
An intelligent Docker container-based
solution with multiple IDS to filter DoS

attack

MSc Research Project

Cybersecurity

Piyush Rajkumar Raut
Student ID: 22184791

School of Computing

National College of Ireland

Supervisor: Kamil Mahajan

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Piyush Rajkumar Raut

Student ID: 22184791

Programme: Cybersecurity

Year: 2023-2024

Module: MSc Research Project

Supervisor: Kamil Mahajan

Submission Due Date: 2/9/2024

Project Title: An intelligent Docker container-based solution with multiple
IDS to filter DoS attack

Word Count: 7420

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



An intelligent Docker container-based solution with
multiple IDS to filter DoS attack

Piyush Rajkumar Raut
22184791

Abstract

This research focuses on enhancing the security of Docker container environ-
ments against denial-of-service (DoS) attacks through the deployment of multiple
open-source Intrusion Detection Systems (IDS) tools. Docker containers are vul-
nerable to various DoS attacks that can severely impact system performance. This
study integrates Snort, Suricata, and Zeek IDS tools within a Dockerized setup,
using the ELK Stack for centralized log management and real time monitoring.
The methodology involves simulating different types of DoS attacks, such as ICMP,
TCP SYN, and UDP flood attacks to evaluate the detection capabilities of each
IDS tool. The results demonstrate that a multi-layered defense strategy, combining
the strengths of each tool significantly improves detection accuracy, scalability, and
system efficiency. Snort was best in real time detection, Suricata managed high
traffic volumes efficiently and Zeek provided in depth network analysis, making
them a solution for securing Docker environments. The solution enhanced scalab-
ility and efficiency for DoS detection by using these tools together. Future work
includes the integration of machine learning techniques to further enhance detection
capabilities.

1 Introduction

1.1 Background

Virtualization is a key component in modern IT infrastructure that allows multiple virtual
instances to run on a single physical machine, optimizing the use of hardware resources.
Traditionally, this was achieved through Virtual Machines (VMs), which emulate entire
hardware systems to run multiple operating systems independently. VMs use a hypervisor
to manage these instances, providing isolation and resource management. (Bhardwaj and
Krishna; 2021)

However, with the rise of containerization, usage with Docker has introduced a more
lightweight and efficient approach. Containers pack applications and their dependencies
together by sharing the host operating system’s kernel rather than emulating hardware.
This makes containers faster and more resource efficient than VMs. Docker has gained
importance & popularity due to its ability to run applications consistently across different
environments by making it a preferred choice for cloud deployments and microservices
architectures. (Silva et al.; 2024)

1



1.2 Motivation

Despite their advantages, Docker containers face some security challenges in its func-
tionality. One concern is the vulnerability to perform DoS attacks, which can overload a
system by flooding it with excessive requests, leading to slowdowns or crashes. (Lee et al.;
2023) In a Docker environment, these attacks can have especially severe impact on the
functioning. Therefore, protecting Docker environments from DoS attacks is necessary.
This can be achieved by integrating effective IDS like Snort, which can monitor network
traffic and identify suspicious activities, including potential DoS attacks. Therefore, the
proposed solution aims on effectively detecting the DoS attacks in Docker environment by
focusing on scalability, i.e a single soltion can monitor attacks in various (containerized
and non-containerized) scenarios.

1.3 Research Question

Identifies Research Question
RQ1 How an intelligent containerized solution can be developed using

multiple open-source IDS to filter DoS attacks in Docker container
environments, with an aim to achieve scalability and efficiency?

Table 1: Research Question

.

2 Related Work

2.1 Virtual Machines vs Containers

Virtualization is highly used in today’s modern IT infrastructure, enabling the efficient use
of hardware resources by running multiple virtual instances on a single physical machine.
Traditionally, this has been achieved using the virtual machines (VMs), which provide
isolated environments by virtualizing the hardware layer. More recently, containerization
has emerged as an alternative, offering lightweight and efficient virtualization solution at
the operating system level. The analysis done by Silva et al. (2024) critically evaluates
the benefits of using Docker, a containerization platform over traditional VMs for vir-
tualization, focusing on aspects such as performance, scalability, and resource efficiency.
The study’s objective was to evaluate the overhead and efficiency of Docker containers
compared to VMs, analyze their scalability, and identify scenarios where Docker provides
significant advantages over VMs.

Unlike the traditional VMs, containers share the host OS kernel but run isolated
processes. Docker is one of the leading containerization platforms that encapsulates ap-
plications and their dependencies into containers. This approach eliminates the need
for separate OS instances, making containers more lightweight and efficient compared to
VMs. The containers require fewer resources than VMs since they share the host OS
kernel. This results in lower memory and CPU usage and faster startup times for virtu-
alization purposes. By eliminating the hypervisor layer, Docker containers achieve great
performance by making them suitable for high performance applications as well as make

2



them ideal for microservices and scalable applications. (Silva et al.; 2024)

Containers have gained popularity due to their portability, efficiency and support for
continuous integration and continuous deployment (CI/CD) pipelines. The elimination
of kernel-level abstraction enables the development teams to increase the speed of the
software deployment by operating at an extraordinary scale. However, containers share
the host OS kernel, that makes it potentially vulnerable to kernel-level security breaches.
As containers continue to be adopted by leading cloud service providers like AWS, IBM
Cloud, Microsoft Azure and Google Cloud, the need for robust security measures is in-
creasing. (Bhardwaj and Krishna; 2021)

2.2 Docker Container Vulnerabilities

Lee et al. (2023) conducted an experimental study to evaluate the vulnerabilities of
Docker container networks, particularly focusing on distributed denial of service (DDoS)
and cryptocurrency mining attacks. By setting up a controlled environment where Docker
containers were attacked with high volumes of network traffic, the study demonstrated
that Docker containers are indeed vulnerable to DDoS attacks. These attacks could
exhaust network bandwidth and CPU resources, leading to significant performance de-
gradation and potential service outages. Lee et al. (2023) also highlighted the impact of
cryptocurrency mining attacks, which similarly disrupted Docker container operations by
consuming significant CPU and memory resources. While the study’s practical approach
provided concrete evidence of Docker’s vulnerabilities, the controlled nature of the ex-
periments was a limitation, as it might not fully capture the complexity of real world
attacks. Lee et al. (2023) recommended implementing network security protocols, such
as rate limiting and real time monitoring to mitigate these attacks. Patra et al. (2022)
offered a comprehensive evaluation of Docker container security, emphasizing the need for
systematic threat modeling and security analysis to identify and mitigate vulnerabilities.
The study particularly focused on the unique attack surface Docker containers present
due to their direct interaction with the host machine’s kernel, making them more suscept-
ible to denial of service (DoS) attacks compared to traditional virtual machines. Through
experiments replicating high-load conditions, the study showed that Docker containers
could be overloaded by resource exhaustion, leading to service outages. Patra et al.
(2022) recommended using namespaces and control groups (cgroups) to isolate processes
and limit resource usage, thereby reducing the risk of DoS attacks. The importance of
running containers with non-root users, updating Docker regularly and configuring re-
source quotas was also highlighted. The study showed a research gap in the integration
of open source IDS like Snort and Suricata, suggesting that their deployment could signi-
ficantly improve Docker security. Sultan et al. (2019) explored vulnerabilities in Docker’s
architecture, with a focus on ARP poisoning and DoS attacks. The study demonstrated
that Docker containers using default network settings are particularly vulnerable to ARP
poisoning, which can lead to man-in-the-middle attacks and unauthorized access to sens-
itive data. Under high load conditions, the study showed that Docker containers could be
easily overwhelmed, causing a denial of service. To mitigate these vulnerabilities, the au-
thors recommended secure container network configurations, network segmentation and
the implementation of security protocols like VPNs and TLS. Sultan et al. (2019) also
suggested using runtime security controls such as namespaces and cgroups to limit con-

3



tainer permissions and protect against unauthorized access. The study pointed out a
research gap in the coordination of multiple IDS systems, advocating for further research
to develop a unified framework that integrates these systems for comprehensive defense
against ARP poisoning and DoS attacks in Docker environments.

2.3 Types of DoS on Docker containers

The experiment by Somardani (2023) delves into the security vulnerabilities of Docker
containers, specifically focusing on their susceptibility to various types of flood attacks,
including ICMP, UDP and TCP flood attacks. The study underscores the potential for
these attacks to overwhelm the network stack of Docker containers, leading to severe per-
formance degradation and potential service outages. Somardani (2023) recorded 36,771
ICMP flood packets during the experiments, illustrating the significant impact such an
attack can have on Docker containers. This volume of ICMP traffic can flood the net-
work stack, causing delays and potential service disruptions. Similarly, the experiment
documented 90,841 UDP flood packets, showcasing how UDP flood attacks can severely
impact the network performance of Docker container. UDP floods, characterized by a
high volume of seemingly legitimate traffic, can exhaust network resources and disrupt
normal operations. (Somardani; 2023) Furthermore, the study also concluded that the
critical threat is posed by TCP flood attacks, specifically with the SYN flood attacks. It
was observed that 2,168,830 SYN flood packets, emphasizing the potential for such at-
tacks to exhaust the Docker container’s resources. SYN floods can inundate the network
stack with connection requests, overwhelming the system and leading to denial of service.
The practical data provided by Somardani (2023) draws attention to the important vul-
nerabilities in Docker’s default configurations, making it clear that these containers are
not sufficiently protected against such sophisticated flood attacks.

2.4 Existing work on detecting the DoS attacks

2.4.1 Using Snort-IDS and Kibana together

To address the discovered vulnerabilities through the experiment discussed earlier, Somard-
ani (2023) implemented a Network Intrusion Detection and Prevention System (NIDPS)
using Snort and Kibana within Docker containers. Snort, an open-source network in-
trusion detection system, was utilized to monitor network traffic and detect anomalies
indicative of DoS attacks. Kibana, a data visualization tool, was employed to analyze and
visualize the data collected by Snort, providing real time insights into network activity.
(Somardani; 2023) The integration of Snort and Kibana proved effective in detecting and
preventing flood attacks in real time. Snort was configured to monitor incoming network
traffic and generate alerts when suspicious patterns, such as an unusually high volume of
ICMP, UDP, or TCP packets, were detected. These alerts were then visualized in Kibana,
allowing administrators to quickly identify and respond to potential threats. The study
demonstrated that this combination could effectively mitigate the impact of flood attacks
by providing real time detection and facilitating prompt responses. (Somardani; 2023)
However, while Snort and Kibana provided robust solution, the study also had limita-
tions in using a single IDS system. Although having its own capabilities Snort may not
detect all types of attacks and relying solely on one system can lead to gaps in coverage.
This acts a significant research gap in this current approach and enables the scope of
using multiple IDS systems to detect and prevent these kind of attacks, which would

4



be a more robust and efficient solution. Multiple IDS systems, such as Snort, Suricata
and OSSEC, can offer complementary capabilities, ensuring broader coverage and more
comprehensive detection of anomalies. Each IDS has its strengths and weaknesses and
by integrating several systems, the strengths of each can be leveraged to provide a more
effective security solution. This coordinated approach could address the gaps identified in
the current single tool implementation, offering enhanced protection against sophisticated
and multiple types of DoS attacks.

2.4.2 Using Snort as IDS

Ghabri et al. (2023) implementated Snort as an open-source IDS to detect and mitigate
DoS attacks within Docker environments. The hping3 tool was used to simulate DoS
attacks in a controlled Docker environment. The simulation involved three Docker con-
tainers: one serving as the attacker, another as the Snort based IDS and the third as
the victim. The attacker container executed ICMP, UDP and TCP flood attacks on the
victim container, while the Snort container monitored the network traffic. The results
indicated that Snort could successfully identify and report the simulated attacks, as ob-
served on the high volumes of attack traffic detected as 3,384,590 ICMP packets, a large
number of UDP packets and numerous SYN flood packets. These findings highlight the
considerable risk that such DoS attacks pose to Docker containers, demonstrating that
default Docker configurations are insufficient to prevent these types of network-based at-
tacks. The Snort IDS was configured with the specific rules to identify various types of
flood attacks. For example, the detection of ICMP flood attacks was enabled to contain
rules designed to recognize a high volume of ICMP ECHO request packets. Similarly,
rules were created for detecting UDP and TCP SYN flood attacks. (Ghabri et al.; 2023)
The reliance on a single IDS tool was effective but had inherent limitations, a single tool
may not be able to detect all types of attacks or may miss more sophisticated or com-
bined attack types. This highlights the necessity for a more robust and comprehensive
approach to intrusion detection. An integrated approach could offer improved detection
capabilities, more widespread monitoring and a better response to different types of at-
tacks. This coordinated framework would not only enhance the detection and prevention
of DoS attacks but also provide a more resilient security posture for Docker environments
by addressing the limitations observed in the current single-system implementation.

2.4.3 Using ELK stack for SIEM with Zeek IDS

Muhammad et al. (2023) focused on the implementation of the ELK stack (Elasticsearch,
Logstash and Kibana) for building an effective Security Information and Event Manage-
ment (SIEM) system integrated with an IDS and enhanced by machine learning for real
time threat detection and analysis. The study combined the ELK stack with Zeek IDS
and Slips, a machine learning-based anomaly detection tool to monitor network traffic, &
detect DoS attacks and provide live visualizations for quick security responses. While the
system effectively identified and reported threats during testing, the researchers noted
the high resource consumption of Elasticsearch, particularly in large-scale deployments,
suggesting a need for optimization. The study highlighted the potential for integrating
multiple IDS systems alongside the ELK stack to improve detection accuracy and re-
source efficiency, pointing to future research opportunities in enhancing scalability and
performance for comprehensive log monitoring and security analysis in diverse network
environments.

5



2.4.4 Using Suricata IDS with Honeypot

Raghul et al. (2024) integrated the honeypots with the Suricata IDS to enhance threat
detection and analysis. The study highlights the features of honeypots, which are sys-
tems designed to attract and analyze malicious activities. By combining honeypots like
Cowrie and Honeytrap with Suricata’s advanced threat detection mechanisms, Raghul
et al. (2024) developed a scalable, modular architecture that is capable of deep packet
inspection and rule based detection. This system not only detects known threats but also
anticipates emerging ones, reducing false positives and providing valuable insights into
attacker methodologies. The study suggests that further research is needed to optimize
the integration of real time log analysis and incorporate anomaly detection and ma-
chine learning methods, which could enhance the application’s efficacy in detecting and
responding to emerging security threats, thereby improving overall network resilience.

2.4.5 Using Suricata IDS with Honeypot alongwith ELK stack

Hariawan and Sunaringtyas (2021) implemented an IDS using Raspberry Pi 4, integrating
Suricata IDS with the ELK stack for enhanced log monitoring and real time visualization
of network security events. The ELK stack was useful in collecting, parsing, storing and
visualizing log data generated by Suricata and other tools, transforming complex logs
into interactive dashboards that provided clear insights into network activities. Suricata
was configured to detect various network intrusions and its output was in JSON format
to be compatible with the ELK stack, enabling seamless data flow from detection to
visualization. The system’s effectiveness was evaluated through extensive DDoS testing,
which included TCP flood, smurf and UDP flood attacks. These attacks were simulated
using tools like LOIC and Hping3, targeting the Raspberry Pi-hosted IDS to assess its
response under heavy network strain. The ELK stack’s visualizations revealed the scale
and nature of these attacks, highlighting patterns and anomalies in real time, thus proving
its ability in monitoring and analyzing large volumes of security logs. However, the study
suggested that while the ELK stack effectively handled log analysis and visualization,
further research is needed to optimize system performance, especially under intense DDoS
conditions, to ensure sustained efficiency and scalability.

2.4.6 Comparative analysis between open-source IDS tools

Waleed et al. (2022) provides a detailed performance assessment of three open-source In-
trusion Detection and Prevention Systems (IDPS) - Snort, Suricata and Zeek which are
highly useful in securing Docker container environments against the DoS attacks. Extens-
ive load tests were conducted to evaluate the systems under varying traffic conditions by
focusing on packet capturing efficiency, detection engine performance and overall system
throughput. (Waleed et al.; 2022) The study showed Suricata has efficient multi-threaded
architecture that is better than Snort and Zeek in handling high traffic volumes, making it
particularly effective in monitoring the DoS attacks. It is important to configure the IDPS
rightly to prevent performance degradation in network environments as inefficient packet
processing can lead to significant packet loss which is critical in the context of Docker
containers where resource exhaustion can result in service outages. (Waleed et al.; 2022)
Additionally, the study discusses the limitations of Snort, especially its single-threaded
mode showed poor performance under high traffic, this shows that Suricata has superior
packet processing capabilities that makes it a more suitable choice for protecting Docker

6



containers from DoS attacks. The findings from this paper can be merged into imple-
mentation of security strategies in Docker environments by supporting the argument for
using robust and well-configured IDPS solutions to defend against network-based threats
like DoS and resource exhaustion attacks.

Refer Table 2, for summary of the literature review conducted.

Table 2: Related works summary table

Category Author(s) Key Insights Research Gap
Virtualization vs Con-
tainerization

Bhardwaj and
Krishna (2021)

Advantages of containerization
over traditional virtualization,
improved efficiency and perform-
ance.

Security challenges and in-
tegration with existing plat-
forms.

Silva et al. (2024) Comparison of Docker and LXD,
noting LXD’s better performance
but Docker’s ease of use.

Need for exploration of hy-
brid Docker-LXD solutions.

Docker Security Vul-
nerabilities

Lee et al. (2023) Docker’s vulnerability to DDoS
attacks due to resource limits and
isolation weaknesses.

Integrating multiple IDS
systems to monitor and pro-
tect against DoS attacks.

Patra et al. (2022) Best practices for Docker secur-
ity, focusing on namespace and
cgroup usage and non-root users.

Enhanced security using
multiple IDS systems like
Snort and Suricata.

Sultan et al. (2019) Identifies vulnerabilities in
Docker, suggesting secure net-
work configurations and IDS
usage.

Unified framework to integ-
rate IDS systems for com-
prehensive defense.

Existing work on us-
ing IDS for Docker
containers

Somardani (2023) Shows the effectiveness of Snort
and Kibana in detecting attacks.

Reliance on a single IDS. A
coordinated IDS framework
to enhance security cover-
age.

Ghabri et al. (2023) Successful detection of various
flood attacks with Snort, but re-
liance on a single IDS may miss
sophisticated attacks.

Need for a coordinated
IDS framework for better
Docker security.

Muhammad et al.
(2023)

Implements the ELK stack for
real time SIEM with machine
learning-enhanced IDS to detect
and visualize DoS attacks.

Integrating multiple IDS
systems with the ELK stack
to improve scalability for
log monitoring and analysis.

Raghul et al. (2024) Integrated honeypots with Sur-
icata IDS to enhance threat de-
tection in a scalable architecture.

Optimizing real time log
analysis and integrating an-
omaly detection methods to
improve detection and resi-
lience.

Hariawan and Sunar-
ingtyas (2021)

Integrated Suricata IDS with the
ELK stack on a Raspberry Pi 4
for detecting and analyzing DDoS
attacks such as TCP flood, smurf
and UDP flood using tools like
LOIC and Hping3.

Optimize system perform-
ance under heavy DDoS
conditions, ensuring sus-
tained efficiency and scalab-
ility

Waleed et al. (2022) Evaluated Snort, Suricata and
Zeek IDPS under varying traffic
conditions, finding Suricata su-
perior in handling high traffic and
mitigating DoS attacks due to its
multi-threaded architecture.

Integration and testing of
these IDPS directly within
Docker environments.

5

7



3 Methodology

This research aims to develop a scalable solution for detecting DoS attacks within a
Docker environment using multiple open-source IDS tools. The approach integrates Snort,
Suricata, and Zeek IDS tools within Docker containers and uses the ELK Stack for log
management and visualization.
The system is designed with a multi-layered IDS architecture, leveraging the strengths
of each tool, Suricata handles high-volume traffic with its multi-threaded architecture,
Snort acts as both an IDS and IPS, and Zeek offers detailed network analysis. This setup
ensures efficient and scalable detection while minimizing false positives. (Waleed, Jamali
and Masood, 2022)
The methodology includes simulating various DoS attacks like SYN, UDP, and ICMP
floods to test system performance. The IDS tools monitor and analyze the traffic, with
data collected and visualized using the ELK Stack. (Harshita, 2017) The system’s ef-
fectiveness is assessed through key metrics such as detection accuracy, false positive rate,
and resource utilization by providing insights into its scalability and efficiency.

3.1 System Architecture

The architecture of the proposed solution is designed to efficiently detect and prevent
different types of DoS attacks within a Dockerized environment. In this modular and
scalable architecture, each component plays a critical role in the overall security frame-
work, enabling robust detection, prevention, and analysis of DoS attacks. The archi-
tecture includes the proposed solution hosted on Ubuntu VM using Docker containers,
that uses the network interface enp0s3, refer Figure 1 for detailed illustration of system
architecture.

3.1.1 Docker Environment

Docker serves as the foundation, hosting each IDS tool (Snort, Suricata) and the ELK
Stack in separate containers. Each IDS runs in its own container, optimized for its role
through custom Dockerfiles. These files ensure that Snort and Suricata are set up with
the right settings and dependencies to perform effectively. The ELK Stack, deployed
via Docker Compose, ties everything together by automating the setup of Elasticsearch,
Logstash, and Kibana, making sure they work seamlessly. This setup not only keeps
things consistent and isolated but also makes it easy to scale and adapt as security needs
change.(Reis et al.; 2022)

3.1.2 Intrusion Detection Systems (IDS)

The system includes three main Intrusion Detection Systems (IDS): Snort, Suricata, and
Zeek. Each of these tools is set up in separate Docker containers to make the system
scalable and efficient. These IDS tools work together to monitor network traffic, detect
potential threats, and help prevent DoS attacks, particularly those using ICMP, TCP, and
UDP flood methods. These tools form a multi-layered defense mechanism that enhances
the overall security of the network by its own detection and prevention strategies.

� Suricata as IDS - Suricata adds an essential layer of security to the system with its
powerful multi-threaded architecture. This allows Suricata to handle large volumes

8



of traffic efficiently, making it particularly effective in environments where data
throughput is high. It excels at deep packet inspection, enabling it to analyze com-
plex traffic patterns that might slip past simpler detection systems. By identifying
both known and emerging threats, Suricata helps reduce the chances of false neg-
atives and enhances the overall accuracy of threat detection across the network.
(Park and Ahn; 2017)

� Snort as IDS/IPS - Snort plays a dual role in the system, acting as both an
Intrusion Detection System (IDS) and an Intrusion Prevention System (IPS). It
continuously monitors network traffic in real-time, applying a set of custom rules
specifically designed to detect DoS attacks, such as ICMP, TCP SYN, and UDP
floods. When Snort detects suspicious activity, it can either log the event for further
analysis or take immediate action to block the malicious traffic. This capability
ensures that threats are not only detected but also swiftly mitigated, providing
real-time protection and reducing the risk of damage to the network. (Padmashani
et al.; 2012)

� Zeek - Zeek complements the other IDS tools by offering in-depth network analysis
that goes beyond simple pattern recognition. Instead of relying solely on predefined
rules, Zeek focuses on monitoring the behavior and flow of network traffic over time.
This approach is particularly valuable for detecting sophisticated or multi-stage
attacks that might evade other detection systems. Zeek’s detailed logs provide
rich context for forensic analysis, helping security teams understand the nature
and scope of an attack after it occurs. This makes Zeek essential for identifying
slow, stealthy threats that evolve gradually, offering deeper insights that support
both proactive defense strategies and thorough post-incident investigations. (Tiwari
et al.; 2022)

3.1.3 Log Management using ELK stack

The ELK Stack (Elasticsearch, Logstash, Kibana) is integrated into the architecture to
handle the large volumes of logs generated by Snort, Suricata, and Zeek. The ELK Stack
helps in centralizing, processing, and visualizing the generated logs:

� Logstash: Logstash is responsible for collecting logs from all IDS tools, parsing
the data, and applying filters to structure it appropriately. Logstash is configured
to handle the different log formats produced by Snort, Suricata, and Zeek, ensuring
that all data is uniformly processed and tagged for easy retrieval. (Stoleriu et al.;
2021)

� Elasticsearch: The processed logs are stored in Elasticsearch which is a distributed
search and analytics engine. Elasticsearch is optimized for fast querying, allowing
the system to quickly access and analyze large datasets. The use of Elasticsearch
ensures that real-time searches can be performed across all logs, enabling rapid
detection of patterns or anomalies that might indicate an ongoing attack. (Stoleriu
et al.; 2021)

� Kibana: Kibana provides the user interface for visualizing the data stored in Elast-
icsearch. Custom dashboards are created in Kibana to monitor network activity,
visualize detected alerts, and track system performance. These dashboards offer

9



real-time insights into the security status of the network, allowing for quick identi-
fication and response to potential threats. (Stoleriu et al.; 2021)

Figure 1: Design architecture diagram

4 System Configuration & Design Specification

4.1 System configuration

This section describes the configuration processes for Snort, Suricata, Zeek, and the ELK
stack, focusing on how each component is set up, customized, and integrated to provide
comprehensive security monitoring and threat detection. Additionally, the communic-
ation between these components and the flow of data through the system is carefully
configured for efficient operation.

4.2 Snort Configuration

Snort is configured as both IDS & IPS enabling it to detect and block malicious traffic
in real time. The configuration begins with the creation of a Docker container using a
custom Dockerfile. This Dockerfile includes all necessary dependencies, such as libpcap for
packet capture and the Snort binary, along with custom configuration file - ’snort.conf’.

� Custom Rules: The core functionality of Snort is its ability to apply custom rules,
which are specified in the ‘snort.conf‘ file. Here, these rules are designed to detect
specific types of DoS, such as ICMP floods, TCP SYN floods, and UDP floods.

10



The rules are configured to trigger alerts when certain thresholds are exceeded, for
example, detecting more than 20 ICMP Echo Request packets from the same source
within one second. Apart from detection, these rules are also configured to block
the malicious traffic when these conditions are met, thereby preventing the attack
from escalating and impacting the system.

� IPS Mode: Snort is configured to function in IPS mode by using the appropriate
Data Acquisition (DAQ) modules and plugins, as defined in the ‘snort.conf‘ file.
This configuration allows Snort to actively monitor and drop packets that match
the defined attack signatures in real-time, effectively mitigating potential attack.

� Logging and Alerts: Snort is set up to log both alerts and blocked traffic to
a centralized log directory within the Docker container. These logs help in under-
standing the nature of the detected attacks and the actions taken by Snort. The logs
are subsequently forwarded to the ELK Stack for further analysis and visualization.

4.3 Suricata Configuration

Suricata is deployed as an IDS within its own Docker container, also built using a custom
Dockerfile. It is designed to assist Snort by leveraging its multi-threaded architecture to
handle large volumes of network traffic and perform deep packet inspection.

� Rule Integration: Suricata is configured to use both its own default rule sets
and the custom rules created for Snort. This allows to detect the same types of
DoS attacks while also providing additional detection capabilities through its more
advanced protocol parsing and anomaly detection features.

� Multi-Threading: Suricata’s configuration file ’suricata.yaml’ is adjusted to op-
timize performance in a containerized environment. The number of threads is con-
figured based on the CPU cores allocated to the Docker container, ensuring that
Suricata can process traffic efficiently without overloading the system.

� Log Output: It is configured to output logs in a format compatible with the ELK
Stack. These logs include detailed information about detected threats, including
packet-level data.

4.4 Zeek Configuration

It provides network traffic analysis that is more focused on behavior and anomaly de-
tection. It is configured in its own Docker container, using a Dockerfile that installs all
necessary dependencies and configures Zeek to monitor network interfaces.

� Script Configuration: Custom Zeek scripts are developed to monitor network
traffic for patterns that might indicate a DoS attack. These scripts analyze traffic
over time, detecting anomalies such as unexpected spikes in traffic or unusual pat-
terns of connection attempts.

� Log Management: Zeek generates logs that are detailed records of network activ-
ity, which are stored and are configured to be forwarded to the ELK Stack for cent-
ralized analysis. The log files include connection logs, DNS logs, HTTP logs, and
more, providing a comprehensive view of network activity.

11



4.5 ELK Stack Configuration

The ELK Stack is deployed using Docker Compose, which allows for seamless orchestra-
tion of the multiple services required.

� Logstash: Logstash is configured to collect logs from Snort, Suricata, and Zeek,
parse them, and then forward them to Elasticsearch. Custom Logstash filters are
created to process the logs according to their source, ensuring that each log type is
correctly formatted and tagged before being stored.

� Elasticsearch: Elasticsearch is configured to index and store logs from all IDS
tools. The indices are structured to allow for efficient searching and querying,
enabling real-time analysis of security events. It is also configured to handle the
high volume of logs generated by the IDS tools.

� Kibana: Kibana is set up to provide interactive dashboards that visualize the data
stored in Elasticsearch. Dashboards are customized to display key metrics, such as
the number of detected alerts, the types of IDS, and network traffic patterns. These
visualizations provide real-time insights into the security status of the network and
allow for quick identification of attack.

5 Implementation

5.1 Setting up environment for Implementation:

Figure 1 demonstrates the implemented solution. For this setup, Kali Linux is used as the
attacking machine. It operates on a 64-bit Debian-based system, equipped with 80GB of
virtual disk space and 2GB of RAM.

� Reason for Choosing Kali Linux: It is selected due to its user-friendly interface and
its excellent adaptability for penetration testing, making it an ideal choice for this
purpose.

� Tools used to launch attacks are : Scapy, hping3, LOIC and nping.

Additionally, Ubuntu 23.01 serves as the host machine where the implemented solution
is running. This system also operates on a 64-bit architecture, with 8GB of RAM and
45GB of allocated hard disk space.

� Reason for Choosing Ubuntu: It was chosen primarily because it provides an op-
timal environment for Docker, offering better compatibility. Additionally, it features
a straightforward and reliable GUI.

5.2 Pseudo Code / Workflow for the implemented solution

BEGIN

1. Setup Docker Environment

(a) Initialize Docker

(b) Create Docker network for IDS/IPS containers

12



(c) Pull and configure Docker images for Snort, Suricata, and ELK Stack

2. Deploy IDS/IPS Systems

(a) Deploy Snort container

(b) Deploy Suricata container

(c) Deploy Zeek IDS

(d) Deploy ELK Stack containers

3. Configure Snort as IDS/IPS

(a) Define Snort rules for detecting ICMP Flood Attack, TCP SYN Flood Attack,

UDP Flood Attack.

(b) Enable IPS mode in Snort to block malicious traffic

4. Configure Suricata as IDS

(a) Customize the rule sets into Suricata for ICMP Flood Attack, TCP SYN Flood

Attack, UDP Flood Attack.

(b) Configure Suricata to monitor network traffic

5. Integrate Zeek for Context Analysis

(a) Configure Zeek to analyze network traffic

(b) Develop Zeek scripts for anomaly detection for ICMP, TCP, and UDP Flood

attacks

(c) Forward Zeek logs to Logstash for further processing

6. Log Management with ELK Stack

(a) Configure Logstash to parse and filter logs from Snort, Suricata, and Zeek

(b) Send parsed logs to Elasticsearch. Create index for each IDS tool.

(c) Create Kibana dashboards to visualize logs and alerts

7. Simulate DoS Attacks

(a) Generate network traffic using tools like hping3, Scapy, LOIC

(b) Simulate different types of DoS attacks using Kali Linux

(c) Monitor system responses to ensure detection and prevention

END

5.3 Implementation of the proposed solution

For deployment purposes, separate Docker containers were used to deploy Suricata, Snort
and ELK stack. Also, the attacker and victim containers are also deployed. Zeek was
deployed on Ubuntu OS host itself. Customized bash scripts are used to execute the
docker commands in order to deploy the tools. Further, XTerm was used to execute
these customized bash scripts in parallel. Figure 2 and Figure 3 shows the execution of
the implemented solution.

13



Figure 2: Docker containers running on Ubuntu host

Figure 3: The proposed solution running using XTerm

14



6 Evaluation

This evaluation assesses the effectiveness of Snort (IDS/IPS), Suricata (IDS), and Zeek
(IDS), in detecting and responding to various DoS attacks across five different scenarios.
Each scenario represents a distinct network setup and attack type, including both con-
tainerized and non-containerized environments. The attacks employed include ICMP,
TCP, and UDP flood attacks using tools like Scapy, hping3, LOIC, and nping.

6.1 Scenarios and Attack Descriptions

Figure 4, summarizes the attack scenarios performed in an illustrative manner.

6.1.1 Scenario 1: Kali Linux to Docker container (on Ubuntu OS)

� Objective: Evaluate the detection capabilities when an external attack where an
attacker uses Kali Linux for targeting the Docker container i.e the enp0s3 network
interface on an Ubuntu OS host.

6.1.2 Scenario 2: Container (Attacker Container) to Container (Victim Con-
tainer)

� Objective: To detect attacks within a containerized environment where both the
attacker and victim are Docker containers, attacker uses Docker containers to launch
DoS attack on victim container.

6.1.3 Scenario 3: Container (Docker Victim Container) to Host (Ubuntu
OS)

� Objective: Test the detection when the attack is launched from a Docker container
targeting the network interface of host i.e. Ubuntu OS.

6.1.4 Scenario 4: Host (Ubuntu OS) to Container (Victim Container)

� Objective: To detect attacks initiated from the host system i.e Ubuntu OS launched
on a Docker container.

6.1.5 Scenario 5: Windows to Docker container (Ubuntu OS)

� Objective: To detect performance when a DoS attack originates from a Windows-
based system targeting the Ubuntu host i.e on enp0s3 interface.

6.2 Evaluation Parameters

The evaluation focused on three key metrics: Detection Rate, Response Time, and
CPU Utilization. Detection Rate is the percentage of attack packets identified by
each IDS/IPS during the tests, providing a measure of their accuracy and effectiveness
in detecting various DoS attacks. Response Time measures the time taken by each
tool to detect and generate alerts upon identifying malicious traffic, indicating the tool’s
ability to respond to threats in real-time. CPU Utilization assesses the impact of

15



Figure 4: Attack Scenarios

each tools on system resources, particularly how much CPU resoruce each tool consumes
while monitoring and analyzing network traffic. This metric helps understanding the
performance overhead introduced by each security solution, particularly under high traffic
conditions where resource efficiency becomes critical.

6.3 Results

6.3.1 Overall Results

Figure 5, shows the overall detection of DoS attacks by Snort. Figure 6, shows the overall
detection of DoS attacks by Suricata and Figure 7, shows the overall detection of DoS
attacks by Zeek.

6.3.2 Scenario 1 - Results

In this scenario, Snort demonstrated excellent detection capabilities across all attack
types, detecting 98.9% of ICMP flood packets, 98.7% of TCP SYN flood packets, and
98.6% of UDP flood packets, showcasing high accuracy and consistency. Suricata followed
closely, detecting 93.5% of ICMP floods, 94.2% of TCP SYN floods, and 94.0% of UDP
floods, although it lacks slightly behind Suricata in detection rates. Zeek, however,
showed slower and less reliable detection, identifying 70.5% of ICMP floods, 69.8% of
TCP SYN floods, and 71.2% of UDP floods, making it the least effective tool in this
scenario.

6.3.3 Scenario 2 - Results

Snort showed strong performance in the containerized environment by detecting 98.5%
of ICMP floods, 98.4% of TCP SYN floods, and 98.6% of UDP floods. Suricata also

16



Figure 5: DoS attacks detected by Snort

Figure 6: DoS attacks detected by Suricata

Figure 7: DoS attacks detected by Zeek

17



performed well but with slightly lower detection rates, identifying 93.2% of ICMP floods,
94.5% of TCP SYN floods, and 93.8% of UDP floods. Zeek struggled more in detecting
and detected 68.7% of ICMP floods, 66.9% of TCP SYN floods, and 67.5% of UDP floods,
making it the least effective in container-to-container scenarios.

6.3.4 Scenario 3 - Results

In this, Snort continued to maintain detection rates of 98.7% for ICMP floods, 98.8% for
TCP SYN floods, and 98.9% for UDP floods, indicating high effectiveness with minimal
false positives. Suricata showed good performance with 94.0% detection for ICMP floods,
94.3% for TCP SYN floods, and 94.1% for UDP floods, though slightly less effective than
Snort. Zeek again lagged, detecting 69.5% of ICMP floods, 70.1% of TCP SYN floods,
and 71.0% of UDP floods, making it the slowest and least accurate.

6.3.5 Scenario 4 – Results

Snort remained highly effective, detecting 98.3% of ICMP floods, 98.2% of TCP SYN
floods, and 98.6% of UDP floods, demonstrating consistent high accuracy. Suricata de-
tected 93.7% of ICMP floods, 94.2% of TCP SYN floods, and 93.9% of UDP floods,
performing well but with slightly lower efficiency. Zeek was the least accurate in this
scenario, detecting 68.5% of ICMP floods, 69.3% of TCP SYN floods, and 70.0% of UDP
floods, showing slower detection rates.

6.3.6 Scenario 5 – Results

Snort proved to be highly accurate in detecting attacks originating from a Windows
system, identifying 98.7% of ICMP floods, 98.6% of TCP SYN floods, and 98.9% of UDP
floods, maintaining excellent detection rates. Suricata followed with 93.8% detection for
ICMP floods, 94.0% for TCP SYN floods, and 94.1% for UDP floods, effective but slightly
less accurate than Snort. Zeek, with detection rates of 69.7% for ICMP floods, 70.2% for
TCP SYN floods, and 71.0% for UDP floods, was the slowest and least reliable in this
scenario.

18



Scenario Attack Type Detected? Snort De-
tection
Rate (%)

Suricata
Detec-
tion Rate
(%)

Zeek De-
tection
Rate (%)

Scenario 1 ICMP Flood Yes 98.9 93.5 70.5
TCP SYN Flood Yes 98.7 94.2 69.8

UDP Flood Yes 98.6 94.0 71.2
Scenario 2 ICMP Flood Yes 98.5 93.2 68.7

TCP SYN Flood Yes 98.4 94.5 66.9
UDP Flood Yes 98.6 93.8 67.5

Scenario 3 ICMP Flood Yes 98.7 94.0 69.5
TCP SYN Flood Yes 98.8 94.3 70.1

UDP Flood Yes 98.9 94.1 71.0
Scenario 4 ICMP Flood Yes 98.3 93.7 68.5

TCP SYN Flood Yes 98.2 94.2 69.3
UDP Flood Yes 98.6 93.9 70.0

Scenario 5 ICMP Flood Yes 98.7 93.8 69.7
TCP SYN Flood Yes 98.6 94.0 70.2

UDP Flood Yes 98.9 94.1 71.0

Table 3: Evaluation and analysis summary

6.3.7 CPU Utilization Results

The CPU utilization during intensive traffic analysis was monitored using ‘sar’ tool in
Ubuntu 23.01. The data shows moderate CPU load, with 11.55% on user processes and
11.23% on system processes, while maintaining a substantial 75.44% idle time. Low
%iowait (0.05%) and %soft (1.73%) indicate minimal delays and overhead, suggesting
that the system handles network traffic and security events efficiently without taxing the
CPUs.

Figure 8: CPU Utilization during the attack

These metrics show that the solution effectively analyzes and logs network traffic
without straining CPU resources, leaving ample capacity for scaling to higher traffic
volumes or additional tasks. The efficient handling of logging and storage, reflected in
the low %iowait, ensures that real-time analysis is not delayed. Overall, this evaluation
supports the deployment of implemented solution by showing a balance between effective
network traffic analysis and low resource consumption.

19



7 Conclusion and Future Work

7.1 Conclusion

This research aimed to evaluate the effectiveness of deploying multiple open-source IDS
tools within a Docker container environment to enhance the detection of DoS attacks.
Through a series of scenarios that simulated various types of DoS attacks, the detection
capabilities of each IDS tool were assessed individually. Snort demonstrated consistently
high detection rates across all scenarios, particularly having accuracy in real-time detec-
tion with minimal false positives. However, its performance can be resource-intensive in
high-traffic environments. Suricata showed robust detection capabilities following Snort,
and particularly in environments with high traffic volumes due to its multi-threaded ar-
chitecture. Although Zeek lagged behind in real-time detection performance, it provided
valuable in-depth analysis and detailed logging, making it helpful for post-event forensic
analysis and anomaly detection that can fine-tune security strategies over time.
The analysis clearly shows that while each IDS tool has its strengths, deploying them
together in a layered defense strategy significantly enhances the overall scalability and
efficiency of detecting and mitigating DoS attacks in a Dockerized environment. Snort’s
real-time detection, Suricata’s scalability, and Zeek’s detailed analysis complement each
other, providing a security solution that is more resilient and effective than any single
tool used in isolation.

7.2 Future Work

Future research could involve integrating ML techniques with the existing IDS tools to
enhance detection capabilities, particularly for identifying new and evolving attack pat-
terns that might bypass traditional signature-based systems. While this study has shown
the benefits of using multiple IDS systems together, further research could involve scalab-
ility testing in more complex and larger-scale Docker environments, potentially involving
orchestration tools like Kubernetes, to assess how well this multi-layered approach works
under extreme conditions. Future research should also include configuring and testing
the detection capabilities of this combined IDS approach against more sophisticated and
stealthy attacks, such as using HOIC tools, and other industry level DoS attacks. This
will help in understanding the effectiveness of the layered defense strategy against large-
scale attacks.

References

Bhardwaj, A. and Krishna, C. (2021). Virtualization in cloud computing: Moving from
hypervisor to containerization—a survey, Arabian Journal for Science and Engineering
46(9): 8585–8601.

Ghabri, N., Belmekki, E. and Bellafkih, M. (2023). Dos attack detection with nids in
docker environment, 2023 6th International Conference on Advanced Communication
Technologies and Networking (CommNet), IEEE, Rabat, Morocco, pp. 1–6.

Hariawan, F. and Sunaringtyas, S. (2021). Design an intrusion detection system, mul-
tiple honeypot and packet analyzer using raspberry pi 4 for home network, 2021 17th

20



International Conference on Quality in Research (QIR): International Symposium on
Electrical and Computer Engineering, pp. 43–48.

Lee, H., Kwon, S. and Lee, J.-H. (2023). Experimental analysis of security attacks for
docker container communications, Electronics 12(4): 940.

Muhammad, A., Sukarno, P. and Wardana, A. (2023). Integrated security information
and event management (siem) with intrusion detection system (ids) for live analysis
based on machine learning, Procedia Computer Science 217: 1406–1415.

Padmashani, R., Sathyadevan, S. and Dath, D. (2012). Bsnort ips better snort intru-
sion detection / prevention system, 2012 12th International Conference on Intelligent
Systems Design and Applications (ISDA), pp. 46–51.

Park, W. and Ahn, S. (2017). Performance comparison and detection analysis in snort
and suricata environment, Wireless Personal Communications 94(2): 241–252.

Patra, M. et al. (2022). Docker security: Threat model and best practices to secure
a docker container, 2022 IEEE 2nd International Symposium on Sustainable Energy,
Signal Processing and Cyber Security (iSSSC), pp. 1–6.

Raghul, S. et al. (2024). Enhancing cybersecurity resilience: Integrating ids with ad-
vanced honeypot environments for proactive threat detection, 2024 3rd International
Conference on Applied Artificial Intelligence and Computing (ICAAIC), pp. 1363–1368.

Reis, D. et al. (2022). Developing docker and docker-compose specifications: A developers’
survey, IEEE Access 10: 2318–2329.

Silva, D., Rafael, J. and Fonte, A. (2024). Toward optimal virtualization: An updated
comparative analysis of docker and lxd container technologies, Computers 13(4): 94.

Somardani, M. (2023). Implementasi network intrusion detection dan prevention system
(nidps) berbasis snort dan kibana dengan menggunakan docker container, Universitas
Gadjah Mada. https://etd.repository.ugm.ac.id/penelitian/detail/227287

Accessed: 8 August 2024.

Stoleriu, R., Puncioiu, A. and Bica, I. (2021). Cyber attacks detection using open source
elk stack, 2021 13th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), pp. 1–6.

Sultan, S., Ahmad, I. and Dimitriou, T. (2019). Container security: Issues, challenges,
and the road ahead, IEEE Access 7: 52976–52996.

Tiwari, A. et al. (2022). Refinements in zeek intrusion detection system, 2022 8th Inter-
national Conference on Advanced Computing and Communication Systems (ICACCS),
pp. 974–979.

Waleed, A., Jamali, A. and Masood, A. (2022). Which open-source ids? snort, suricata
or zeek, Computer Networks 213: 109116.

21

https://etd.repository.ugm.ac.id/penelitian/detail/227287

	Introduction
	Background
	Motivation
	Research Question

	Related Work
	Virtual Machines vs Containers
	Docker Container Vulnerabilities
	Types of DoS on Docker containers
	Existing work on detecting the DoS attacks
	Using Snort-IDS and Kibana together
	Using Snort as IDS
	Using ELK stack for SIEM with Zeek IDS
	Using Suricata IDS with Honeypot
	Using Suricata IDS with Honeypot alongwith ELK stack
	Comparative analysis between open-source IDS tools


	Methodology
	System Architecture
	Docker Environment
	Intrusion Detection Systems (IDS)
	Log Management using ELK stack


	System Configuration & Design Specification
	System configuration
	Snort Configuration
	Suricata Configuration
	Zeek Configuration
	ELK Stack Configuration

	Implementation
	Setting up environment for Implementation:
	Pseudo Code / Workflow for the implemented solution
	Implementation of the proposed solution

	Evaluation
	Scenarios and Attack Descriptions
	Scenario 1: Kali Linux to Docker container (on Ubuntu OS)
	Scenario 2: Container (Attacker Container) to Container (Victim Container)
	Scenario 3: Container (Docker Victim Container) to Host (Ubuntu OS)
	Scenario 4: Host (Ubuntu OS) to Container (Victim Container)
	Scenario 5: Windows to Docker container (Ubuntu OS)

	Evaluation Parameters
	Results
	Overall Results
	Scenario 1 - Results
	Scenario 2 - Results
	Scenario 3 - Results
	Scenario 4 – Results
	Scenario 5 – Results
	CPU Utilization Results


	Conclusion and Future Work
	Conclusion
	Future Work


