enhancing ability of Snort to analyze and track ongoing connections
accurately. The detection engine is optimized using the ac-split search method, which
balances performance in identifying threats. Output plugins are also configured to log
alerts in a fast, readable format and capture packet data for detailed analysis.

10



Figure 12: Configuration file for Snort - snort.conf

The dos.rules file contains specific customized rules designed to detect and respond
to various types of DoS attacks. For example, the ICMP flood rule is triggered when a
single source sends more than five ICMP packets within a second. Similarly, the TCP SYN
flood rule monitors for a high volume of SYN packets which could indicate an attempt
to overwhelm the target with incomplete handshake requests. The file also includes rules
for detecting UDP floods, HTTP floods, and DNS amplification attacks each configured
with precise thresholds to minimize false positives while ensuring effective detection of
malicious activity.

In addition to these DoS related rules, the dos.rules file also includes rules that monitor
for unauthorized communication between Docker containers. For instance, specific alerts
are set up to detect traffic between 172.7.0.2 and 172.7.0.3, as well as communication
between these containers and the host machine at 10.0.2.15. These rules are critical
for identifying potential lateral movement by attackers within the Docker environment,
ensuring that any suspicious activity is promptly flagged for further investigation.

11



Figure 13: Rules file for Snort - dos.rules

3.3 Configuration of Zeek

The node.cfg file is used to define how the Zeek operates. In this configuration, Zeek is
configured to run in standalone mode (type=standalone), which is suitable for envir-
onments where Zeek is deployed on a single host. The host parameter is set to localhost,
indicating that Zeek will monitor traffic on the local machine. The interface enp0s3 is
specified, which is the network interface Docker uses and Zeek will monitor for traffic ana-
lysis. This setup is straightforward and focuses on ensuring that Zeek effectively monitors
and analyzes network traffic through the interface.

12



Figure 14: Configuration file for Zeek - node.cfg

The detect-dos.zeek file is used defines rules to detect various types of flood based
DoS attack including ICMP, TCP, and UDP floods.

Thresholds are established to detect flood attacks that is set to a count of 10. These
thresholds indicate that if the number of packets from a single source exceeds this limit
within a certain timeframe, an alert will be triggered. For example the ICMP flood
detection rule counts ICMP packets from each source and generates an alert if the number
exceeds the defined threshold. Similarly, TCP and UDP flood detection rules count
packets and trigger alerts based on the thresholds defined for each protocol.

Each event handler within the rules file is used for monitoring a specific type of packet
(ICMP, TCP, or UDP). When the packet count from a single source surpasses the set
threshold, a notice is generated, indicating a potential DoS attack. For example, if more
than 10 TCP packets are received from a single source within the set timeframe, the rule
triggers a TCP Flood notice, which logs the event with a message identifying the source
of the potential attack.

13



Figure 15: Rules file for Zeek - detect-dos.zeek

3.4 Configuration of ELK stack

The logstash.conf file is crucial in defining how Logstash processes incoming logs from
various sources—namely Snort, Suricata, and Zeek before sending them to Elasticsearch
for storage and analysis. The configuration is organized into three main sections: input,
filter, and output. In the input section, Logstash is set up to read log files from three
distinct locations: Snort logs located at /var/log/snort/snort.log*, Suricata logs from
/var/log/suricata/eve.json, and Zeek logs from /opt/zeek/logs/current/notice.log.

14



Figure 16: Configuration file for Logstash - logstash.conf

3.5 Setup of Attacker Container

To conduct testing of various scenarios, 2 different containers are setup i.e attacker con-
tainer and victim container, using the Dockerfiles. The Dockerfile for the attacker con-

15



tainer starts with an ubuntu:latest image and installs several utilities necessary for
generating network traffic, such as hping3, iputils-ping, and python3-scapy. The
Dockerfile sets up environment variables (TARGET and DNS SERVER) to specify
the target IP address and DNS server for the attacks. The container is configured to ex-
ecute a sequence of network attacks, including ICMP Flood, TCP SYN Flood, and
UDP Flood, using the hping3 tool. Each attack is initiated with randomized source IPs
targeting the specified TARGET i.e the victim container.

Figure 17: Dockerfile for building attacker container

The bash script attack.sh automates the process of building and running the attacker
container. It first removes any existing container with the same name, builds the Docker
image, and then runs the container with the necessary privileges to perform network
operations. The container is run in detached mode (-d), allowing it to execute the
scripted attacks independently.

Figure 18: Bash script for executing attacker container

16



3.6 Setup of Victim Container

The Dockerfile for the victim container is also based on the ubuntu:latest image and
installs basic networking tools like iputils-ping and net-tools. The victim container is
designed to be a target for the attacks generated by the attacker container, simulating a
real-world scenario where a networked system is subjected to malicious traffic. The CMD
in the Dockerfile keeps the container running by tailing /dev/null, this ensures that it
remains active and responsive during the attack simulations.

Figure 19: Dockerfile for building victim container

The bash script victim.sh is used to build and execute the victim container. Similar
to the attacker script, it removes any existing container with the same name then builds
the Docker image, and runs the container with the appropriate privileges. The victim
container is also run in detached mode, allowing it to stay active while under attack.

Figure 20: Bash script for executing victim container

4 Testing and Analysis

In section describes the testing done for various attack scenarios and also describes the
testing tools used in testing simulation.

4.1 Tools and Automated scripts used in testing

Bash scripts are used for attacking the target using tools hping3 and scapy. The bash
script test.sh uses hping3 tool to launch ICMP, TCP and UDP flood attacks on the

17



mentioned target IP. Similarly, attackscapy.py is a python-based script that uses scapy
to launch ICMP, TCP and UDP flood attacks on target IP. Also, LOIC tool is installed
on Kali attacker machine and is used to simulate attacks from Kali Linux machine. (?)
To launch attack from Windows system, nping tool is used, this is done used creating a
bash script for attack simulation.

Figure 21: Bash script test.sh designed to launch attack using hping3

Figure 22: Python script scapy.py designed to launch attack using Scapy

18



Figure 23: LOIC tool used to launch attack from Kali machine

Figure 24: Bash script script.sh designed to launch attack using nping

4.2 Execution of all docker containers

Figure 25: Execution of all docker containers

19



4.3 Scenario 1 Kali to Docker - Test Results

Figure 26: DoS detection by Snort for Scenario 1

Figure 27: DoS detection for ICMP flood attack by Suricata for Scenario 1

20



Figure 28: DoS detection for TCP flood attack by Suricata for Scenario 1

Figure 29: DoS detection for UDP flood attack by Suricata for Scenario 1

4.4 Scenario 2 Attacker container to Victim container - Test
Results

Figure 30: DoS detection by Snort for Scenario 2

21



Figure 31: ICMP flood DoS detection by Suricata for Scenario 2

Figure 32: TCP flood DoS detection by Suricata for Scenario 2

22



Figure 33: UDP flood DoS detection by Suricata for Scenario 2

Figure 34: DoS detection by Zeek for Scenario 2

23



4.5 Scenario 3 Host to Victim container - Test Results

Figure 35: DoS detection by Snort for Scenario 3

Figure 36: ICMP flood DoS detection by Suricata for Scenario 3

24



Figure 37: TCP flood DoS detection by Suricata for Scenario 3

Figure 38: UDP flood DoS detection by Suricata for Scenario 3

25



Figure 39: DoS detection by Zeek for Scenario 3

4.6 Scenario 4 Container to Host - Test Results

Figure 40: DoS detection by Snort for Scenario 4

26



Figure 41: ICMP flood DoS detection by Suricata for Scenario 3

Figure 42: TCP flood DoS detection by Suricata for Scenario 3

27



Figure 43: UDP flood DoS detection by Suricata for Scenario 3

Figure 44: DoS detection by Zeek for Scenario 3

28



4.7 Scenario 5 Windows to Docker - Test Results

Figure 45: DoS detection by Snort for Scenario 5

Figure 46: DoS detection by Suricata for Scenario 5

29



Figure 47: DoS detection by Zeek for Scenario 5

5 Conclusion

This configuration manual describes the deployment of a robust security framework for
Docker container environments using open-source IDS tools like Suricata, Snort, and
Zeek, integrated with the ELK Stack for centralized logging and monitoring. Custom
rules in Suricata and Snort detect specific attack patterns, such as ICMP, TCP SYN,
and UDP floods, while Zeek enhances security through deep packet inspection. The
use of Docker containers allows for efficient resource management and scalability, and
the integration with the ELK Stack ensures comprehensive log analysis and visualiza-
tion. This setup provides real-time detection capabilities, effectively securing Dockerized
applications against a wide range of DoS attacks.

References

Haque, A. (2023). Install and run zeek network monitoring tool
on ubuntu 22.04, Medium. https://medium.com/@afnanbinhaque/

install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49e12ef781.

Ish, J. (2024). jasonish/docker-suricata, https://github.com/jasonish/

docker-suricata. Accessed: 24 August 2024.

Lapenna, A. (2024). deviantony/docker-elk, https://github.com/deviantony/

docker-elk. Accessed: 25 August 2024.

Snort Setup Guides for Emerging Threats Prevention (n.d.). https://www.snort.org/

documents. Accessed: 24 August 2024.

30

https://medium.com/@afnanbinhaque/install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49e12ef781
https://medium.com/@afnanbinhaque/install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49e12ef781
https://github.com/jasonish/docker-suricata
https://github.com/jasonish/docker-suricata
https://github.com/deviantony/docker-elk
https://github.com/deviantony/docker-elk
https://www.snort.org/documents
https://www.snort.org/documents

	Introduction
	System Configuration
	Host System Configuration
	Virtual Machines
	Docker Containers
	Installation of Suricata IDS
	Installation of Snort
	Installation of ELK stack
	Installation of Zeek

	Configuration of the installed tools
	COnfiguration of Suricata
	Configuration of Snort
	Configuration of Zeek
	Configuration of ELK stack
	Setup of Attacker Container
	Setup of Victim Container

	Testing and Analysis
	Tools and Automated scripts used in testing
	Execution of all docker containers
	Scenario 1 Kali to Docker - Test Results
	Scenario 2 Attacker container to Victim container - Test Results
	Scenario 3 Host to Victim container - Test Results
	Scenario 4 Container to Host - Test Results
	Scenario 5 Windows to Docker - Test Results

	Conclusion

