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Abstract 
This paper examines how to design and develop a machine learning-based Intrusion Detection 
System (IDS) for enhancing the level of security by timely s detection of the intrusions. Because 
of the rapid growth of the number of connected objects, the relied-on approaches to security are 
insufficient, thus exacerbating the vulnerabilities. The architecture that we want to develop 
adapts and implements AI technology in the process of simulation testing. under the guidance of 
which many features are complied with the regulation of the GDPR. For the assessment of various 
machine learning algorithms using the NSL-KDD dataset, it was discovered that both Random 
Forest and Decision Tree algorithms demonstrated better results in the detection of intrusions 
and vulnerabilities. The versatility in the framework is that it is capable of learning from new 
threats as they form thus making it dynamic in nature. This leads to minimizing the extent of use 
of manpower and consequently lowering of operating costs.  

Keywords: Simulation Testing, Machine Learning, Cyber Security, IT solution, Compliance 

1: Introduction 
An Intrusion Detection System (IDS) (Saied, M. , Guirguis, S. and Madbouly, M. , 2024) is a 
security tool that is used to constantly scan and identify harassing activities or violations of 
security policies on a computer network or in certain systems. In this sense, the system assists 
in the detection of unauthorized attempts, potential threats, and suspicious activities, while 
calling administrators’ attention to them to take necessary actions. The reliable system that can 
be utilized to maintain network security and protect the critical information from cyber threats is 
Intrusion Detection System (IDS). 



 

Figure 1: An IDS/IPS on an enterprise network (Source: Spiceworks) 

1.1 Motivation 
An Intrusion Detection System (IDS) monitors network traffic for anomalous behaviour and 
generates alarms when such behaviour is detected. An Intrusion Detection System (IDS) 
primarily performs the tasks of detecting and reporting anomalies. However, certain IDSs can 
respond to hostile activities or abnormal network traffic. This article will comprehensively cover 
all aspects of the Intrusion Detection System. An Intrusion Detection System (IDS) is a security 
mechanism designed to detect and respond to unauthorized access attempts or malicious 
activities within a computer network or system. These systems can monitor network traffic for 
malicious activities and promptly notifies of any detected incidents. Network or system 
monitoring software is designed to detect and identify harmful activity or policy breaches 
(Nebbione, G. and Calzarossa, M.C., 2023). Every instance of unlawful activity or violation is 
often documented either in a centralized manner utilizing a Security Information and Event 
Management (SIEM) system or reported to an administrative entity. An Intrusion Detection 
System (IDS) is responsible for monitoring a computer network or system to detect any harmful 
activity. Its main purpose is to safeguard the network against unwanted access by users, 
including potential insiders. The objective of the intrusion detector learning challenge is to 
construct a prediction model, specifically a classifier, that can effectively differentiate between 
'bad connections' (intrusions/attacks) and 'good (normal) connections'. Based on this a network 
based using the AI (Artificial Intelligence) can be made that can be able to handle the vulnerability 
attacks. 

1.2 Problem Statement 
In today's digital world, the number of linked devices has grown rapidly, surpassing the global 
population. This rise is similar to the significant changes brought about by the Industrial 
Revolution. The rapid increase in the number of instances has brought up considerable security 
difficulties, especially in the area of safeguarding data. Out all these risks, phishing, ransomware, 
and system misconfiguration are the most widespread, with phishing being the primary issue 
worldwide. Conventional security procedures (Chaudhari, A., Gohil, B. and Rao, U.P., 2024), 
such simulation testing, have demonstrated their effectiveness in detecting and reducing 
vulnerabilities. Nevertheless, the manual implementation of these tests, particularly for wireless 
networks, places significant budgetary and resource constraints on enterprsises. 



Due to the intricate nature and large amount of data produced by wireless networks, it is not 
feasible for simulation testers to consistently monitor and analyse traffic manually. This 
constraint not only burdens the resources of the firm but also exposes systems to advanced 
assaults, such as SQL injections and cross-site scripting (Ghanem, M.C., Chen, T.M. and 
Nepomuceno, E.G., 2023). Additionally, it puts private information and intranet server addresses 
at risk of being compromised. 

1.3 Business Outcome 
Integrating a machine learning-powered framework for identifying vulnerabilities and conducting 
simulation testing can greatly increase the cybersecurity defences of enterprises in many sectors 
(www. akamai.com/solutions/security). Such a solution gives full security and flexibility by 
expanding the ability of learning threats on any OS including the Windows OS, Linux OS, MAC OS 
as well as Ubuntu. Important business results include 
(https://www.geeksforgeeks.org/Intrusion Detection System): 
 

1.4 Research Question 
Based on the above discussions following are the research questions that we are focussed upon, 

RQ1: Can Machine learning-based AI system be designed that will be agnostic in detecting and 
preventing the network intrusion detection in different operating systems? 

RQ2: Can an AI based solution mitigate the vulnerability attacks by complying with the GDPR? 

1.5 Objective: 
The objective of this work is, therefore, to develop a suitable simulation testing framework for 
automation of intrusion and vulnerability detection while integrating continuous learning 
capability to network systems. Thus, by informulating AI models into the central part of the 
framework, the project aims to enhance the efficiency of simulation testing procedures and their 
adaptability to new security threats. Majority of the works towards the simulation testing has 
utilized some of the best practices of the use of KALI Linux and SQL injection for the prohibiting 
of the attacks together with the incorporation of SQL injections. In this research, emphasis will 
be laid on demonstrating how integration of AI in automatic simulation testing framework can aid 
in the security of the system. The NSL-KDD dataset shall be used for evaluation testing for training 
and finalising the system. Therefore, we put forward an AI-Penetration-Framework, which is a 
manually crafted auto ML that re-estimates hyperparameters from the training and produces the 
most accurate trained model. We found some of the machine learning models being used, here 
our target will be an enhanced response system which not only focusses on the improvement of 
the intrusion detection but also minimises the space without continuously deploying the solution 
but only when required. 

Thesis Structure 
In the next chapter we will discuss in details about the different researches that has been done 
and try to find those gaps and improvement areas that can be worked upon. In the chapter on 
methodology, we will discuss in details about the different techniques and methods that can be 
applied in making the proposed solution. In the chapter on implementation we will discuss in 
details about the implemented solution and the way it has been implemented. In the chapter on 
results and analysis we will discuss in details about the analysis and use cases. 



2 Literature Review: 
Security of operating systems and network systems has become quite important in the 
contemporary world where every computer is connected with another in a network for the 
security of significant infrastructures and important data. The main security types that are no 
longer useful when it comes to handling new forms of cyber threats and their attack vectors are 
as follows. One potential solution to this growing threat is combining DL and AI (Chaudhari, A. , 
Gohil, B. and Rao, U. P. , 2024); which can boost the network security and enhance the ability to 
identify cyber threats. 

2.1 AI Techniques in Intrusion Detection Systems 
In a research by (H. Sadia et al. ,2024) proposed a revealed NIDS to safeguard the Wi-Fi based 
WSNs from cyber attacks like impersonation attacks, flooding attack, and injection attacks. They 
brought down the number of features originally used from 154 to 13 core features, and they used 
a Convolutional Neural Network (CNN) for multiclass intrusion detection. The CNN model of 
analysis gave a high recognition rate of 97% and a loss measurement of 0. True positive: 14, false 
positive: low. This work considerably enhances the efficiency of IDSs that overprompt WSNs’ 
security against agenda cyber threats. 

In a research by (Jie, W. , Chen, Q. , Wang, J. , Koe, A. S. V. , Li, J. , Huang, P. , Wu, Y. and Wang, 
Y. , 2023) in the identified shortcomings in the current approaches through empirical findings and 
the flexibility of the feature selection. This framework combines strong whitebox knowledge and 
uses supervised multitrajectory tasks in the view of static analysis. Their approach consists of 
such stages as feature selection, dimensions normalization, features joining, models’ training, 
and making of decisions. For each task, the researchers use self-attentive bi-LSTMs, (text) CNNs, 
and RFs to attain the joint multimodal feature representations. These include code and graph 
embeddings both at intramodal or single level and intermodal or cross level. Analyzing 101,082 
functions from the SmartEmbed dataset proves that their approach is better as their detector 
gets a detection rate of up to 99%. 71%, surpassing existing schemes. Through frameworks, 
checklists, and best practices within this publication, the developer receives practical and 
flexible solutions to improve the identification of threats in smart contracts. 

In a research (Siva Shankar, S. , Hung, B. T. , Prashant Chakrabarti, Tito Chakrabarti, & Gopal 
Parasa, 2024) proved a novel optimization-based deep learning technique assisted by artificial 
intelligence with surveillance of intrusion threats in network system. The authors successfully 
approach the issue of quantifying the trends of the malicious detection techniques in the IDS 
market with the introduction of the optimised Artificial Intelligence approach to IDs. The goal of 
this approach was to effectively detect intrusions in the networks that are experiencing increased 
vulnerability to cyber threats mainly due to problems of resource limitations and network 
heterogeneity. The authors presented a scenario of the suggested strategy utilizing the datasets 
of NSL-KDD and UNSW-NB15 with the help of experiments on the Python platform. His method 
of operation when tested on the label data exhibited a detection rate of 99% higher than the other 
GEO-SMPIF solutions. 78% and 99. 70% , an accuracy rate that was recorded at ninety-nine point 
nine percent. 99% and 99. 97%. 

(Abuali, K. M. , Nissirat, L. and Al-Samawi, A. , 2023) proposed support vector machine 
frequently called deep learning to categorize data to find intrusion incident on social media 
networks. They used the CSE-CIC-IDS 2018 dataset which required to be preprocessed for the 
training phase to be carried out. To test the proposed model, it was applied on a small sample 



data of 100,000 instances. Extraordinary outcome of the study was noted: the model yield 1.00 
of the accuracy, sensitivity, positive predictivity, exactness, and F1-measure, whereas the false-
positive recall was equal to zero. 

Another new methodological framework for packet-based NIDS, framework by (Ghadermazi, J. , 
Shah, A. and Bastian, N. D. , 2024) also considers the dependency between temporal elements 
of packets and is capable to perform efficient analysis of the payload and the header data. Their 
system employs intrusion detection model based on the CNN, where the system translates the 
sequences of packets into the two-dimensional images and then searches for any sign of 
aggressive activity. The authors applied this technique on publicly available huge datasets and 
proved that it gets the detection rates from 97%. from 7 percent to 99 percent across the different 
kinds of attacks. Along with enhancing the performance for intrusion detection using networks 
and mitigating crucial limitations of packet based NIDS, their approach also provided fair 
resistance against adversarial cases.. 

2.2 Network Intrusion Detection Systems (NIDS) Enhancements 
In a research by (Chen, J. L. , Chen, Z. Z. , Chang, Y. S. , Li, C. I. , Kao, T. I. , Lin, Y. T. , Xiao, Y. Y. 
and Qiu, J. F. , 2023, February) put forward an intrusion detection method using AI for the ITRI AI 
BOX information security purpose. The packets are analyzed by the AI BOX based on the AI 
algorithms that identify threats or unusual traffic in the network. After that, the approach changes 
or isolates the abnormal or malicious network data transmission behavior to ensure information 
security. AI models for anomaly detection help the system to either enable or restrict the flow of 
data therefore is used to secure a device. The future developments of the approach endeavour to 
detect and mitigate the packets in both IT and OT environments thus ensuring safe data 
processing and conversions in various networks. T he experimental assessment of the intrusion 
detection style demonstrated its effectiveness, insofar as it ascertain to a publicly available data 
set with a 99% rate of accuracy. The environment that contains machine learning models, packet 
sniffing functionality, and certain configurations of the operating system under the name of AI 
BOX has been built and experimented in the Yocto Project environment. This demonstration 
proves that it can protect smart factories or hospitals from abnormal traffic attacks and prevent 
the occurrence of system paralyzing or extortion like events. 

Thus, to enhance the IDS’s efficiency (Mohammad, R. , Saeed, F. , Almazroi, A. A. , Alsubaei, F. 
S. and Almazroi, A. A. , 2024) suggested a design that utilizes deep learning architectures and 
data augmentation methods. Specifically, to counter the limitations of existing intrusion 
detection techniques based on machine learning, they evaluated their models on four datasets: 
UNSW-NB15, 5G-NIDD, FLNET2023, CIC-IDS-2017. There are conducted the experiments that 
finally confirmed that the CNN, based idea of a very simple architecture of the classifier, can 
detect the network attacks with very high accuracy, where on the additional CIC-IDS-2017 
dataset, achieving the maximum of 91 % of accuracy. 

To enhance IDS performances and reduce the occurrences of false alarms (More, S. , Idrissi, M. 
, Mahmoud, H. and Asyhari, A. T. , 2024) proposed developing machine learning models. On the 
UNSW-NB15 network traffic dataset, they used logistic regression, support vector machine, 
decision tree, and random forest algorithms. Thus, the proposed model terms of accuracy, 
speed, and percentage of correctly classified samples are 98. 63%, and F-measure of 97. 80%, 
Random Forest is considered to be the most accurate model among the considered ones. To sum 
it up, it appears that the Random Forest model is good at identifying cyberattacks and can 
improve IDS systems. 



2.3 AI Techniques in Simulation Testing Frameworks 
The LSTM-RNN based simulation testing framework named as Long Short-Terms Memory 
Recurrent Neural Network Enabled Vulnerability Identification (LSTM-EVI) is proposed to mitigate 
the cybersecurity issues of IoT by (N. Koroniotis, N. Moustafa, B. Turnbull, F. Schiliro, P. 
Gauravaram, and H. Janicke, 2021). Notably, the proposed framework by the authors achieved 
a higher score compared to four other approaches, with scanner attacks’ detection accuracy 
reaching only slightly below 99%. Observations presented in this paper illustrate on how deep 
learning models can enhance the discovery of vulnerabilities and the generation of simulation 
tests for complex IoT systems. 

In (Ghanem, M. C. and Chen, T. M. , 2019) the researcher Integrated the Intelligent Automated 
Simulation Testing System (IAPTS) that incorporates machine learning techniques namely 
Reinforcement learning (RL) to the process of simulation testing (PT). They synchronise with other 
industrial PT structures to gather data, assimilate advanced incidents, and recreate tests in 
subsequent conditions. Studying PT environments and tasks as partially observable Markov 
decision problem (POMDP) and its solution using POMDP-solver, IAPTS can reduce the human 
involvement and increase the effectiveness and credibility of PT.  

(Confido, A. , Ntagiou, E. V. and Wallum, M. , 2022, March), For the purpose of improving 
PenBox’s testing procedure the research was focused on deployment of the Reinforcement 
Learning (RL), particularly, Q-learning paradigm. Replacing the simulation testing with a Q-
learning problem formulation enables the system to learn a policy that will maximize the rewards 
in a trial-by-trial fashion. Optimal attack paths were defined through the results with help of which 
it was possible to identify that this approach could improve simulation test processes. 

Intelligent Simulation Testing derived from Generative Adversarial Imitation Learning called as 
GAIL-PT (Chen, J. , Hu, S. , Zheng, H. , Xing, C. and Zhang, G. , 2023) was proposed as a solution 
to the issues associated with RL/DRL-based testing. wages were used the discriminator in the 
GAIL-PT framework to establish the expert knowledge bases which in turn were fed to the training 
process. The states and actions were acquired from the RL/DRL model successful exploitation of 
states and actions. Compared with the current techniques like DeepExploit and Q-learning, GAIL-
PT accuracy is higher in the simulated network conditions and the actual target hosts, which 
proved GAIL-PT as one of the apex frameworks for using RL/DRL-based simulation testing 
approaches.. 

2.4 Summary Table 
Table 1: A summary review of all the research reviewed and analysed 

Paper Author Model/algorithms 
used 

Dataset Results 

Intrusion Detection 
System for Wireless 
Sensor Networks: A 
Machine Learning 
Based Approach 

Halima Sadia, Saima 
Farhan, Yasin Ul Haq, 
Rabia Sana, Tariq 
Mahmood, Saeed Ali 
Omer Bahaj, Amjad 
Rehman(2024) 

CNN AWID) The CNN model produced 
an excellent 97% accuracy, 
a loss measure of 0.14, and 
a low false alarm rate. 

A novel extended 
multimodal AI 
framework towards 
vulnerability 

Jie, W., Chen, Q., 
Wang, J., Koe, A.S.V., 
Li, J., Huang, P., Wu, Y. 
and Wang, Y., 2023 

 Self-attentive Bi-LSTM, 
TextCNN (Convolutional 
Neural Network for text), 
Random Forest (RF) 

SmartEmbed 
dataset containing 
101,082 functions 
for evaluation. 

Achieved Detection 
Performance: Up to 99.71% 

https://www.researchgate.net/scientific-contributions/Halima-Sadia-2276895254?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Saima-Farhan-2276905053?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Saima-Farhan-2276905053?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Yasin-Ul-Haq-2232378385
https://www.researchgate.net/scientific-contributions/Rabia-Sana-2276912168
https://www.researchgate.net/scientific-contributions/Tariq-Mahmood-2255576070?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Tariq-Mahmood-2255576070?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Saeed-Ali-Omer-Bahaj-2260308389
https://www.researchgate.net/scientific-contributions/Saeed-Ali-Omer-Bahaj-2260308389
https://www.researchgate.net/scientific-contributions/Amjad-Rehman-69941467
https://www.researchgate.net/scientific-contributions/Amjad-Rehman-69941467


detection in smart 
contracts 

A novel optimization 
based deep learning 
with artificial 
intelligence 
approach to detect 
intrusion attack in 
network system 

Siva Shankar, S., 
Hung, B.T., 
Chakrabarti, P., 
Chakrabarti, T. and 
Parasa, G., 2024. 

Corporate Hierarchy 
Optimisation (CHO), 
Golden Eagle 
Optimisation (GEO) 
algorithm, Multi-layer 
Perceptron (MLP) 
interfaced fuzzy system 

NSL-KDD and 
UNSW-NB15 

NSL-KDD Dataset: 
Detection Rate: 99.78%, 
Accuracy Rate: 99.99%, 
False Alarm Rate: 0.04 

UNSW-NB15 Dataset: 
Detection Rate: 99.70%, 
Accuracy Rate: 99.97%, 
False Alarm Rate: 0.065 

Advancing Network 
Security with AI: 
SVM-Based Deep 
Learning for Intrusion 
Detection 

Abuali, K.M., Nissirat, 
L. and Al-Samawi, A., 
2023 

Support Vector 
Machine (SVM)-based 
deep learning system 

CSE-CIC-IDS 2018 
dataset 

 

Accuracy: 100% 

True-positive recall: 100% 

Precision: 100% 

Specificity: 100% 

F-score: 100% 

False-positive recall: 0% 

Towards real-time 
network intrusion 
detection with 
image-based 
sequential packets 
representation 

Ghadermazi, J., Shah, 
A. and Bastian, N.D., 
2024.  

 

CNN publicly available 
big datasets 

Detection Rates: 97.7% to 
99% across various attack 
types 

3: Methodology 
As we progress deeper into the digital era, protecting networked systems has emerged as a top 
priority for companies around. The reason behind this is the growing interconnection of 
networked systems. With the evolution of cyberattacks—which can encompass everything from 
efforts to obtain unauthorised access to complex malware invasions—it is more important than 
ever to safeguard the security and integrity of computer networks. There are several ways in which 
these hacks can target computer networks. While there is some success with more conventional 
approaches to network security, these methods often miss rapidly evolving threats and 
vulnerabilities. This is so even if these strategies do tend to work. Network security could be 
jeopardised because of this. 

3.1 Dataset Description 
The NSL-KDD dataset offers many advantages compared to the original KDD dataset, The train 
set does not contain redundant data, ensuring that the classifiers are not biased towards more 
frequent entries. The suggested test sets do not contain any duplicate records, ensuring that the 
performance of the learners is not influenced by approaches that have higher detection rates on 
frequent records. Source: https://www.unb.ca/cic/datasets/nsl.html. The quantity of chosen 
records from each degree of difficulty is inversely related to the proportion of records in the 
original KDD dataset. Consequently, the classification rates of different machine learning 
methods exhibit a broader range, thereby enhancing the efficiency of accurately evaluating 
various learning approaches. The train and test sets include a fair amount of records, allowing for 
the experiments to be conducted on the whole set without the necessity of randomly selecting a 
tiny section. As a result, the assessment outcomes of many research studies will be consistent 
and capable of being compared. 

https://www.unb.ca/cic/datasets/nsl.html


 

Figure 2: Information of the the data types in KDD dataset (Source: unba.ca) 

The detailed information of the dataset present in the dataset is as below, 

RangeIndex: 125973 entries, 0 to 125972 
Data columns (total 43 columns): 
 #   Column                       Non-Null Count   Dtype   
---  ------                       --------------   -----   
 0   duration                     125973 non-null  int64   
 1   protocol_type                125973 non-null  object  
 2   service                      125973 non-null  object  
 3   flag                         125973 non-null  object  
 4   src_bytes                    125973 non-null  int64   
 5   dst_bytes                    125973 non-null  int64   
 6   land                         125973 non-null  int64   
 7   wrong_fragment               125973 non-null  int64   
 8   urgent                       125973 non-null  int64   
 9   hot                          125973 non-null  int64   
 10  num_failed_logins            125973 non-null  int64   
 11  logged_in                    125973 non-null  int64   
 12  num_compromised              125973 non-null  int64   
 13  root_shell                   125973 non-null  int64   
 14  su_attempted                 125973 non-null  int64   
 15  num_root                     125973 non-null  int64   
 16  num_file_creations           125973 non-null  int64   
 17  num_shells                   125973 non-null  int64   
 18  num_access_files             125973 non-null  int64   
 19  num_outbound_cmds            125973 non-null  int64   
 20  is_host_login                125973 non-null  int64   
 21  is_guest_login               125973 non-null  int64   
 22  count                        125973 non-null  int64   
 23  srv_count                    125973 non-null  int64   
 24  serror_rate                  125973 non-null  float64 
 25  srv_serror_rate              125973 non-null  float64 
 26  rerror_rate                  125973 non-null  float64 
 27  srv_rerror_rate              125973 non-null  float64 
 28  same_srv_rate                125973 non-null  float64 



 29  diff_srv_rate                125973 non-null  float64 
 30  srv_diff_host_rate           125973 non-null  float64 
 31  dst_host_count               125973 non-null  int64   
 32  dst_host_srv_count           125973 non-null  int64   
 33  dst_host_same_srv_rate       125973 non-null  float64 
 34  dst_host_diff_srv_rate       125973 non-null  float64 
 35  dst_host_same_src_port_rate  125973 non-null  float64 
 36  dst_host_srv_diff_host_rate  125973 non-null  float64 
 37  dst_host_serror_rate         125973 non-null  float64 
 38  dst_host_srv_serror_rate     125973 non-null  float64 
 39  dst_host_rerror_rate         125973 non-null  float64 
 40  dst_host_srv_rerror_rate     125973 non-null  float64 
 41  attack                       125973 non-null  object  
 42  level                        125973 non-null  int64   
dtypes: float64(15), int64(24), object(4) 
memory usage: 41.3+ MB 

3.2 Machine Learning Algorithms 
Through the utilization of datasets such as NSL-KDD for intrusion detection and CVE for 
vulnerability assessment, the project will train AI models to identify and mitigate security risks 
proactively. By deploying the AI-aided simulation testing framework in real-world environments 
and implementing monitoring and response mechanisms, the project aims to validate the 
effectiveness of the developed solution in enhancing system security and resilience against 
cyber threats. 

3.2.1 Logistic Regression 

Our simulation testing prediction research uses Logistic Regression (LR)(Nick, T.G. and 
Campbell, K.M., 2007), a basic machine learning approach that is easy to understand and 
straightforward. Based on input features, it forecasts the likelihood of a binary result, such as 
Suspicion or Correct. LR is a great tool for determining important elements that affect simulation 
testing using the AI choices since it helps to understand the relationship between the predictors 
and the dependent variable. In spite of its simplicity, LR’s effectiveness and efficiency in binary 
classification problems make it a solid baseline model. 

 

Figure 3: The S-Curve analysis for the Logistic regression. The concept behind is the logit function 
(Nick, T.G. and Campbell, K.M., 2007) 



The logit function is as below, 

𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 

When this above is differentiated, then 

𝑓′(𝑧) = 𝑓(𝑧)(1 − 𝑓(𝑧)) 

Making the calculations easier. Here f(z) is the logit function. 

3.2.2 Decision Trees 

Our research makes use of decision tree (DT) (De Ville, B., 2013) algorithms because of their 
interpretability and capacity to manage non-linear interactions. DTs generate a decision tree-like 
model by dividing the data into subsets according to the most important features. This approach 
is helpful for determining decision rules in simulation testing using the AI approval procedures 
since it is simple to visualise and comprehend. Nevertheless, pruning strategies and ensemble 
approaches can prevent overfitting in DTs. 

 

Figure 4: Illustration of working of decision trees for the vulnerable detection (De Ville, B., 2013) 
(Source: TowardsDataScience) 

3.2.3 Random Forest 

Random Forest (RF)(Rigatti, S.J., 2017) is an ensemble technique that generates a large number 
of trees during training and outputs the mode of the classes for classification problems, hence 
improving the predictive performance of decision trees. RF lowers the chance of overfitting by 
averaging the output of several trees, improving model resilience and accuracy. This algorithm 
handles a lot of input features well and provides excellent accuracy, making it especially useful 
for our simulation testing using the AI  prediction task. 



 

Figure 5: Random Forest, making many trees within the same population to enhance the 
prediction model (Rigatti, S.J., 2017)(Source: Sklearn) 

3.2.4 Support Vector Machines 

Our research makes use of Support Vector Machine (SVM)( Vishwanathan, S.V.M. and Murty, 
M.N., 2002) because of its robustness in classification tasks and its capacity to handle high-
dimensional data. The best hyperplane that maximises the margin between the classes is found 
using SVM. Especially when handling non-linear connections with kernel functions, this method 
offers excellent generalisation capabilities and good accuracy in our project. 

 

Figure 6: Analysis of the output values for finding the maximum margin of the hyperplane 
generated from the support vectors (Vishwanathan, S.V.M. and Murty, M.N., 2002) 

3.2.5 Simulation Testing 

An essential part of determining how to secure a network system is conducting simulation tests, 
sometimes called ethical hacking. Our project's overarching goal is to improve network intrusion 
detection across different OSes by creating an AI-aided simulation testing platform. With the help 
of machine learning algorithms, we were able to increase the detection and identification of 
vulnerabilities and incursions during our simulation testing process, which is detailed in this 
section along with the methodology, tools, and techniques used (Rohit, R., Firnas, H., Abishek, 
M. and Dhamodaran, S., 2023). 



4: Implementation 
Here we go over the steps needed to set up the project's simulation testing system, which 
includes two essential features: detecting intrusions using the NSL-KDD dataset and 
vulnerabilities using Machine Learning (ML). 

4.1 Algorithm Flow 
 

 

Figure 11: Algorithm Flow graph 

To differentiate between legitimate network traffic and possible intrusions, the framework's 
network traffic analysis uses a binary classification method with the NSL-KDD dataset. An 
established benchmark for intrusion detection systems, the NSL-KDD dataset provides labelled 
data with distinct network traffic patterns classified as normal or different sorts of attacks. A 
rundown of the main procedures is as follows: 

Algorithm Flow: 

Step 1: Data Preprocessing: In order to get the NSL-KDD dataset ready for the machine learning 
model, it is pre-processed. Jobs such as these could be involved: 

a. Filtering out extraneous data (e.g., internal network traffic). 
b. Providing the selected binary classifier with numerical representations that are suitable 

for category features. 

Step 2: Feature selection for intrusion detection to find the most relevant features. 

Step 3: Sampling the data for training the machine learning models and then fixing the best 
model from the testing samples.  

Step 4: Training a Binary Classifier: For this, we employ an ML model that has been specifically 
trained for binary classification. The model is taught to differentiate between typical traffic 
patterns and those that could be signs of an attack using the pre-processed NSL-KDD dataset. 
Integrating the trained binary classifier with the network traffic monitoring tool allows for real-
time traffic analysis. The classifier is supplied data in real-time while the instrument records 



network traffic. For intrusion detection, the binary classifier applies learnt patterns to pre-
processed data about network traffic and labels it as normal or suspicious. 

Step 5: Notification: When the system detects strange traffic patterns that could be an incursion, 
it will send out an alert to the appropriate security staff. 

Step 6: Vulnerability Detection Integration: A more complete picture of possible security 
threats within the target network can be obtained by combining the results of the machine 
learning-based vulnerability detection with those of the binary classifier-based intrusion 
detection system (if applicable). 

Step 7: Test Case Execution: The test cases used are executed for the testing the scenarios 
which are being detected as vulnerabilities. 

Step 8: Reporting: Once the test cases are executed, the suspicious are then checked with the 
probability of the scores above. The suspicious reports are then checked for the logs and reported 
for further analysis, 

a. In case for an individual system, this is quarantined using some kind of firewall or related 
networks 

b. In case of an organisation, the cybersecurity office is notified. 

 

4.2 Stage 1: Machine Learning-based Vulnerability Detection 
Information about the existing vulnerabilities and their related code snippets is given in the CVE 
(Common Vulnerabilities and Exposures) dataset. The data was obtained from Kaggle website. 
Before the code data was analysed, some preparations were made to the collected data: 
preprocessing. Here, tokenization, comments removal and code format transformation for 
machine learning models were involved. The next step was to use the pre-processed code in 
order to get more useful properties like function calls, n-grams, or the code complexity. The 
model can use these properties to look for potential vulnerabilities. 

This raw CVE related dataset was pre-processed before feeding it to a machine learning model, 
which could have been a Random Forest, a Support Vector Machine (SVM), or even deep learning 
model. The model was trained to identify patterns associated with the code vulnerabilities. The 
intended OSes were tested with the help of the static code analysis methods. These instruments 
analysed code snippets and passed them to the trained ML model in an effort to identifying 
security vulnerabilities in compliance with the learned patterns. 

4.3 Stage 2: Machine Learning based Intrusion Detection 
The framework was enhanced with the inclusion of the NSL-KDD dataset, a highly esteemed 
benchmark for intrusion detection systems. Data on network traffic has been classified and 
sorted into normal and other forms of attacks in this dataset. The NSL-KDD dataset was used for 
feature selection in order to find the best features for intrusion detection. Common 
characteristics include IP addresses for both the sender and the receiver, as well as the protocol 
and packet size. 
The pre-processed NSL-KDD dataset was used to train a machine learning model. This model 
could be a Decision Tree, Random Forest, or Neural Network. Through training, the model was 
able to recognize attack-related patterns in network data. In order to gather data on the target 



network's traffic in real-time, a tool for monitoring network traffic was installed. For continuous 
analysis, the trained intrusion detection model was given this data. 

4.4 Data Analysis 
The output attacks are of different types and the numbers of different type counts are listed as 
below, 
attack 
normal             67343 
neptune            41214 
satan               3633 
ipsweep             3599 
portsweep           2931 
smurf               2646 
nmap                1493 
back                 956 
teardrop             892 
warezclient          890 
pod                  201 
guess_passwd          53 
buffer_overflow       30 
warezmaster           20  
land                  18 
imap                  11 
rootkit               10 
loadmodule             9 
ftp_write              8 
multihop               7 
phf                    4 
perl                   3 
spy                    2 
Name: count, dtype: int64 
These are actually types of attacks or exploits commonly seen in network security contexts. 
Here's a brief explanation of some of them: 

Satan: This could refer to a network scanning tool used by attackers to identify vulnerabilities in systems.  

Ipsweep: A type of network reconnaissance where an attacker systematically scans a range of IP 
addresses to gather information about potential targets. 

Portsweep: Similar to ipsweep but focuses on scanning multiple ports on different systems to find 
vulnerable services. 

Nmap: A widely-used network scanning tool that can be used for legitimate network management tasks 
but also by attackers for reconnaissance. 

Back: Typically refers to unauthorized remote access to a system, often gained through exploiting 
vulnerabilities or weak passwords. 

Teardrop: An old DoS attack that exploits fragmentation of IP packets to crash vulnerable systems.  

Guess_passwd: Attempting to gain unauthorized access to a system by guessing passwords. 

Buffer_overflow: A type of software vulnerability where an attacker overwrites memory adjacent to a 
buffer, potentially leading to execution of malicious code. 

Imap, Rootkit, Loadmodule, Ftp_write, Multihop, Phf, Perl, Spy: Each of these represents specific 
vulnerabilities or attack types, such as exploiting weaknesses in email servers (imap), installing stealthy 
malicious software (rootkit), and others 

 



 
Figure 12: Outliers example in some of the graphs 

In the above figure in case the points are above the box, those points are actual outliers. 

 

Figure 13: Feature importances. 

We used the feature importances attribute of sklearn to make the important features list. In this 
the top feature can be used to make the system less dimenstional and also less complex. 

col=['service', 'flag', 'src_bytes', 'dst_bytes', 'logged_in', 
       'same_srv_rate', 'diff_srv_rate', 'dst_host_srv_count', 
       'dst_host_same_srv_rate', 'dst_host_diff_srv_rate'] 

Chapter 5: Results and analysis 
The simulation testing framework's binary classification model for intrusion detection was tested 
using the NSL-KDD dataset. There are many different kinds of network traffic patterns included in 
the dataset, and they are all either considered normal or indicative of an assault. The records 
were appropriately categorized by the model, which yielded the following distribution: 



 

Figure 14: Correlation Matrix using the Pearson Correlation 

The above figure discusses the correlation between the features. In this case the green color cells 
discuss about the correlation. Lets look into the distribution of the attacks in the data, 

Normal Traffic: Representing a typical pattern of network usage, the largest category with 67343 
records (X% of the overall dataset) is normal traffic. 

Explosion Methods: Different kinds of attacks are depicted by the following records. The most 
important ones are listed below: 

• This attack category probably comprises Denial-of-Service (DoS) attacks that try to 
overwhelm the target system with traffic; Neptune has 41,214 records, or X% of all attacks. 

• This category may reflect scanning attempts used to detect vulnerabilities on the target 
network (Satan, 3633 records, X%). 

• Port sweep assaults, in which hackers look for open ports on their targets' systems, are 
probably represented by the 3599 records belonging to the ipsweep category (X%). 

• Although they only account for a small fraction of all attacks, other attack types such as 
portsweep, smurf, nmap, back, teardrop, etc. 

5.1 Case 1: Machine Learning Analysis 
The findings show that the binary classification model is capable of differentiating between 
legitimate network data and different types of intrusion attempts. The model's capacity to detect 
baseline network behavior is demonstrated by the large volume of typical traffic (67343 records). 
The most common kind of assault that has been found is a denial of service (DoS) attack, which 
shows that there may be attempts to disrupt regular network activities. Attempts at scanning 
(Satan, Ipsweep) indicate possible reconnaissance operations that may precede more complex 
attacks. 

Table 2: Machine Learning Analysis for different models 



 

Random Forest performs better than the other two methods since its bars are longer for all three 
measures (Accuracy, Precision, and Recall). Precision and Recall are two areas where Support 
Vector Machines (RBF) have shown encouraging performance. K-Nearest Neighbours and Naive 
Bayes perform worse than expected on every measure. Decision Trees may not be the best 
algorithm overall, but they do a decent job of balancing out performance. Finally, the provided 
graphic suggests that Random Forest is a promising intrusion detection system candidate. When 
the ROC – Receiver operating curves is compared and checked, the following figure looks and 
compare. We find that Decision Trees and Random Forest performs the best.  

 

Figure 15: (a) Receiver Operating Curve for all the models and (b) Comparison plots plot 

5.2 Vulnerability detection 
In order to find out how well different machine learning algorithms discover vulnerabilities using 
the CVE dataset, this study set out to do just that. The CVE vulnerability detection dataset is an 
extensive compilation of vulnerabilities that have been publicly publicized. The content 
comprises distinct identifiers (CVE IDs), explanations of vulnerabilities, impacted software or 
hardware versions, categories of vulnerabilities, probable consequences, and citations to 
supplementary material. The dataset, overseen by the MITRE Corporation, is regularly updated 



through the collaboration of security experts, suppliers, and researchers. The tool is extensively 
utilized in security applications for automated vulnerability management and can be easily 
accessed through the official CVE website and APIs. This unified and authoritative repository of 
information enables streamlined vulnerability management, risk assessment, and fosters 
collaboration within the security community. 

Table 3: Performance comparison of Random Forest and Decision Trees 

 

When compared to other methods, Random Forest's higher accuracy and precision showed that 
it was better at finding security flaws. Nevertheless, the Decision Tree displayed a little stronger 
recall, indicating a superior capacity to encompass all genuine vulnerabilities. While the Neural 
Network does a great job overall, it may need some further hyperparameter tweaking to make it 
even better in recall and precision. 

 

Figure 16: Loss and Accuracy graphs with epochs plot 

To summarize, the graph shows that the neural network model effectively learns from the training 
data and does not suffer from overfitting. However, it is important to recognize that obtaining low 
training and validation loss does not guarantee the model's best performance on new, unseen 
data. Evaluating the model on a separate test set is essential for determining its generalizability. 

5.3 Attacks mitigation  
In case of different attacks, the code first identifies the classes based on the above machine 
learning model that has been trained and then the related mitigation is released to counter. In this 
case we are trying to not only improve the computation and unnecessary blockage of computer 
memory rather only required attacks mitigation service is used. This is one of our novelties of our 
research study. Second in case of the computation more RAM memory is free. 



 

Figure 17: Computer usage free memory showcase 

5.4 Experiment Case 1: Running in the Serverless system 

 

Figure 18: Testing in a server less or switching off the network 

The response system is able to work properly and is not requiring any dependency on the internet 
connection or any other network connection. 

5.5 Experiment Case 2: Runing in Widows and Linux system 
The similar test was performed in Ubuntu the response was replicated and is agnostic of the 
OS. Only change required was changing the format of the address in the code. 

The script uses a machine learning model which predicted a probability score of 89%. This refer 
to the model’s confidence in detecting or simulating a potential network vulnerability or attack 

 

Figure 19: System performance agnostic of OS and Servers 



5.6 Testing the system: Case 3 
Attack type normal 

 

Figure 20: In case of Normal Data 

When the normal data is passed into the simulation environment, backend machine learning 
model predicts with a probability. If the probability is less than the threshold score, that 
particular reply for the attack is deployed. In this case the response of the reply attack is also 
mentioned below. 

5.7 Testing the system: Case 4 
Attack type buffer_overflow and dos: 
Buffer overflow is when a program writes more data to a buffer than what can contain it with a 
view of possibly running unauthorized code.  

 The result “AAAAAAAAAA. . . ” shows a big size of the payload that usually contains in the buffer 
overflow attacks.  

 The probability score of 0 The highlight of this essay is to calculate out the probability score, 
and it is 0 The probability scores are as follows: The probability score of 0 865% given by the 
model depicts the probable or risk factor as per the analysis done by the developed machine 
learning model of the said invasive attack. This score will show how the model looks at the 
possibility of success, or consequences of the simulated buffer overflow attack 

 

Figure 21: In case the attack is buffer_overflow 

The user has selected "dos" (Denial-of-Service) as the attack type. A DoS attack is designed to 
make a network service unavailable to its intended users by overwhelming it with a flood of 
requests. 



This attack is said to send multiple requests in a succession to the target, a possibility making 
the target unable to respond. The warning gives loose indication to the fact that running this 
attack might be dangerous, so it should not be run all the time  

 The final machine learning model gives some probability score to a specific disease that is 0. 
731%. This score of course is as per the model interpretation of the probability of the attack 
being successful or inflicting a major DoS on the simulated system.. 

 

In case the attack is dos 

Chapter 6: Conclusion 
The study showcases the effectiveness of incorporating machine learning models into an 
Intrusion Detection System (IDS) to bolster cybersecurity. Out of the models that were assessed, 
Random Forest proved to be the most successful, surpassing the others in terms of accuracy, 
precision, and recall. The system continuously identified intrusions with a high level of accuracy, 
while Decision Trees also demonstrated significant performance, especially in terms of recall. 
Support Vector Machines (RBF) and Neural Networks, while successful, need additional tweaking 
to enhance consistency. K-Nearest Neighbours and Naive Bayes had worse performance, 
particularly in terms of accuracy and recall. 

The IDS architecture, which utilizes machine learning, has significant advantages for 
cybersecurity. Organizations may greatly improve their security and operational efficiency by 
automating the discovery of vulnerabilities and simulation testing. This strategy lowers the need 
for human involvement, decreases expenses related to security breaches, and guarantees 
adherence to regulatory requirements. Furthermore, the system's ability to function well on 
different operating systems and its capacity to constantly acquire knowledge from emerging 
threats offer a strong protection mechanism. In essence, this solution enhances network 
security, ensures uninterrupted operations, and enhances the reputation of the business, so 
creating a more robust and secure digital environment. 

Future Work: 
The system still does not perform the real-time scanning of an actual network environment, and 
thus can scarcely be adjusted to practical needs. In order to perform live scan of the network, IDS 
has to be integrated with other real time network monitoring tools. This will make the system to 
provide intrusions in live network environment and thus increasing usability of the system. 



The prototype is not an ideal solution and additional data sets should be integrated, more 
attacks and potentiality to tune different parameters to get better results from the model. . 
Obviously, by making the prototype more comprehensive that can detect all the possible threats 
out there. This could include rigorous test exercises on different types of network as well as 
attack scenarios leading to a versatile IDS. 

References 
Abuali, K.M., Nissirat, L. and Al-Samawi, A., 2023. Advancing Network Security with AI: SVM-Based 

Deep Learning for Intrusion Detection. Sensors, 23(21), p.8959. 

Chaudhari, A., Gohil, B. and Rao, U.P., 2024. A novel hybrid framework for cloud intrusion detection 
system using system call sequence analysis. Cluster Computing, 27(3), pp.3753-3769. 

Chen, J., Hu, S., Zheng, H., Xing, C. and Zhang, G., 2023. GAIL-PT: An intelligent simulation testing 
framework with generative adversarial imitation learning. Computers & Security, 126, p.103055.  

Chen, J.L., Chen, Z.Z., Chang, Y.S., Li, C.I., Kao, T.I., Lin, Y.T., Xiao, Y.Y. and Qiu, J.F., 2023, February. 
AI-Based intrusion detection system for secure AI BOX applications. In 2023 International Conference on 
Artificial Intelligence in Information and Communication (ICAIIC) (pp. 360-364). IEEE.  

Confido, A., Ntagiou, E.V. and Wallum, M., 2022, March. Reinforcing simulation testing using ai. In 
2022 IEEE Aerospace Conference (AERO) (pp. 1-15). IEEE. 

De Ville, B., 2013. Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics, 5(6), 
pp.448-455. 

Ghadermazi, J., Shah, A. and Bastian, N.D., 2024. Towards real-time network intrusion detection 
with image-based sequential packets representation. IEEE Transactions on Big Data.Pham-Quoc, C.; Bao, 
T.H.Q.; Thinh, T.N. FPGA/AI-Powered Architecture for 

Ghanem, M.C. and Chen, T.M., 2019. Reinforcement learning for efficient network simulation 
testing. Information, 11(1), p.6. 

Ghanem, M.C., Chen, T.M. and Nepomuceno, E.G., 2023. Hierarchical reinforcement learning for 
efficient and effective automated simulation testing of large networks. Journal of Intelligent Information 
Systems, 60(2), pp.281-303. 

H. Sadia et al., 2024, "Intrusion Detection System for Wireless Sensor Networks: A Machine 
Learning Based Approach," in IEEE Access, vol. 12, pp. 52565-52582, 2024, doi: 
10.1109/ACCESS.2024.3380014. 

Hu, Z., Beuran, R. and Tan, Y., 2020, September. Automated simulation testing using deep 
reinforcement learning. In 2020 IEEE European Symposium on Security and Privacy Workshops 
(EuroS&PW) (pp. 2-10). IEEE. 

Jie, W., Chen, Q., Wang, J., Koe, A.S.V., Li, J., Huang, P., Wu, Y. and Wang, Y., 2023. A novel extended 
multimodal AI framework towards vulnerability detection in smart contracts. Information Sciences, 636, 
p.118907. 

Koroniotis, N., Moustafa, N., Turnbull, B., Schiliro, F., Gauravaram, P. and Janicke, H., 2021, 
October. A deep learning-based simulation testing framework for vulnerability identification in internet of 
things environments. In 2021 IEEE 20th International Conference on Trust, Security and Privacy in 
Computing and Communications (TrustCom) (pp. 887-894). IEEE. 



Mohammad, R., Saeed, F., Almazroi, A.A., Alsubaei, F.S. and Almazroi, A.A., 2024. Enhancing 
Intrusion Detection Systems Using a Deep Learning and Data Augmentation Approach. Systems, 12(3), 
p.79. 

More, S., Idrissi, M., Mahmoud, H. and Asyhari, A.T., 2024. Enhanced Intrusion Detection Systems 
Performance with UNSW-NB15 Data Analysis. Algorithms, 17(2), p.64. 

Nebbione, G. and Calzarossa, M.C., 2023. A Methodological Framework for AI-Assisted Security 
Assessments of Active Directory Environments. Ieee Access, 11, pp.15119-15130. 

Nebbione, G. and Calzarossa, M.C., 2023. A Methodological Framework for AI-Assisted Security 
Assessments of Active Directory Environments. Ieee Access, 11, pp.15119-15130. 

Nick, T.G. and Campbell, K.M., 2007. Logistic regression. Topics in biostatistics, pp.273-301. 

Peterson, L.E., 2009. K-nearest neighbor. Scholarpedia, 4(2), p.1883. 

Pham-Quoc, C., Bao, T.H.Q. and Thinh, T.N., 2023. FPGA/AI-powered architecture for anomaly 
network intrusion detection systems. Electronics, 12(3), p.668. 

Rigatti, S.J., 2017. Random forest. Journal of Insurance Medicine, 47(1), pp.31-39. 

Rish, I., 2001, August. An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on 
empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46). 

Rohit, R., Firnas, H., Abishek, M. and Dhamodaran, S., 2023, May. Web Application Security Testing 
Framework using Flask. In 2023 2nd International Conference on Applied Artificial Intelligence and 
Computing (ICAAIC) (pp. 1646-1652). IEEE. 

Saied, M., Guirguis, S. and Madbouly, M., 2024. Review of artificial intelligence for enhancing 
intrusion detection in the internet of things. Engineering Applications of Artificial Intelligence, 127, 
p.107231. 

Siva Shankar, S., Hung, B.T., Chakrabarti, P., Chakrabarti, T. and Parasa, G., 2024. A novel 
optimization based deep learning with artificial intelligence approach to detect intrusion attack in network 
system. Education and Information Technologies, 29(4), pp.3859-3883. 

Vishwanathan, S.V.M. and Murty, M.N., 2002, May. SSVM: a simple SVM algorithm. In Proceedings 
of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) (Vol. 3, pp. 
2393-2398). IEEE. 

Yu, Y., Si, X., Hu, C. and Zhang, J., 2019. A review of recurrent neural networks: LSTM cells and 
network architectures. Neural computation, 31(7), pp.1235-1270. 


