~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cybersecurity

Piyush Raut
Student ID: 22184791

School of Computing
National College of Ireland

Supervisor: Kamil Mahajan

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Piyush Raut
Student ID: 22184791
Programme: Cybersecurity
Year: 2023-2024
Module: MSc Research Project
Supervisor: Kamil Mahajan
Submission Due Date: 2/9/2024
Project Title: Configuration Manual
Word Count: 3092
Page Count: [30]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 25th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Piyush Raut
22184791

1 Introduction

This configuration manual outlines the setup and deployment of an intelligent filter solu-
tion for Docker container that uses multiple open-source IDS tools to detect DoS attacks.
The solution integrates Snort, Suricata, and Zeek within a Docker container environment,
utilizing the ELK Stack for log management and real-time monitoring. This manual will
guide you through the necessary system configurations, deployment steps, and evaluation
methods used in this research project.

2 System Configuration

This section describes the details on system configuration and installation of Docker,
Suricata, Snort, Zeek, and the ELK stack.

2.1 Host System Configuration
e OS: Windows 11 64-bit

Virtualization Hypervisor: VirtualBox

Processor: Intel Core 19

RAM: 16 GB

Storage: 1TB SSD

2.2 Virtual Machines

The research project involves the configuration of two main Virtual Machines (VMs) on
VirtualBox: the first is an Ubuntu VM that hosts the Docker containers as well as the
implemented solution, and the second is a Kali Linux VM, which acts as an attacker
machine to launch DoS attacks on the Ubuntu VM.

1. Ubuntu 23.01 VM (Host VM)
e RAM: 9 GB

e Processors: 5
e Storage: 45 GB

2. Kali Linux 2024.2 (Attacker VM)
e RAM: 2 GB

e Processors: 2

e Virtual Storage: 80 GB

2.3 Docker Containers

Docker container and Docker-compose is installed on Ubuntu OS using the following
command :

:§ sudo apt-get install docker-ce docker-ce-cli containerd.io
[sudo] password for piyush:
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
docker-ce is already the newest version (5:27.1.1-1~ubuntu.23.10~mantic).
docker-ce-cli is already the newest version (5:27.1.1-1~ubuntu.23.10~mantic).
docker-ce-cli set to manually installed.
containerd.io is already the newest version (1.7.19-1).
«containerd.io set to manually installed.
0 upgraded, 0 newly installed, 0 to remove and 10 not upgraded.

:-$ sudo apt-get install docker-compose
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
docker-compose i1s already the newest version (1.29.2-6).
O upgraded, 0 newly installed, 0 to remove and 10 not upgraded.

Figure 1: Installation of Docker and Docker-compose on Ubuntu 23.01

2.4 Installation of Suricata IDS

Here, the installation and automated execution of Suricata in Docker container is ex-
plained.

The Dockerfile provided below is used to create a Docker container with Suricata
installed and configured. The Docker container is built using a base image called docker-
suricata that already has Suricata installed, and it customizes the setup by adding specific
rules and configuration files. (Ish, 2024)

The Dockerfile used to set up Suricata in a Docker container begins by using the base
image jasonish/suricata:latest, which already includes Suricata pre-installed. (Ish;
2024)) This approach simplifies the setup process as it eliminates the need to manually in-
stall Suricata within the Docker image. To organize the environment within the container,
the RULES DIRECTORY and LOGS DIRECTORY ENYV variables are defined to
specify where Suricata should place its rules and logs. The Dockerfile then copies the
necessary files, including the suricata.rules file into the Suricata rules directory and

Dockerfile

Dockerfil: x suricata.rules runsuricata.sh fast.log & Dockerfile dos.rules runappnew.sh Dockerfile attac

icata.yaml

Figure 2: Dockerfile used to install Suricata IDS on Docker container

the suricata.yaml configuration file into the appropriate configuration directory. A logs
directory is created within the container with write permissions. At the end the default
command to run Suricata with the custom suricata.yaml configuration file is set, that
enables it to listen on the enp0s3 interface.

runsuricata.sh fo]

Dockerfile suricata.rules runsuricata X fast.log dos.rules runappnew.sh Dockerfile attack.sl

Figure 3: runsuricata.sh bash script to build and execute the Suricata Docker container

To automate the process of building and running the Suricata Docker container, a
bash script called ‘runsuricata.sh’ is used. It executes the ‘docker build -t suricata-
custom . command’ which builds the Docker image using the Dockerfile. The docker
run command to run the Suricata container is used with several options which are —rm
automatically removes the container once it stops, -it runs the container in interactive
mode with a terminal attached, —net=host shares the host’s network stack with the con-
tainer, allowing Suricata to monitor network traffic directly, —cap-add=NET_ ADMIN
grants network administration privileges to the container, —cap-add=SYS_NICE al-
lows the container to modify process priorities; and -v $(pwd) /logs: /var /log/suricata
maps the host’s logs directory to the container’s /var/log/suricata directory, enabling
constant storing of Suricata logs.

2.5 Installation of Snort

The Dockerfile used to configure Snort IDS within a Docker container. The configuration
files including ‘snort.conf” are copied into the container, which sets up the necessary rules
and configurations for Snort to function as an IDS and IPS.

Open v [Dockerfile n = @ €6

& testsh suricata.ya snort.conf Dockerfil. x &

erfile attack.sh Dockerfile victim.sh & attac

ate && apt-get install -y \
tial \

COPY ru

dag-mode", "inline", "

cMp [

Figure 4: Dockerfile used to install Snort IDS on Docker container

open v [runsnort.sh 7y = D@ &

docker_cpu_us overall_cpu_us & detect dos conn.log quic.log loaded _scripts notice.16:16:52- detect dos.zeek runsnort.. X

#! [bin/

build -t snort-ips .

-1 INPUT -j JE -- le-num 0
-1 OUTPUT -3 0

run -

Figure 5: runsnort.sh bash script to build and execute the Snort Docker container

To automate the deployment process, a bash script ‘runsnort.sh’ is utilized. The
script begins by building the Docker image with the command docker build -t snort-ips

4

., which constructs the image and tags it as snort-ips. Once the image is built, the script
sets up iptables rules on the host system to redirect traffic to NFQUEUE, allowing Snort
to inspect packets. Specifically, the script adds rules to redirect both incoming (INPUT)
and outgoing (OUTPUT) traffic to NFQUEUE with the queue number set to 0. Following
this setup, the script runs the Snort Docker container using the command ’docker run
—net=host —privileged -it -v $(pwd)/logs:/var/log/snort snort-ips’, where the
—net=host option shares the host’s network stack with the container, and —privileged
grants the container necessary permissions. The container is run interactively (-it), and
the logs are stored constantly. After Snort stops running, the script automatically cleans
up the iptables rules by deleting the previously added NFQUEUE rules for both INPUT
and OUTPUT. (Snort Setup Guides for Emerging Threats Prevention; n.d.)

2.6 Installation of ELK stack

The ELK stack is installed on Docker container using the docker-compose file. The
docker-compose.yml file states the necessary configurations for Elasticsearch, Logstash
and Kibana by ensuring that they work together to process and display logs from Suricata,
Zeek and Snort. (Lapenna; 2024))

To automate the deployment of the ELK Stack, the ‘runelk.sh’ bash script is used.
This script contains the command sudo docker-compose up, which launches all the services
defined in the Docker Compose file. By using Docker Compose, Elasticsearch, Logstash,
and Kibana are started up together with a single command. This approach not only
automates the setup but also ensures that each component of the ELK stack is configured
correctly and starts in the proper order i.e first Logstash, then Elasticsearch and finally
Kibana.

2.7 Installation of Zeek

Due to resources and operation time limitations, Zeek is installed on Ubuntu machine
itself rather than installing on Docker container, as building a Zeek image on Docker
requires about 2283s time, which is not feasible for the proposed solution. Here, first all
the required dependencies for Zeek are installed. Further the zeek repo is cloned from
the official Github repo of Zeek and installed using make tool. (Haque; 2023)

openv docker-composeym|

docker-com; X docker_cpu_usa overall_cpu us:s f@ detect dos conn.log

contalner name:

environment

\mage

container name

énvironmsent

depends_on

Figure 6: Docker-compose file used to install and configure ELK stack on Docker

Open v [4 runelk.sh

overall cpu use & detect dos conn.log quic.log runelk.sh x

1 sudo docker-compose up

Figure 7: runelk.sh bash script

i~ S sudo apt install cmake make gcc g++ flex bison libpcap-dev libs
sl-dev python3 z1liblg-dev swig python3-dev
[sudo] password for piyush:
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
cmake is already the newest version
make is already the newest version (4.:
gcc is already the newest version (4:13.2
g++ 1s already the newest version (4:13.2
flex is already the newest version (2.6.4-8.2).
bison is already the newest version (2:3.8.2+dfsg-1buildl).
libpcap-dev is already the newest version (1.10.4-4).
libssl-dev is already the newest version (3.0.10-1ubuntu2.3).
python3 is already the newest version (3.11.4-5).
python3 set to manually installed.
z1ib1g-dev is already the newest version (1:1.2.13.dfsg-1ubuntu5).
swig is already the newest version (4.1.0-0.3).
python3-dev is already the newest version (3.11.4-5).
0 upgraded, O newly installed, © to remove and 10 not upgraded.

:~$

Figure 8: Installing the dependencies for Zeek

[+ piyush@piyush: ~

piyush@piyush: ~/intellige... piyush@piyush: ~/intellige... piyush@piyush: ~

1§ zeek -version
eek version 6.2.1

=Y |

Figure 9: Verifiying the installation of Zeek

3 Configuration of the installed tools

In this section, the details on the configuration of Suricata, Snort, Zeek and ELK stack
are described.

3.1 COnfiguration of Suricata

The suricata.yaml file is used to configure Suricata to monitor and detect, by defining
crucial network variables and port groups. Here, HOME_ NET has specific IP addresses
within the Docker environment, such as 10.0.2.15, 172.7.0.3, and 172.7.0.2, which
represent different containers and network interface used by DOcker containers. The
configuration enables Suricata to closely monitor HTTP traffic on port 80. The
logging setup is also done by utilizing eve.json for detailed JSON event logging, this
is ideal for integration with monitoring tools like ELK Stack, and fast.log for quick
reference alerts. The packet capture is configured for performance using the af-packet
mode on the enp0s3 interface for efficient traffic analysis.

Open v [7 suricatayaml

suricataya X snort.conf

kerfile & detect_do: rf Dockerfile

attack:sh

vars:
address-groups:
HOME_NET:
EXTERNAL_NET:
HTTP_SERVERS:

port-groups
HTTP_PORTS:
SHELLCODE_PORTS
SSH_PORTS

default-rule-path:

rule-files:

logging:
default-log-level
outputs
console
enabled:
level:

openv [suricatayaml

suricataya X snort.conf Dockerfile t_do Dockerfile attacksh
outpuTs:

eve-log
enabled:
filetype
filename:
types
alert
payload:
payload-printable
packet: \
metadata:
http:
s

- fast:
enabled: ye
filename:

af-packet
- interface:

cluster-id:
cluster-type:
defrag:
use-nnap:
mnap-locked
tpacket-v3

openv suricatayaml

suricata.ye X snort.conf Dockerfile & Dockerfile

tpacket-v3:

detect-engine:
- profile
custon-values
toclient-groups:
toserver-groups:
sgh-npn-context:

stats
enabled: ye
interval:

rule-profile:
enabled:

app-layer
protocols
http:
enabled:
tls:
enabled:
dns:
enabled:
smb:
enabled:

Figure 10: Configuration file for Suricata - suricata.yaml

After this configuration is done, the custom rules to detect DoS attack packets are
defined in the suricata.rules file. the rules are designed to identify the DoS attacks that
use ICMP, TCP SYN, UDP, HTTP, and DNS floods attacks. Each of these rules sets
specific thresholds, such as detecting more than 20 packets per second, to ensure that
Suricata accurately identifies these attacks. These rules include alerts for container-to-
container communication, that alert potential unauthorized access or lateral movement
within the network. For example, traffic between 172.7.0.2 and 172.7.0.3 triggers alerts,
indicating possible container-to-container communication, which could be a sign of an
attack.

Figure 11: Customized rules file for Suricata - suricata.rules

3.2 Configuration of Snort

In this setup Snort acts as IDS as well as IPS to detect as well as prevent incoming
DoS attack packets. The snort.conf file is used to configure the operational paramet-
ers of Snort. It begins by specifying the paths for essential rule files, such as dos.rules,
which is the customized rules file that has specific detection rules used in this configura-
tion. The file sets up key network variables, where HOME_ NET includes IP addresses
10.0.2.15, 172.7.0.3, and 172.7.0.2 for different Docker container. EXTERNAL_
NET is configured to monitor all traffic not originating from these internal addresses,
ensuring comprehensive monitoring of external threats.

Moreover, Snort is configured to operate in inline mode, enabling it to function as
both an IDS and IPS. This mode allows Snort not only to detect suspicious traffic but
also to block it in real-time, providing an active defense mechanism against potential
attacks. The configuration includes preprocessors for stream reassembly of TCP, UDP,
and ICMP protocols, enhancing ability of Snort to analyze and track ongoing connections
accurately. The detection engine is optimized using the ac-split search method, which
balances performance in identifying threats. Output plugins are also configured to log
alerts in a fast, readable format and capture packet data for detailed analysis.

10

m snort.conf

Open v

new.sh Dockerfile Dockerfile snort.con X victim.sh &

RULE_PATH
S0_RULE_PATH

Figure 12: Configuration file for Snort - snort.conf

The dos.rules file contains specific customized rules designed to detect and respond
to various types of DoS attacks. For example, the ICMP flood rule is triggered when a
single source sends more than five ICMP packets within a second. Similarly, the TCP SYN
flood rule monitors for a high volume of SYN packets which could indicate an attempt
to overwhelm the target with incomplete handshake requests. The file also includes rules
for detecting UDP floods, HT'TP floods, and DNS amplification attacks each configured
with precise thresholds to minimize false positives while ensuring effective detection of
malicious activity.

In addition to these DoS related rules, the dos.rules file also includes rules that monitor
for unauthorized communication between Docker containers. For instance, specific alerts
are set up to detect traffic between 172.7.0.2 and 172.7.0.3, as well as communication
between these containers and the host machine at 10.0.2.15. These rules are critical
for identifying potential lateral movement by attackers within the Docker environment,
ensuring that any suspicious activity is promptly flagged for further investigation.

11

ol dos.rules

dos.rules x runappnew.sh Dockerfile attacksh Dockerfile snort.conf victim.sh & attackscap & test

y -> SHOME_NET any

> SHOME_NET any
; sid:1

Figure 13: Rules file for Snort - dos.rules

3.3 Configuration of Zeek

The node.cfg file is used to define how the Zeek operates. In this configuration, Zeek is
configured to run in standalone mode (type=standalone), which is suitable for envir-
onments where Zeek is deployed on a single host. The host parameter is set to localhost,
indicating that Zeek will monitor traffic on the local machine. The interface enp0s3 is
specified, which is the network interface Docker uses and Zeek will monitor for traffic ana-
lysis. This setup is straightforward and focuses on ensuring that Zeek effectively monitors
and analyzes network traffic through the interface.

12

openv [nodecfg

& detect_dos conn.log quic.log runelk.sh node.cfg X loaded_scripts notice.16:16:52
Example ZeekControl node configuration.

indalone node ready to go

#
#
#
#

Figure 14: Configuration file for Zeek - node.cfg

The detect-dos.zeek file is used defines rules to detect various types of flood based
DoS attack including ICMP, TCP, and UDP floods.

Thresholds are established to detect flood attacks that is set to a count of 10. These
thresholds indicate that if the number of packets from a single source exceeds this limit
within a certain timeframe, an alert will be triggered. For example the ICMP flood
detection rule counts ICMP packets from each source and generates an alert if the number
exceeds the defined threshold. Similarly, TCP and UDP flood detection rules count
packets and trigger alerts based on the thresholds defined for each protocol.

Each event handler within the rules file is used for monitoring a specific type of packet
(ICMP, TCP, or UDP). When the packet count from a single source surpasses the set
threshold, a notice is generated, indicating a potential DoS attack. For example, if more
than 10 TCP packets are received from a single source within the set timeframe, the rule
triggers a TCP Flood notice, which logs the event with a message identifying the source
of the potential attack.

13

detect_dos.zeek

quic.log runelk.sh node.cfg loaded_scripts notice.16:16:52- detect dos: x runsnort.sh

open v 7 detect_dos.zeek

@ detect_dos conn.log quic.log runelk.sh node.cfg loaded scripts.! notice.16:16:52- detect_dos.: X runsnort.sh

Event

event 5_0 string, seq: count, ack: count, len: count : string) {

Figure 15: Rules file for Zeek - detect-dos.zeek

3.4 Configuration of ELK stack

The logstash.conf file is crucial in defining how Logstash processes incoming logs from
various sources—namely Snort, Suricata, and Zeek before sending them to Elasticsearch
for storage and analysis. The configuration is organized into three main sections: input,
filter, and output. In the input section, Logstash is set up to read log files from three
distinct locations: Snort logs located at /var/log/snort/snort.log*, Suricata logs from
/var/log/suricata/eve.json, and Zeek logs from /opt/zeek/logs/current /notice.log.

14

logstash.conf

quic.log runelk.sh node.cfg loaded scripts.! notice.16:16:52- de s.zeek runsnort.sh logstash.c

> "%{TIMESTAMP_IS08601:timestamp}

logstash.conf

quic.log runelk.sh node.cfg loaded_scripts.| notice.16:16:52- detect_dos.zeek runsnort.sh logstash.c

"%{TIMESTAM

Figure 16: Configuration file for Logstash - logstash.conf

3.5 Setup of Attacker Container

To conduct testing of various scenarios, 2 different containers are setup i.e attacker con-
tainer and victim container, using the Dockerfiles. The Dockerfile for the attacker con-

15

tainer starts with an ubuntu:latest image and installs several utilities necessary for
generating network traffic, such as hping3, iputils-ping, and python3-scapy. The
Dockerfile sets up environment variables (TARGET and DNS_ SERVER) to specify
the target IP address and DNS server for the attacks. The container is configured to ex-
ecute a sequence of network attacks, including ICMP Flood, TCP SYN Flood, and
UDP Flood, using the hping3 tool. Each attack is initiated with randomized source IPs
targeting the specified TARGET i.e the victim container.

open~ [Dockerfile 0 = _ a8 «x

Dockerfil x attack.sh Dockerfile snort.conf victim.sh & attackscap & testsh suricata.yaml Docke

FROM

Rul apt-get update & apt-get install -y

oyt

Figure 17: Dockerfile for building attacker container

The bash script attack.sh automates the process of building and running the attacker
container. It first removes any existing container with the same name, builds the Docker
image, and then runs the container with the necessary privileges to perform network
operations. The container is run in detached mode (-d), allowing it to execute the
scripted attacks independently.

v M attack.sh 0 = - &8 x

attacksh x Dockerfile victim.sh & attackscap & testsh suricata.yaml Dockerfile & dete

_ADMIN --cap-add=SYS_NICE my-dos-containe

Figure 18: Bash script for executing attacker container

16

3.6 Setup of Victim Container

The Dockerfile for the victim container is also based on the ubuntu:latest image and
installs basic networking tools like iputils-ping and net-tools. The victim container is
designed to be a target for the attacks generated by the attacker container, simulating a
real-world scenario where a networked system is subjected to malicious traffic. The CMD
in the Dockerfile keeps the container running by tailing /dev/null, this ensures that it
remains active and responsive during the attack simulations.

operv Dackerfile 0 -006@

Dockerfil x snort.conf victim.sh @ attackscapy @ testsh suricata.yaml Dockerfile @ detect_dos Docke

RUN apt-get update & apt-get install -y |

Figure 19: Dockerfile for building victim container

The bash script victim.sh is used to build and execute the victim container. Similar
to the attacker script, it removes any existing container with the same name then builds
the Docker image, and runs the container with the appropriate privileges. The victim
container is also run in detached mode, allowing it to stay active while under attack.
victim.sh o

ol

Dockerfile snort.conf victimsh x @ attackscap & testsh suricata.yaml Dockerfile & detect_dos

MIN --cap-add=SYS_NICE my-victim-container

Figure 20: Bash script for executing victim container

4 Testing and Analysis

In section describes the testing done for various attack scenarios and also describes the
testing tools used in testing simulation.

4.1 Tools and Automated scripts used in testing

Bash scripts are used for attacking the target using tools hping3 and scapy. The bash
script test.sh uses hping3 tool to launch ICMP, TCP and UDP flood attacks on the

17

mentioned target IP. Similarly, attackscapy.py is a python-based script that uses scapy
to launch ICMP, TCP and UDP flood attacks on target IP. Also, LOIC tool is installed
on Kali attacker machine and is used to simulate attacks from Kali Linux machine. (?)
To launch attack from Windows system, nping tool is used, this is done used creating a
bash script for attack simulation.

openv M test.sh
quiclog nodecfg loaded scripts notice.16:16:5: szeek runsnortsh

if ! command -v hping3 & /de

echo
exit 1

echo

hping3 --icmp --flood --rand-source $TARGET &
sleep 1

killall hping

echo

echo

hping3 --syn --flood -- -source --destport 80 $TARGET &
sleep 1

killall hping3

echo

echo

hping dp
sleep 16
killall hping

Figure 21: Bash script test.sh designed to launch attack using hping3

attackscapy.py

node.cfg loaded_scripts/ notice.16:16:52 detect doszeek runsnort.sh logstash.conf testsh attackscap) X

for 1 in
ip I

for 1 in

ip = IP(src

Openv [attackscapy.py

runelk.sh nodecfg loaded scripts| notice6:16:52 detect doszeek runsnortsh logstash.conf test:sh attackscapy X

def

for 1 in

Figure 22: Python script scapy.py designed to launch attack using Scapy

18

Low Orbit lon Cannen | When harpoens, air strikes and nukes fail |v. 2:9.9.99

10.0.2.15

Use this to increase or redu

Figure 23: LOIC tool used to launch attack from Kali machine

@echo off|

where nping >hul 2581

if %errorlevel% neq @ (
echo nping could not be found. Please ensure it is installed and added to your PATH.
exit /b

)

set TARGET=10.0.2.15
set DNS_SERVER=8.8.8.8

REM ICMP Flood Attack

echo Starting ICMP Flood Attack...

nping --icmp --count 200 --rate 1000 10.0.2.15
echo ICMP Flood Attack completed.

REM TCP SYN Flood Attack

echo Starting TCP SYN Flood Attack...

nping --tcp --flags syn --count 200 --rate 1000 --dest-port 80 10.0.2.15
echo TCP SYN Flood Attack completed.

REM UDP Flood Attack

echo Starting UDP Flood Attack...

nping --udp --count 200 --rate 1009 --dest-port 53 10.0.2.15
echo UDP Flood Attack completed.

Figure 24: Bash script script.sh designed to launch attack using nping

4.2 Execution of all docker containers

piyush@piyush: ~/intelligent-Ffilter

ligent-filter iy yush: ~/intelligent-Filter piyush@p

EATED STATUS PORTS
NAMES
113ced2f8ef2 my-dos-container "/bin/
seconds ago Up 30 seconds
my-dos-container
l130c70d6ac52 my-victim-container "tail -f /dev/null”
ut a minute ago Up About a minute
my-victim-container
Hd2c2cc17864 suricata-custom " /docker-entrypoint.
inutes ago Up 2 minutes
blissful_napier
7b0al14bf2e snort-ips "snort -A console -c.."
rinutes ago Up 2 minutes
hardcore_goodall
6af176c608d docker.elastic.co/kibana/kibana:7.6. /usr/local/bin/dumb.."
ks ago Up 2 minutes 0. 5601->5601/tcp, :::5601->5601/tcp
kibana
9100766465c docker.elastic.co/logstash/logstash:7.6. /usr/local/bin/doc
Up 2 minutes 0.0. 5000->5000/tcp, 0.0.0.0

9600 - 00/tcp, 5044/tcp
docker.el c.co/elas icsearch:7.6. /local/bin/doc
Up 2 .0.0.0:92 , 1119 > /tcp, 9300/tcp

Figure 25: Execution of all docker containers

19

4.3 Scenario 1 Kali to Docker - Test Results

bbuntu23.01 [Running] - Oracle VM VirtualBox

Edit View Help

15

15 tel-sh oF

13

13

g

15 trile 2 - s O D localh
s 10-0 Sport-60 Flage-RA seq-165 win-o ric Discover

- Kibana X+

Share ~Inspect

© +Add fiter

snort-* 18,731 hits
Aug 20, 2024 @ 10:33:47446 - Aug 20, 2024 @ 11:18:47.446 — Auto

winod rtt-1.0 ms Fitter by type

Selected felds

Avaiablfld
@tmestamp per minute
_source N
2024 © 18:49:39.096 type: snort Gversion: 1 host: 91087664650 message!
U360\ XAC\ U8B0\ UEBOG\LOGBR \KAC' UDGER) DB\ UGB\ LBGOE \ UOGED\XAC\LBBEZ\ XA\ 2B\ UEBROR 1
SIXE2\XCVAB\KB6 Gtinestanp: Aug 20, 2024 0 19:49:39.006 tags: _grokparsefatlure path: /var
Tog/snort/snort. log. 1724112802 _id: STOGSESKSGHOGTAVT _type: _doc 624.08.28
10:49:39.006 type: snort Gversion: 1 host: 49108766465 message

009110000109\ UGBBS 30031\ UEP3Cor | UBGD9) LBER\LGRTC\BEED BT\ XCP\ L0008 \uBE B0\

Figure 26: DoS detection by Snort for Scenario 1

[Em—

File Actions Edit View Help
Aug20 11:17

~/scripts

Discover - Kibana x|+
.
O D localhost
B oiscower e =
New Save Open Share
[@v alertsignature :"ICMP’ KQL [Lastds minutes
®
+ Add fiter
o
suricata-* v/ 128 hits
= Q Aug 20, 2024 @ 10:29:36.010 - Aug 20, 2024 @ 11:14:36.010— Auto v
o
Seoctafilds H
)
L] @timestamp per minute
'
Time « _sourca
0
2 > A 20, 2006 0 TS 04.14 slar siguature: 1OW Floo Oetected e orts 8 hosts ds1onessse et &
N packet.info. inktype: 1 event_type: alert in_iface p destport: 0
0 Flon.pkts_toserver: 1 flow.bytes_toclient: & flow,pkts_tocltent: . flow.start w10
Ot 01:26:50.504 flow.sre_tp: 189.153.209.178 flow.dest_1p: 172.7.0.1 flow.bytes_t)
Gversion: 1 dest.ip: 172.7.0.1 payload printable: tinestamp: Ay 20, 2020 © 81:26:54.504
.
. alert.signature: IOWP Flood Detected src_port: § hast: cS10766465c Lcnp_type: &
packet.info. Linktype: 1 event_type: alert in_iface p dest port: 0
low.bytes_toolient: 6 flow.pkts_toclient: o flow.start: Aug 20, 20

Flow.pkts_toserver

Figure 27: DoS detection for ICMP flood attack by Suricata for Scenario 1

20

suricata-* v 1,929 hits

= Aug 20, 2024 @ 10:28:24.829 - Aug 20, 2024 @ 111324829 — | Auto
) Fiter by type

Selecteafiids

5 Avaabl fekds

@tmestamy p minute
N
Time + _source
> g 28, 2624 0 10 3 alert.signature: TCP SWN Flood Detected
enpés3 pkt_src: wire

72 flon.bytes._toclsent: 0

alert.signature: TP SN
packet_info.Linktype

9. o cvu0p1 QL B Lasdsmintes Showdates
© e

suricata-*

115 hits
Aug 20, 2024 @ 10:26:43.308 - Aug 20, 2024 @ 111143308 — Auto

@ Fiterbytype 0

Selectd filds

Avallabo flods

@tmostamppor minute

n_faces enpls3 pit. port

yres_toclient ov.pkts
o 10:53:08.182 192 19.0.2.15 flow.dest_ip: 1
Flon.bytes_toserver sion: 1 dest_ip: 10.8.2.15
alert.signature: WP ted sre_port: 51,115 host:
packet.info.Linkt ot type: alert in_iface: enp

sroport: 51,115 flow.byt

4.4 Scenario 2 Attacker

Figure 29: DoS detection for

Results

18,193 hits

Aug 20, 2024 @ 00:42:30.000 - Aug 20, 2024 @ 00:43:00.000 — Auto

Count

@timestamp per second

Time + _source

Figure 30: DoS detection by Snort for Scenario 2

21

UDP flood attack by Suricata for Scenario

container to Victim container - Test

8 Discover - Kibana X +
« C O O localhost
K . Discover 8 =
New Save Open Share Inspect
[v alertsignaturekeyword : "ICMP Flood Detected” | KQL v Aug 20, 2024 @ 00:00:00.000 -+ now
@ +Add filter
[}
suricata-* v 186 hits
=4
& Q Aug 20, 2024 @ 00:00:00.000 - Aug 20, 2024 @ 01:20:43.466 — Auto v
]
(5 Filter by type 0
& 60
Selected flelds E
8
o
[Available fields) - - _ _
B B @timestamp 0005 0040 0045 0020 0025 0030 00:35 00 00:45 0050 0085 0100 0105 OKID OIS
0 GrEm (@timestamp per minute
= @
© Time « _source
t _d
o) ' > Aug 20, 2024 © 01:14:14.218 tinestamp: Aug 20, 2024 © 01:04:20.274 src_ip: 253.132.103.166 dest_ip: 172.7.0.3
S in_iface: enp@s3 src_port: @ event_type: alert flow.src_ip: 253.132.103.166
@ U 4203 flow.dest_ip: 172.7.8.3 flow.pkts_toclient: @ flow.start: Aug 20, 2024 @ 01:04:20.274
@ t _type flow.pkts_toserver: 1 flow.bytes_toserver: 42 flow.bytes_toclient: @ dest_port: @
—_— - payload_printable: packet: ULQAE{UCCAANGZoBCABFAAACD2YAADBB+BX9hGemrAcAANGASJAIAKdv
I op 5 values in 18
- ecord: 4
fecords > hug 28, 2024 © B1:14:14.218 tinestamp: Aug 20, 2024 © B1:64:88.264 src_ip: 85.162.211.148 dest_ip: 172.7.0.3
d
i" ,nc_ 1?0?4: in_iface: enp@s3 src_port: @ event_type: alert flow.src_ip: 85.162.211.148
- — flow.dest_ip: 172.7.0.3 flow.pkts_toclient: @ flow.start: Aug 26, 2024 @ 61:64:00.264

Figure 31: ICMP flood DoS detection by Suricata for Scenario 2

4

. Discover 8 =

New Save Open Share Inspect

[v alertsignature.keyword : "TCP SYN Flood Detected" KQL v Aug 20, 2024 @ 00:00:00.000 » now
®

3 +Add filter
i

suricata-* v 3,070 hits
=l
e Q Aug 20, 2024 @ 00:00:00.000 - Aug 20, 2024 @ 01:18:18.494 — Auto v
e}

® Filter by type 0
8

Selected fields g

8 w0
400

& Available fields = B - .
Em ® @tmestamp 00:05 00:10 0015 00:20 00:40 00:55 01:00 0110 on!

0 e @timestamp per minute
- @versio
o 1 Time « _source

t id
%) 0 > Aug 20, 2024 @ 01:14:14.198 timestamp: Aug 20, 2024 @ B1:03:38.654 src_ip: 43.196.129.217 dest_ip: 172.7.8.3
N in_iface: enp@s3 src_port: 46,372 event_type: alert flow.src_ip: 43.196.129.217
¢ 0 LE59 flow.dest_port: 80 flow.dest_ip: 172.7.8.3 flow.pkts_toclient: @ flow.start: Aug 26, 2824 ¢

t _type 61:03:38.654 flow.src_port: 46,372 flow.pkts_toserver: 1 flow.bytes_toserver: 54

flow.bytes_toclient: @ dest_port: 88 payload_printable:

o) Top 5 values in 500 / 500
v ecord: 4

o > Aug 28, 2024 © 81:14:14.198 tinestamp: Aug 20, 2024 © B1:83:38.714 src_ip: 82.58.238.82 dest_ip: 172.7.8.3
o~ _doc aq

in_iface: enp8s3 src_port: 46,408 event_type: alert flow.src_ip: 82.58.238.82

5 wes Bres L ;

—_— flow.dest_port: 88 flow.dest_ip: 172.7.8.3 flow.pkts_toclient: @ flow.start: Aua 20. 2624 @

Figure 32: TCP flood DoS detection by Suricata for Scenario 2

22

®

=

|

00

B

2

g =

H

i

™

B ®

|

B

8

H e Y &

H

Discover - Ki o+

Q D localhost

. Discover 8 &
New Save Open Share Inspect

[v alertsignature.keyword : "UDP Flood Detected"| KQL v Aug 20, 2024 @ 00:00:00.000 -+ now

® +Add fiter

suricata-* v 222 hits
Q Aug 20, 2024 @ 00:00:00.000 - Aug 20, 2024 @ 01:19:45.077 — Auto v
(3 Filter by type 0 100
Selected fields E o
]
O 4
L
Available fields . B o . -
@ @timestamp 0020 00:25 0035 00:40 0045 0100 0105 OK0 OHS
0 G @timestamp per minute
Time « _source

t id

¢ ndex > Aug 20, 2024 € 01:14:14.228 timegtamp: Aug 20, 2024 @ 01:04:20.274 src_ip: 97.222.07.25@ dest_ip: 8.8.8.8 in_iface: enpds3

src_port: 16,879 event_type: alert flow.src_ip: 97.222.97.256 flow.dest_port: 53
¢ seore flow.dest_ip: 8.8.8.8 flow.pkts_toclient: @ flow.start: Aug 26, 2024 @ ©1:04:20.274
t _type flow.src_port: 16,879 flow.pkts_toserver: 1 flow.bytes_toserver: 42 flow.bytes_toclient: @

dest_port: 53 payload_printable:

Top 5 values in 222 222

records

> Aug 20, 2024 © 01:14:14.228 timestamp: Aug 20, 2624 @ 81:13:38.737 src_ip: 10.8.2.15
1?02 payload: sfUBARABAAAAAAAABHBYb2QDYWRZBHBYb2QLd2Vic2Vydnl jZXMGDNO6Z2NAZS1dAAAQRAB

dest_ip: 192.168.134.11@ in_iface: enpBs3 src_port: 52,727 event_type: alert

Figure 33: UDP flood DoS detection by Suricata for Scenario 2

. Discover 8 =@

MNew Save Open Share Inspect

B v KQL v Last 40 minutes

3 +Add filter

zeek-* v 2,123 hits
Q Aug 20, 2024 @ 00:42:22.467 - Aug 20, 2024 @ 01:22:22.467 — Auto v
(3 Filter by type 0 1400
120
Selected fields g
8 o
401 dl
Available fields ‘ . ! -
@ @timestamp 00:45 00:50 00:55 01:00 5 o110 on15 o120
t @version (@timestamp per minute
Time « _source

7 hug 20, 2024 © 01:20:10.498 path: Jopt/zeek/logs/current/notice.log message: 1724113209.374493 - - - - - - - - -

DoS::TCP_Flood TCP Flood detected from 10.8.2.15 - - - - - - Notice::ACTION_LOG (empty)
0 L= 3600.000008 - - - - - tags: _grokparsefailure @version: 1 type: zeek @timestamp: Aug 20, 2024
t _type ©81:28:10.498 host: d9106766465¢c _id: ce@nbZEBP-07FYJAzB3s _type: _doc
_index: zeek-2624.08.20 _score: -
records 29
! > hug 20, 2024 0 01:20:10.498 path: opt/zeek/logs/current/notice,log Message: 1724113209,374853 - - - - - - - - -
d
'ﬂc_ 1?0: DoS: :TCP_Flood TCP Flood detected from 18.0.2.15 - - - - - - Notice::ACTION_LOG (empty)

2400 GAGAGR - - - - - tane: araknarcafailira Muarcians 1 funas seak Btimactamn: dun 98 9674

Figure 34: DoS detection by Zeek for Scenario 2

23

4.5 Scenario 3 Host to Victim

®

=y

=)

B3

()

|

i

D~ O

B ®

&0

B3

(<]

Discover - Kibana X+
(¢] QO D localhost
. Discover
New Save Open Share Inspect
B v
@ — +Add filter
snort-* v
Q
® Filter by type 0 50
2000
Selected fields E
-]
© o
500
t @version
Time «

> Aug 20, 2024 @ ©1:50:46.918

> Aug 28, 2024 @ @1:50:46.918

Aug 20, 2024 @ 01:50:00.000 - Aug 20, 2024 @ 01:51:00.000 —

- Test Results

container

KaL

v Aug 20, 2024 @ 01:50:00.0 - Aug 20, 2024 @ 01:51:00.0

18,731 hits
Auto v

015045 0 5055

@timestamp per second

_source

@timestamp: Aug 20, 2024 @ 81:50:46.918 tags: _grokparsefailure message:

\uBBees\x9C\ ueREe '\ uABeE \uBBAE\ x9C\ uGBBE\uBBRR\UBRRARE\uBBER'\ UBRBR\XIC\uBBEZ2\ X398\ UBRRE\uBBEAR UBRTT
$\x94\xCO\xAB\xB6n path: /var/log/snort/snort.log.1724112802 host: d9108766465c type: snort
@version: 1 _id: cXxDbZEBMgwOQyT_@iVw _type: _doc _index: smort-2824.08.28 _score: -
@timestamp: Aug 28, 2024 @ @1:50:46.918 tags: _grokparsefailure message:

\uBBee\uBea2 \ubBeF\uaBeas\x98\ r\ueeae\x98\ xB9\ vie\ x81\x80'uBAGE \uBBAT '\ UBAGE \UBBAS\ UBBEB' UBBEA\UB
600 u0008 \uBBA3wwH\uBBB6google\uaBa3com\ uaand\ UBBBA\ uBE1CYuBREBE\uBeaT\xCa\ f\uBeoe\ uee1Cc\ueea\us

Figure 35: DoS detection by Snort for Scenario 3

Discover - Kibana X+

(6} Q DO localhost

New Save

Discaver

Open Share Inspect

[v alertsignature: ("ICMP")

© +Add fiter

KaL v ~ 25 minutes ago - Aug 20, 2024 @ 01:27:00.000

suricata-* v 128 hits
Q Aug 20, 2024 @ 01:06:06.407 - Aug 20, 2024 @ 01:27:00.000 — Auto v
(3 Filter by type 0 101
Selected flelds E
8
Available fields N ':' =
@timestamp 0 0111:00 01:13:00 0117:00 (i 01:21:00 01:23:00 01:25:00
0 (@timestamp per 30 seconds
Time « _source

? Aug 20, 2824 @ 81:26:55.576

t alert.action

> Aug 2@, 2024 ® 81:26:54.573
t alert.category

alert.signature: ICMP Flood Detected timestamp: Aug 20, 2624 @ 01:26:55.540

src_ip: 146.241.176.111 dest_ip: 172.7.8.1 in_iface: enpds3 src_port: @ event_type: alert
flow.src_ip: 146.241,176.111 flow.dest_ip: 172.7.8.1 flow.pkts_toclient: @ flow.start: Aug 28,
2024 @ 01:26:55.548 flow.pkts_toserver: 1 flow.bytes_toserver: 42 flow.bytes_toclient: @

dest_port: @ payload_printable:

alert,signature: ICMP Flood Detected timestamp: Aug 20, 2624 @ 81:26:54.544
sre_ip: 189.153.209.178 dest_ip: 172.7.8.1 in_iface: enpBs3 src_port: @ event_type: alert

flow.src_ip: 189.153.269.178 flow.dest_ip: 172.7.6.1 flow.pkts_toclient: ¢ flow.start: Aug 20

Figure 36: ICMP flood DoS detection by Suricata for Scenario 3

24

Aug 20, 2024 @ 01:04:55.544 - Aug 20, 2024 @ 01:27:00.000 —

K . Discover
New Save Open Share Inspect
B v alertsignature: ("TCP")
@ ~
® +Add filter
i
suricata-*
ol
Q
]
@ Filter by type 0 40
& o

Selected fields

@
o Avallable fields
B @timestamp
&
t @version
o @
t _id
J t _index
® s score
@ t type
o) t alertaction
s t alert.category
=

-

alertgid

Count

Time «

> Aug 2@, 2024 © ©1:26:57.584

> Aug 20, 2024 @ 01:26:56.582

01:09:00

KQL v ~ 25 minutes ago - Aug 20, 2024 @ 01:27:00.000

1,711 hits

Auto

01:11:00 01:13:00 01:15:00

@timestamp per 30 seconds

0

_source

alert.signature: TCP SYN Flood Detected timestamp: Aug 26, 2624 © 61:26:56.581
src_ip: 45.4.169.63 dest_ip: 172.7.0.1
flow.src_ip: 45.4.169.63 flow.dest_port: 80 flow.dest_ip: 172.7.8.1 flow.pkts_toclient: @
flow.start: Aug 20, 2024 @ ©1:26:56.581 flow.src_port: 4,590 flow.pkts_toserver: 1
flow.bytes_toserver: 54 flow.bytes_toclient: 8 dest_port: 88 payload_printable:

in_iface: enp@s3 src_port: 4,598 event_type: alert

alert.signature: TCP SYN Flood Detected timestamp: Aug 28, 2624 © 81:26:56.059

sro_ip: 196.75.116.108 dest_ip: 172.7.8.1 in_iface: enp@s3 src_port: 3,299 event_type: alert

flow.src_ip: 196.75.116.188 flow.dest_port: 88 flow.dest_ip: 172.7.8.1 flow.pkts_toclient: @

Figure 37: TCP flood DoS detection by Suricata for Scenario 3

Discover

N

Save

®

3 +Add filter
[i0d

suricata-*
o]

Q
i

3 Filter by type
8

Selected fields

Q
[Avallable fields
@ @timestamp
&
t @version
=]
t _id
J t _index
& # _score
@ t _type
o] t alertaction
~ t alert.category
= # alert.gid

Figure

Open

Share Inspect

alert.signature: ("UDP")

Aug 20, 2024 @ 01:07:37.912 - Aug 20, 2024 @ 01:32:37.912 — Auto

0

Count

Time +

> Aug 28, 2024 @ 01:14:14,228

> Aug 20, 2024 @ 01:14:14.228

KQL [v Last25 minutes

Show dates

113 hits

01:30:00
(@timestamp per 30 seconds

_source

alert.signature: UDP Flood Detected timestamp: Aug 28, 2024 @ 61:04:20.274

sro_ip: 97.222.97.250 dest_ip: 8.8.8.8 in_iface: enpBs3 src_port: 16,879 event_type: alert
flow.src_ip: 97.222.97.250 flow.dest_port: 53 flow.dest_ip: 8.8.8.8 flow.pkts_toclient: @
flow.start: Aug 20, 2024 @ 01:84:20.274 flow.src_port: 16,879 flow.pkts_toserver: 1
flow.bytes_toserver: 42 flow.bytes_toclient: @ dest_port: 53 payload_printable:

alert.signature: UDP Flood Detected timestamp: Aug 20, 2624 @ 01:13:38.737 src_ip: 10.0.2.15
payload: sfUBAAABAAAAAAAABHBYH2QDYWRZBHBYb2QLA2Vic2Vydnl jZXNGbINI6Z2NWAZ51dAAAQQAB

dest in: 197 .168.134.11@ 1in iface: enn@s3 sre nort: 52 727 avent tvne: alert

38: UDP flood DoS detection by Suricata for Scenario 3

25

N

®

=3

B A

8

£

H

i

Discover

New Save

Open Share Inspect

Bv tp
© - +Addfiter ¥
zeek-* v

Q

) Filter by type 0

Selected fields

Count

Available fields
® @timestamp o
t @version

Time

> hug 28,

_score
t _type
t host
> Aug 28,

t message

t path

0 =
KQL v Aug 20, 2024 @ 01:00:00.0 » Aug 20, 2024 @ 01:30:00.0
2,233 hits
Aug 20, 2024 @ 01:00:00.000 - Aug 20, 2024 @ 01:30:00.000 — Aute v
. n_ -
01:10:00 01:15:00 01:20:00 01
@timestamp per 30 seconds

2024 @ 01:29:46.062

2024 @ 91:29:46.062

_source

message: 1724113784.477343 DoS::TCP_Flood TCP Flood detected from 16.8.2.15 -
Notice::ACTION_LOG (empty) 3608.800000
notice.log tags: _grokparsefailure @version: 1 type: zeek @timestamp: Aug 20, 2024 ©

81:29:46.862 host: d9168766465c _id: je@wbZEBP-O7FYJAIRB? _type: _doc _index: zeek-2624.08.20

path: /opt/zeek/logs/current/

_score: -

message: 1724113784.477984
Notice::ACTION_LOG (empty) 3680.000000

DoS::TCP_Flood TCP Flood detected from 10.8.2.15 -

path: /opt/zeek/logs/current/

notice.log tags: _grokparsefailure @version: 1 type: zeek Otimestamp: Aug 20, 2024 0

Figure 39: DoS detection by Zeek for Scenario 3

4.6 Scenario 4 Container to Host - Test Results

A

B 8 F ®

&

8 =

B

New Save

Discover

Open Share Inspect
B v
& +Add filter
snort-* v

Q

@ Filter by type 0

15000

Selected fields

10000

Count

i 5000
Available fields
@ @timestamp

t @version

Time +

> hAug 20,

_score
t _type
t host
> Aug 20,

t message

t path

KQL f# v Last45 minutes

18,731 hits

Aug 20, 2024 @ 11:10:21.310 - Aug 20, 2024 @ 11:55:21.310 — Auto v

2024 @ 11:46:41.464

2024 @ 11:46:47.464

11:30 1n:35

@timestamp per minute

1120 11:40 11:45 11:50

_source

path: /var/log/snort/snort.log.1724112862 @timestamp: Aug 20, 2024 @ 11:46:41.464 type:
message: \u@Bea\uane2\ubaeF\uaeeas\xAFe\usoan\xss\xBBAXCE\bY
\x811x80\u806@\uBBAT\UBARA\UBRRE\ UAABE\UBBER\UBBBE\LBBAR) UBBA3WWW\uBBB6]O0] e\ UBRB3COm\UABRRY UAE

snort

00\u0001\ud000\uBeA1\xCA\F\UBAOE\uUAAOT\uBBEE\uBBE T \uABAR! UBBRR) UBBABR\UBRE\UBBAL\ XDTUZ\XCA\ T \UB
006\u0001\u06RR\LBBATUGBB | UABEE \UBBBBR\UBBAR) UBBA4\ XDTU\XCAT\ XCE\ f\UABRA \UABET \UBBEA\UBBR T\ UBE

path: /var/log/snort/snort.log.1724112862 @timestamp: Aug 20, 2024 @ 11:46:41.464 type: snort
message:
\uB6OaU\unBae\udeen\ueeealL uRaE\ uBAGE \uBBBeE \uBBeR\ uBBABU \ uBBBZ\ x99\ uABER \uBBBBR\ uBe11s

Figure 40: DoS detection by Snort for Scenario 4

26

)|

B ® B &

()

g =z

H

1]

(o)

]

KQL f§ v Last45 minutes

. Discover

New Save Open Share Inspect
B« alertsignature : "ICMP'|

® +Add fitter

suricata-* v
Q
3 Filter by type 0

Selected fields
) _source

Available fields

2

@timestamp

@version

id

_index

-

_score

-type

alert.action

alert.category

N

alert.ald

Figure 41:

Count

»

>

Aug 20, 2024 @ 11:04:16.206 - Aug 20, 2024 @ 11:49:16.206 —

101

1010

'Y

Time +

Aug 20, 2024 @ 11:46:22.351

Aug 20, 2024 @ 11:46:22.350

170 hits

Auto v

—
120

11:25

@timestamp per minute

1015 130 135 1140 11145

_source

alert.signature: ICMP Flood Detected path: /var/log/suricata/eve.json @timestamp: Aug 28, 2024
© 11:46:22.351 event_type: alert proto: ICMP flow_id: 238,799 967,575,832 host: d9100766465¢
dest_ip: 172.7.0.1 timestamp: Aug 20, 2024 @ 11:34:48.119 @version: 1 icmp_code: @

direction: to_server payload_printable: icmp_type: 8 pkt_src: wire/pcap

src_ip: 192.174.203.129 dest_port: @ stream: @ message:

alert.signature: ICMP Flood Detected path: /var/log/suricata/eve.json @timestamp: Aug 20, 2024
@ 11:46:22.35@ event_type: alert proto: ICMP flow_id: 228,152 025,438,620 host: d9108766465¢c

ICMP flood DoS detection by Suricata for Scenario 3

N

E o B OB EF O

[

23]

1]

. Discover 9 ©
New Save Open Share Inspect
[KQL @ v Last45 minutes Show dates resh
® +Add filter
suricata-* v 5,624 hits
Q Aug 20, 2024 @ 11:02:30.347 - Aug 20, 2024 @ 11:47:30.347 — Auto ~
5000
Filter by type 0
® ¥ yp .
Selected fields g w0
8 2000
) _source
1000
Available fields
0 -
B @timestamp 1105 1110 115 w20 125 11:30 035 a0 45
t @version @timestamp per minute
Time « _source
t id
¢ hder > Aug 20, 2024 @ ‘IW 146:2@ @ path: Jvar/log/suricata/eve.son @timestanp: Aug 28, 2624 © 11:46:22.533 event_type: alert
proto: UDP flow_id: 1,280,095 470,470,274 host: d9100766465c dest_ip: 8.8.8.8 timestamp: Aug
¢ _score 20, 2024 © 11:45:32,756 @version: 1 direction: to_server payload_printable: app_proto: failed
t _type pkt_src: wire/pcap stream: © src_ip: 254.67.160.202 dest_port: 53 message:
{"timestamp" : "2024-88-20710:45:32 .756797+6000" , "flow_1d" 11280895470470274, "1n_iface” : "enp@sa”, "e
t alertaction
¢ slertcatagory > Aug 20, 2624 @ 11:46:22.533 path: /var/log/suricata/eve.json @timestamp: Aug 28, 2824 0 11:46:22.533 event_type: alert
proto: UDP flow_id: 1,288,095,470,470,274 host: d9100766465c dest_ip: 8.8.8.8 timestamp: Aug
alertgld 20, 2024 © 11:45:32.756 @version: 1 direction: to_server payload printable: app_proto: failed

Figure 42: TCP flood DoS detection by Suricata for Scenario 3

27

4

B & F

&

™M

B 8 B ®

&

8 ==

H

i

. Discover

New Save Open Share Inspect

B v alertsignature : "udpf

KQL [v Last 45 minutes Show dates

@ — + Add filter
suricata-* v

Q
() Filter by type 0

Selected fields

Count

b _source

Available fields

B @timestamp 110

@version

Time «

t _id

> Aug 20, 2024 © 11:46:22.533

_index

score

-type

alert.action

> Aug 20, 2024 @ 11:46:22.358

-

alert.gid

170 hits

Aug 20, 2024 @ 11:06:35.961 - Aug 20, 2024 @ 11:51:35.961— Auto v

1:20 1:25
@timestamp per minute

_source

alert.signature: UDP Flood Detected path: /var/log/suricata/eve.json @timestamp: Aug 26, 2024
© 11:46:22.533 event_type: alert proto: UDP flow_id: 1,280,095,470,470,274 host: d9100766465¢
dest_ip: 8.8.8.8 timestamp: Aug 20, 2024 @ 11:45:32.756 Oversion: 1 direction: to_server
payload_printable: app_proto: failed pkt_src: wire/pcap stream: @ src_ip: 254.67.100.202
dest_port: 53 message:

alert.signature: UDP Flood Detected path: /var/log/suricata/eve.json Otimestamp: Aug 20, 2024
© 11:46:22.358 event_type: alert proto: UDP flow_id: 941,008,675,308,878 host: d9168766465¢C
dest_ip: 8.8.8.8 timestamp: Aua 20. 2024 © 11:43:23.415 Oversion: 1 direction: to_server

Figure 43: UDP flood DoS detection by Suricata for Scenario 3

. Discover 8 =

New Save Open Share Inspect

v tep KQL v Aug 20, 2024 @ 01:00:00.0 -+ Aug 20, 2024 @ 01:30:00.0 -

© +Addfiter ¥

zeek-* v 2,233 hits

Q Aug 20, 2024 @ 01:00:00.000 - Aug 20, 2024 @ 01:30:00.000 — Auto v

@) Filter by type 0

Selected fields E

} 8

| _source 400

200

Available fields , | B . _

& @timestamp 0110:00 0115:00 01:20:00 o1

¢ @version (@timestamp per 30 seconds

Time « _source

t _d

¢ Index 7 Aug 28, 2624 @ 81:29:46.862 peggage: 1724113784.477343 - - - - - - - - - DoS::TCP_Flood TCP Flood detected from 10.8.2.15 -
----- Notice::ACTION_LOG (empty) 3666.886@@8 - - - - - path: /opt/zeek/logs/current/

O S0 notice.log tags: _grokparsefailure @version: 1 type: zeek Otimestamp: Aug 20, 2024 0

t _type 01:29:46.062 host: d9100766465c _id: je@wbZEBP-O7FYJAIRS7 _type: _doc _index: zeek-2624.08.20
_score: -

t host

5 Tz > hug 20, 2624 @ 01:29:46.862 message: 1724113784,477904 - - - - - - - - - Dos: :TCP_Flood TCP Flood detected from 16.8.2.15 -
----- Notice::ACTION_LOG (empty) 3680.080000 - - - - - path: /opt/zeek/logs/current/

t path

notice.log tags: _grokparsefailure @version: 1 type: zeek @timestamp: Aug 28, 2624 0

Figure 44: DoS detection by Zeek for Scenario 3

28

4.7 Scenario 5 Windows to Docker - Test Results

. Discover 8 =

New Save Open Share Inspect

(R \ KQL v Aug 2, 2024 @12:00:00.00 - Aug 3, 2024 @ 00:00:00.00
® +Add filter
snort-* v 18,453 hits

Q Aug 2, 2024 @ 12:00:00.000 - Aug 3, 2024 @ 00:00:00.000 — Auto v

(& Filter by type 0

15000

Selected fields

10000

Count

@ _source 000
Available fields

@timestamp

1200 1300 100 15:00 1600 1700 1800 1900 2000 7100 200 2300
0 e @timestamp per 10 minutes
- Time « _source
t
¢ _index > Aug 2, 2024 © 14:14:49.006 tags: _grokparsefailure path: fvar/log/snort/snort.log.1722249365 @version: 1 message:
19D\ X99\UBB1 7\ xAB\XE2\ XBF *\UBR1 D\ uBBBF)\XCD\XC1\XBF \xD6\XFO\ UBB1 A\ xE9\ XCAa\ XDB\ XEA\ XDE\XC2\XCB\XF
U SIS 3\XC2\UBR13\XES\XET\XAB]\XFEDI\XB6 Otimestamp: Aug 2, 2024 © 14:14:49.006 host: d9109766465c
t _type type: snort _id: Z6UGESEBX9SHTIOEioWY _type: _doc _index: snort-2624.88.82 _score: -
Figure 45: DoS detection by Snort for Scenario 5
B wseover

New Save Open Share Inspect

By | KaL v Aug2,2024 @12:00:00.00 - Aug 3, 2024 @ 00:00:00.00
® +Add filter
suricata-* v 1,325 hits

Q Aug 2, 2024 @ 12:00:00.000 - Aug 3, 2024 @ 00:00:00.000 — Auto v

(3 Filter by type 0

800

Selected fields g
§ 400

«» _source

200
Available fields . [[
(-t TE D 1200 13:00 14:00 15:00 18:00 17:00 18:00 18:00 2000 2100 2200 23:00
t @version * (@timestamp per 10 minutes

Time « _source
t _d
1 index > Aug 2, 2024 ©15:00:38.849 packet info.linktype: 1 @version: 1 payload_printable:connectivity-

check. ubuntu.com. . flow_id: 1,862,857,716,450,762 proto: UDP

score - - - . . o

Figure 46: DoS detection by Suricata for Scenario 5

29

. Discover 8 =

New Save Open Share Inspect

B | KQL v Aug2, 2024 @12:00:00.00 » Aug 3, 2024 @ 00:00:00.00 C Refresh

® +Addfilter
zeek-* v 995 hits
Q Aug 2, 2024 @ 12:00:00.000 - Aug 3, 2024 @ 00:00:00.000 — Auto N4
(Filter by type 0 o
Selected fields E ¥
8w
Available fields
nestamy 1200 3:00 400 5:00 18:00 17:00 1800 9:00
' e (@timestamp per 10 minutes
Time « _source

> Aug 2, 2624 © 12:52:00.562 host: d91ee766465c @version: 1 message: #separator \x89 tags: _grokparsefailure path: /opt/
zeek/logs/current/notice.log type: zeek Otimestamp: Aug 2, 2624 0 12:52:08.562
_id: VT_uEpEBKBKNxd7-ubWb _type: _doc _index: zeek-2024.08.02 _score: -

> Aug 2, 2824 © 12:52:08.562 host: d9166766465c Oversion: 1 message: #set_separator , tags: _grokparsefailure path: fopt/
zeek/logs/current/notice.log type: zeek @timestamp: Aug 2, 2824 @ 12:52:00.562
t message 1d: V1 uEpEBKBKNxd7-ubWy type: doc 1index: zeek-2624.68.82 score: -

Figure 47: DoS detection by Zeek for Scenario 5

5 Conclusion

This configuration manual describes the deployment of a robust security framework for
Docker container environments using open-source IDS tools like Suricata, Snort, and
Zeek, integrated with the ELK Stack for centralized logging and monitoring. Custom
rules in Suricata and Snort detect specific attack patterns, such as ICMP, TCP SYN,
and UDP floods, while Zeek enhances security through deep packet inspection. The
use of Docker containers allows for efficient resource management and scalability, and
the integration with the ELK Stack ensures comprehensive log analysis and visualiza-
tion. This setup provides real-time detection capabilities, effectively securing Dockerized
applications against a wide range of DoS attacks.

References
Haque, A. (2023). Install and run zeek network monitoring tool
on ubuntu = 22.04, Medium. https://medium.com/@afnanbinhaque/

install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49el12ef781.

Ish, J. (2024). jasonish/docker-suricata, https://github.com/jasonish/
docker-suricata. Accessed: 24 August 2024.

Lapenna, A. (2024). deviantony/docker-elk, https://github.com/deviantony/
docker-elk. Accessed: 25 August 2024.

Snort Setup Guides for Emerging Threats Prevention (n.d.). https://www.snort.org/
documents. Accessed: 24 August 2024.

30

https://medium.com/@afnanbinhaque/install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49e12ef781
https://medium.com/@afnanbinhaque/install-and-run-zeek-network-monitoring-tool-on-ubuntu-22-04-ad49e12ef781
https://github.com/jasonish/docker-suricata
https://github.com/jasonish/docker-suricata
https://github.com/deviantony/docker-elk
https://github.com/deviantony/docker-elk
https://www.snort.org/documents
https://www.snort.org/documents

	Introduction
	System Configuration
	Host System Configuration
	Virtual Machines
	Docker Containers
	Installation of Suricata IDS
	Installation of Snort
	Installation of ELK stack
	Installation of Zeek

	Configuration of the installed tools
	COnfiguration of Suricata
	Configuration of Snort
	Configuration of Zeek
	Configuration of ELK stack
	Setup of Attacker Container
	Setup of Victim Container

	Testing and Analysis
	Tools and Automated scripts used in testing
	Execution of all docker containers
	Scenario 1 Kali to Docker - Test Results
	Scenario 2 Attacker container to Victim container - Test Results
	Scenario 3 Host to Victim container - Test Results
	Scenario 4 Container to Host - Test Results
	Scenario 5 Windows to Docker - Test Results

	Conclusion

