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Abstract 
 

This paper seeks to establish the best approach to detecting the phishing URLs in the ever-

shifting cybersecurity environment in order to enhance the safety of online operations. In this 

report, the URLs are processed and analysed using the data classification and feature extraction 

approaches that are used to detect the existence of phishing threats. URL related features are 

present in the dataset such as length of the URL, structure of domains, and other important 

attributes necessary for evaluation of phishing. The fundamental purpose of this work is to 

increase the reliability of phishing filters, which are crucial for preserving confidentiality and 

users’ trust. The model contains a comprehensive preprocessing stage that has relevant features 

that are derived from raw URLs. Subsequently, we use Logistic Regression, Support Vector 

Machine, Kneighbor, Random Forest, Decision Tree, and Naïve Bayes as a suitable machine 

learning model to predict the websites as either legitimate or phishing. The analysis shows that 

the accuracy for the different predictive algorithms used for classification of the URLs based 

on the processed data set, is high with accurate classification of the phishing and genuine URLs. 

The research shows that methods that were used in feature extraction proved to be successful. 

In addition to the strong capability that has been proved by this research for enhancing online 

security through machine learning for enhanced phishing detection. This report will be a rich 

source of ideas for those interested in this field for future investigations and applications. 

 

Keywords: Phishing Detection, URL Cleaning, Machine Learning, Naïve Bayes, Random 

Forest, Decision Tree.  
 

1 Introduction 
 

In the present world involving electronic devices for personal and business purposes, 

phishing attacks have become more frequent. As per the Anti-Phishing Working Group, in 

second quarter 2024 the APWG observed 877,536 phishing assaults, while the number of 

reported phishing cases has also been increasing which threatens the security of contents and 

also makes the user vulnerable and distrustful about the websites. Most frequently phishing 

attacked sectors are via Phone call and text messages (for payment service users), social media 

platform, 72.4% of Gmail account users were reported for Business Email Compromise (BEC) 

scams (‘APWG | Phishing Activity Trends Reports’). Phishing is a technique that uses 

disguised links to manipulate users into providing their login info and other personal details. 

According to the Anti-Phishing Working Group (APWG), there has been an increase in 

phishing attacks, and the need to enhance the measures for detecting these attacks cannot be 

expanded.  The name "phishing attacks" is derived from "fishing" for victims. Scammers, also 

known as "phishers," fool users into accessing fake websites that resemble the legitimate site. 

For the past two years, researchers have become interested in such threats. Obviously, all these 

web pages should have distinct URLs from the authentic page but with similar graphical 
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interfaces. The expert user can almost always identify fake pages by viewing their URLs. The 

target or end users generally do not view the entire url or url’s of sites received through social 

media, emails, or text messages. Phishers utilize fake url’s to take away victims financial and 

personal username and password details. If the user is deceived into accessing a fake website 

that looks real, then the person may end up disclosing their personal information (Gupta, 

Arachchilage and Psannis, 2018). Researchers have discovered a lot of reasons have been 

found out by researchers as to why people who use computers are vulnerable to frauds like 

phishing. These were the reasons that came into light (Such as -- i) The user does not have an 

overall understanding of Url’s. ii) People using the internet do not know how to identify 

legitimate websites. iii) The redirect Url’s or Tiny Url’s hide the complete website address 

from a user. iv) Unknown sites are often viewed because either people do not have the time or 

simply do not know to check the URL). 

Since phishing attacks are becoming more common and complex, there is a need to 

improve the detection methods. The popular methods like blacklists, and heuristic-based filters 

cannot detect new or advanced forms of phishing attacks because their algorithms have been 

designed with traditional forms of attacks in mind. Using ML in an attempt to improve the 

identification of phishing threats is a viable approach to detecting such threats because ML has 

the capability to detect patterns in large sets of data that may otherwise go undetected by 

traditional algorithms.  

The ability to identify a phishing URL is essential in securing an organization against 

cyber threats. The main concentration would be on feature extraction and machine learning 

algorithms on a dataset of phishing URLs. This method is appreciated due to its clarity, 

interpretability and applicability to the cases with binary outcomes. In terms of the 

performance, the assessment will be made based on modelling in relation to identifying the 

phishing URLs to determine whether this approach is efficient in performing this function 

(Verma and Das, 2017). 

 

Research Aim: To develop and evaluate an efficient machine learning model for 

accurate detection of phishing URLs, enhancing cybersecurity measures and user protection 

online. 

 

Objectives: 
• To identify and extract relevant features from URLs that effectively distinguish 

between legitimate and phishing websites. 

• To design and implement a robust machine learning model capable of classifying 

URLs as either phishing or legitimate with high accuracy. 

• To assess the performance and reliability of the developed model in real-world 

scenarios and compare it with existing phishing detection methods. 

 

Research Questions: 

 
o What are the most significant URL features that contribute to effective phishing 

detection? 

o How does the choice of feature extraction techniques impact the overall performance 

of the phishing detection model? 

o To what extent can a machine learning-based approach improve upon traditional rule-

based methods for identifying phishing URLs? 

o How does the proposed model perform in terms of accuracy, precision, recall, and F1-

score? 
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o What are the potential limitations and challenges in implementing the developed model 

for real-time phishing URL detection, and how can they be addressed? 

 

2 Related Work 
 

This section incorporates a literature review of previous studies on phishing detection and 

focuses on applying the machine learning approach. Phishing, in which users are tricked 

into entering their personal information on fake websites or into opening phishing emails, 

has evolved into a complex practice. This has become a massive problem most of the time 

when it comes to detecting phishing attempts since it has caused extensive exploration of 

most of the kinds of machine learning. In this section, we provide a brief overview of 

major developments in this line of research, comparing and contrasting their approaches, 

advantages, and disadvantages. 

 

According to Verma and Das (2017), the URL detection has highlighted the importance 

of URL cleaning and feature extraction. Several techniques have been proposed aiming at 

preprocessing URLs, such as normalization, encoding standardization, and noise removal. 

Feature extraction methods have ranged from staraightforward lexical analysis of URL 

strings to more advanced host-based features and even content attributes. Some of the 

previous works have considered n-gram analysis of URL subparts and some other works 

have tried to extract the semantic information with the help of natural language processing 

techniques. Previous works stressed on identifying the most suitable features that would 

enable the system to distinguish between legitimate and phishing URLs. Furthermore, 

studies have focused on the effects of feature extraction and feature space compression on 

the model’s learning and detection performance in an attempt to find the best compromise 

between these two factors. 

 

Basit et al. (2020) did a comprehensive review on the application of ensemble learning 

techniques in phish detection. They considered approaches like Random Forests and 

Gradient Boosting in which several decision trees work in parallel to enhance the rate of 

classification. Their study also shows that ensemble methods are very accurate in detecting 

phishing websites, and this is possible because of the use of the diversity of decision trees 

so as to fully maximize in making the best decision. The main survey of Basit’s paper 

speaks of their all-round assessment of ensemble methods, which ranked much above 

traditional classifiers. On the same note, the study also covered limitations whereby 

ensemble versions proved appreciably more complex and time-consuming to train as 

compared to models that operate independently. These can prove to be a disadvantage in 

applications based on real-time phishing detection, where timely detection is the top 

priority. 

 

Yerima et al. (2020) described deep learning approaches propose the use of CNNs for 

phishing detection. CNNs can learn advanced details about the data sets features and can 

be effective when identifying intricate phishing modalities. Yerima also compared CNNs 

to traditional machine learning algorithms in terms of detection rates and noted that CNNs 
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give high detection rates because they have the ability to extract features from raw data 

automatically. This is an advantage of deep learning because it requires little input of the 

feature that needs to be extracted compared to conventional models. But, similarly to other 

researchers, Yerima stated some issues; for example, large labeled datasets were required, 

and training of deep learning models was quite computationally intensive. Such 

requirements can pose a challenge in implementing CNN- based solutions in scenarios that 

may have restricted resources. 

 

In their experiment, Vanitha and Vinodhini (2019) used a simpler form of classification 

known as logistic regression to identify phishing attacks. In their study, they focus on the 

simplicity of the logistic regression model because this is the model that is easiest to apply 

compared to the other models. In a study by Vanitha, it was shown that, when used in 

conjunction with the right set of features as URL length and the number of characters like 

‘@’, the logistic regression model offers a decent accuracy. Their strategy is also a strength 

in the sense that it is simple and can be very easily implemented, and the results can be 

easily interpreted to make decisions. It also pointed out that using logistic regression might 

be problematic for more complicated forms of phishing that utilize firmer features. This 

limitation suggests that logistic regression works well for relatively basic instances but it 

may not be helpful for identifying complex phishing URLs.  

 

Feng et al. (2024) have examined other forms of integrating machine learning types, like 

the SVMs and Neural Networks. Their work focused on using multiple models to try and 

improve the model’s performance in detecting phishes. SVMs assist in cases where the 

data cannot be separated by a linear hyperplane, while involving Neural Networks aids in 

making complex pattern detections. The hybrid approach results in a model with higher 

complexity and potential issues with interpretability/overfitting/underfitting. Adopting 

and integrating such hybrid models can be more challenging than employing single 

models. 

 

Balogun et al. (2021) investigated the effect of feature engineering for phishing detection 

using various modelling techniques, as well as feature extraction for URL cleaning. Other 

scholars have consistently noted the fact that URL cleaning and feature selection are 

critical in enhancing the performance of phishing detection models. Some of the examples 

of techniques that may help to improve the result of logistic regression models are 

recursive feature elimination (RFE) and principal component analysis (PCA) if applied to 

cleaned URL data. The benefit within this approach is more focused on the identification 

of features, which is critical to model performance. URL cleaning techniques may include 

removing unnecessary parameters, standardizing protocols (e. g. , converting all URLs to 

use 'http:Blogs contain various symbols like ‘/’ (greater than or equal to) and slashes ‘//’ 

as well as slashes ‘/’ (less than or equal to). Some of the features that can be extracted from 

cleaned URLs include the number of characters in the domain, usage of symbols, number 

of sub-domains, and depth of the path. Poor URL cleaning or inadequate feature selection 

can result in models that struggle to identify sophisticated phishing attacks. Therefore, 
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ongoing refinement of URL cleaning techniques and feature extraction methods is 

essential to keep pace with evolving phishing tactics. 

 

Shahrivari et al. (2022) have provided some studies on hybrid models, which include 

logistic regression and anomaly detection techniques. Their work was done with the 

objective of overcoming the drawbacks of earlier phishing detection techniques and 

included an anomaly detection strategy to detect newer and more complex schemes. It is 

possible to improve the detection of phishing attacks that are not recognizable by the initial 

models through integration of difference detection with logistic regression. This is a better 

solution than the previous method because it incorporates the dynamic aspect of phishing. 

However, the proposed hybrid model exposes the additional level of model complexity, 

which may turn into problems with model implementation or management; thus, the issue 

of the correct balance of the model’s  complexity and practicability arises again. 

 

2.1 Summary of findings 

The analysed literature highlights numerous works reporting various classification algorithms 

in the phishing detection problem space, with their advantages and disadvantages. Combining 

methods with deep learning techniques also gives high accuracy, but at the higher cost of 

computational power. As a result, approaches like the involvement of multiple classifiers and 

the use of other approaches, including SVM and anomaly detection, that are combined with 

logistic regression to overcome these drawbacks also create more complications. 

 

2.2 Justification for Research 

The increasing complexity of phishing attacks poses a significant threat to online security, 

making efficient and accurate detection crucial. This research is justified by the urgent need 

for improved phishing URL detection methods to protect users from financial loss, data 

breaches, and identity theft. Traditional rule-based systems often struggle to keep pace with 

evolving phishing techniques, demanding more adaptive approaches. Machine learning offers 

a promising solution, capable of identifying complex patterns and adapting to new threats. By 

developing an advanced model for phishing URL detection, this research aims to enhance 

cybersecurity measures, reduce the success rate of phishing attempts, and contribute to a safer 

online environment for individuals as well as for organizations. 

2.3 Detailed Review of Significant Literature 

 
Author(s) Year Methodology Strengths Weaknesses Key Findings 

Verma and 

Das 

2017 Feature 

extraction 

Better handling of 

dataset 

Sometime 

inappropriate 

feature extraction 

leads for the issue 

with results 

URL cleaning 

can be performed 

for better 

modelling 

outcomes. 
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3 Research Methodology 
 

A phishing website is a social engineering strategy that is used to mimic legitimate 

webpages and uniform resource locators. Uniform Resource Locator, or URL, is the most 

standard mode through which phishing attacks take place. Phisher has full control over the 

URL’s sub-domains. URLs can be easily manipulated by the phisher since they are made 

up of file components and directories (Das et al., 2020). 

3.1  Research Architecture 

 

Basit et al. 2020 Ensemble 

Learning 

(Random 

Forests, 

Gradient 

Boosting) 

High accuracy due 

to aggregation of 

decision trees. 

Increased 

computational 

complexity and 

training time. 

Improved 

phishing 

detection with 

ensemble 

methods. 

Yerima et 

al. 

2018 Deep Learning 

(CNNs) 

Superior 

performance in 

detecting complex 

phishing attacks. 

Requires large 

datasets and 

significant 

computational 

resources. 

CNNs outperform 

traditional 

methods in 

detection rates. 

Vanitha et 

al. 

2019 Random Forest Simplicity and 

interpretability; 

easy 

implementation. 

May struggle with 

sophisticated 

phishing tactics. 

Effective with 

simpler phishing 

attacks; limited 

for complex 

cases. 

Feng et al. 2020 Hybrid Models 

(+ SVMs, 

Neural 

Networks) 

Enhanced 

performance by 

combining strengths 

of multiple models. 

Increased model 

complexity and 

maintenance 

challenges. 

Hybrid models 

improve detection 

rates and handle 

complex patterns. 

Balogun et 

al. 

2021 Feature 

Engineering 

(RFE, PCA) 

Focus on feature 

selection improves 

logistic regression 

performance. 

Dependence on 

quality of 

features; limited 

for advanced 

phishing. 

Feature selection 

crucial for 

optimizing 

logistic 

regression. 

Shahrivari 

et al. 

2022 Hybrid Models 

(Anomaly 

Detection) 

Enhanced detection 

of novel and 

sophisticated 

attacks. 

Complexity in 

integration and 

implementation. 

Hybrid approach 

addresses 

evolving phishing 

tactics 

effectively. 
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Fig 1 Research Framework 
 

3.2 Language 

I worked primarily on Python. While writing, in case one is to use machine learning, 

then Python is the language to use. With only an import, it comes with a number of 

machine learning libraries ready to go. Due to the large library of machine learning 

modules, Python is widely used by developers across the world when working with 

machine learning. The existence of a robust community ensures that new functionality 

is included in each update iteration of the Python developers. 

3.3 Collecting Data 

This dataset for this research was obtained from phishing and legitimate URLs 

repositories which are easily accessible. This dataset is composed of URL’s 

characteristics these include: URL length and a number of dots, hyphens and other 

structures. The data was collected to contain at least half of them as phishing and the 

other half as legitimate to make sure the training was not skewed. 

3.4 Data Preprocessing 

Preprocessing is relevant to the stage at which the data will be processed by the machine 

learning models. This entails feature preprocessing in which data is cleaned and features 

transformed: missing values are also managed. 

3.5 Techniques Applied 

1. Data Cleaning: To delete or update the wrong record entered in the database. 

2. Encoding Categorical Features: converting categorical data to numerical data. 

3. Scaling Numerical Features: Normalizing the range of numerical attributes. 

4. Handling Missing Values: Finding strategies and methods for handling the missing 

values. 

5. Encoding: Converting the categorical values present in the status column into the 

numerical form so that our model can perform better. 

6. Python Libraries: pandas, scikit-learn (API Reference), numpy. 
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3.6 Data handling and processing  

In the process of developing a phishing URL detection model, several key stages are 

implemented. The exploratory data analysis (EDA) phase utilizes Matplotlib to 

visualize and understand the dataset's characteristics. The feature engineering stage is 

crucial, where columns are classified into numerical and categorical features. This 

classification guides the creation of preprocessing pipelines using Scikit-learn, which 

handle missing values and perform one-hot encoding for categorical variables. 

3.7 Feature extraction 

The feature extraction process is particularly important, focusing on deriving relevant 

attributes from the URLs. This may include lexical features such as URL length, 

number of subdomains, presence of special characters, and use of URL shortening 

services. Host-based features like IP address, domain age, and WHOIS information 

might also be extracted. Additionally, content-based features could be derived from the 

webpage itself, such as the presence of login forms or suspicious JavaScript (Zhang, 

Zhao and LeCun, 2016). 

It refers to various kinds of features used by machine learning algorithms in the 

process of academic study detection (Buber, Demir and Sahingoz, 2017). 

• Address bar based features 

o Domain of the URL 

o IP Address of the URL 

o "@" Symbol in URL 

o Special Character Analysis (such as %20 – for space) 

o Look-alike character detection (such as ‘0’ and ‘O’, ‘l’ and ‘1’)  

o IP Address Substitution (e.g., https://192.9.68.88/nai.html instead of 

https://vikasnaidugari/nai.html) 

o Length of URL 

o Depth of URL 

o Redirection "//" in URL 

o Http/Https in Domain name 

o Shortening of the URL 

o Prefix or Suffix "-" in Domain 

• Domain based features 

o DNS Record 

o Web Traffic 

o Age of Domain 

o End Period of Domain 

 

Following feature extraction, feature scaling is applied using StandardScaler from 

Scikit-learn to normalize the feature set. The model building phase involves splitting 

the data into training and testing sets, and implementing some of the machine learning 

models for classification. Finally, the model's performance is evaluated using the 

accuracy score metric from sklearn.metrics. This comprehensive approach ensures a 

robust feature set and an effective model for phishing URL detection. 

 

4 Design Specification 
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4.1 Techniques 

• Loading the data by using Panda’s library. 

• Clean the data and handle the missing values. 

• Plot the data to get an understanding of the data. 

• Converting categorical features using One Hot Encoding and Label Encoding. 

•  Scale the feature in a specific range using the Standard Scaler. 

• Splitting the data into training and testing sets to evaluate the model’s performance. 

• Used Logistic Regression, SVM (Wu, Qiang & Zhou, Ding-Xuan. (2006)), Random 

Forest (Biau and Scornet, 2016), Naïve Bayers (Rish, Irina. (2001)), Decision 

Tree(Swain and Hauska, 1977), and Kneighbor  for this classification problem. 

• To  evaluate the model’s performance, determine its accuracy. 

4.2 Machine learning algorithms 

The logistic regression model is a basic yet commonly utilized classification algorithm in 

machine learning and statistics used for binary classification mainly. This is used to predict 

the likelihood of a categorical dependent variable given one or more independent variables. 

In the context of phishing detection, logistic regression can be utilized to classify URLs 

into two categories - legitimate or phishing. 

 

In order to detect phishing websites, we assessed a number of machine learning models, 

such as Logistic Regression, SVM, KNN, Random Forest, Decision Tree, and Naïve Bayes. 

A dataset of labelled webpages was used to train and evaluate each model. Performance 

measures including recall, accuracy, and precision were used to evaluate and contrast how 

well each model performed in identifying phishing- and legitimate-content websites. 

 

In our analysis Logistic Regression, SVM, KNN, Random Forest, Decision Tree, and Naïve 

Bayes models were considered to compare various types of machine learning techniques in 

the context of phishing detection. This choice includes models of various degrees of 

complexity and therefore offers a broad outlook at its performance. SVM and Random 

Forest are good for non-linear & interactive features. Logistic Regression and Naïve Bayes 

provides interpretability. KNN offers a non-parametric approach, and Decision Tree offers 

a simple yet robust classification technique. The employment of performance measures 

such as recall, accuracy, and precision is effective in addressing this by factoring in the 

capacity each of the models has under different situations to identify phishing sites and 

differentiate between them and other genuine sites. 

4.3 Data Cleaning 

4.3.1 Handling Missing Values 

Data completion is necessary to ensure that the data set used for model training does not 

contain incomplete information. There are several ways of handling missing values, 

including using taken average values or using models for predictions. 
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4.3.2 Feature Encoding 

Categorical data transformation into numerical ones. For instance, a categorical variable 

such as “status” (legitimate and phishing) will require binarization or encoding to include 

values of 0 and 1. Standardizing the features such that they have comparable scales.  

4.3.3 Data Splitting 

For the assessment of the performance of the model, the dataset is split into the training and 

test datasets. This makes it possible to determine the overall performance of the model by 

testing it on unseen data that was not used during the model training process. 

4.3.4 Model Training 

Logistic Regression is initiated using Scikit-Learn’s LogisticRegression class. Then we fit 

and transform the data and then predict the results (Vanitha et al. 2019). 

 

5 Implementation 

5.1 Transformed Data 

Preprocessing: 
The characteristics of the raw dataset were further cleaned to make it more appropriate 

for the machine learning technique. 

 

• Encoding categorical variables: Some attribute data in the dataset was converted from 

categorical formats into numerical formats using encoding processes, such as one hot 

encoding. This process is crucial, especially when the algorithm is expected to feed on 

numerical data. These steps were done using the Pandas and Scikit-Learn libraries on 

the Python platform (Pedregosa et al., 2011). Pandas is used for data handling and 

cleaning, and the scikit-learn library is used in encoding the categorical variables using 

OneHotEncoder. 

 

• Scaling numerical Features: Variables were normalized to bring their values on the 

same scale, which was often zero mean and unit variance. This normalization process 

is critical for algorithms that are heavily influenced by feature scales. StandardScaler 

from the scikit-learn library was used for this purpose (Pedregosa et al., 2011). 

 

• Handling Missing Values: Imputation methods were also used in handling cases of 

missing values on the available set of data. For numerical features, missing values were 

imputed using a constant, for example, the mean or median of the variable, whereas for 

categorical features, missing values were replaced with the most frequent category. 

Tools and Languages: Data pre-processing for missing value imputation was done 

using the SimpleImputer class through the scikit-learn library (Pedregosa et al., 2011). 

 

• Splitting of data: In order to train the model efficiently and to test it on unseen data 

the preprocessed data set was split into a training data set and a testing data set. This 

split makes it possible for the model to be tested on data that has not been seen by the 

algorithm. Another function from the scikit-learn package called train_test_split was 

used to split the data. During this process, Python’s Pandas library was also used for 

managing and analyzing the data. 
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5.2 Model Developed 

• Machine learning model: A simple model of logistic regression was built to detect 

whether a given URL was genuine or a phishing one. Logistic regression is one of the 

most straightforward yet powerful linear models for binary classification. It uses a 

function probability model to evaluate the likelihood that the input will be of a certain 

class. 

• Model Evaluation: Accuracy measures the number of correct classifications out of the 

actual total number of instances. It offers a simple measure of the model’s accuracy and 

performance. 

• Tools and Languages: The accuracy_score function from scikit-learn was used to 

evaluate the accuracy. 

5.3 Brief Description of Tools and Languages 

• Python: The language of choice for writing the implementation code, which 

encompasses the manipulation of the data, development of the models, and assessment 

of the findings. 

• Pandas: Used for extracting and pre-processing data, as well as for data manipulation. 

• Scikit-Learn: Used in preprocessing stages, model training as well as in the evaluation 

of models and the calculation of performance parameters of a model. 

• Matplotlib: Used for plotting frequency distribution, model performance, and 

assessment outcomes. 

• Jupyter Notebook: Served as the development platform, allowing for the process of 

interactive coding and data analysis and visualization. 

 

6 Evaluation 

6.1 Data Loading 

The first step for training the model is the data loading. Loaded the dataset named (dataset 

phishing) using Pandas’ library (Fumo, 2017). It is presented in the .csv format. Once the 

dataset is loaded, we acquire some basic information about the dataset, such as numbers 

of rows and columns, columns names, etc. In this dataset, we have 11430 numbers of rows 

and 89 columns. This dataset contains numbers of features such as url, length_url and so 

on., and one has a target variable ‘status’ that contains two values - legitimate and phishing. 

So we have to build a model that can predict whether the URL is legitimate or phishing. 

 

 
Figure 1: Loading the Data 

 

6.2 Handling Categorical Data 

After data loading, the next step is to handle the categorical data. Handling the categorical 

data is a very important step because most of the machine learning models do not support 

the categorical data, or sometimes, due to the presence of categorical data, predictions 

made by the model can be wrong. 
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So here, we are converting the categorical data into numerical form which is present in the 

status column. To achieve this, we use Label Encoder. Label encoding is a technique that 

is used to convert the categorical columns into numerical form so that the machine learning 

model can easily understand the data. 
 

In the code below, first we make the object of the Label Encoder import from scikit-learn, 

and then we fit it into the status columns, and the new numerical values generated by using 

the label encoder are then stored in the new variable named ‘encoded status’.  

 

In the above code, we make a new column named ‘encoded_status’, this column contains 

the numerical data (0 for legitimate and 1 for phishing). After converting into numerical 

format, the categorical data present in the status column is of no use for us, so we dropped 

this column. Now the status column that contains the categorical data is of no use because 

we created a new column named encoded_status that contains 0 for legitimate and 1 for 

phishing. So, we dropped the column status. 

6.3 Exploratory Data Analysis 

Exploratory data Analysis is the primary step in the data analysis process. It helps to 

visualize the patterns, characteristics, and relationships between the variables present in 

the data. Here we can use the Matplotlib Library (Using Matplotlib — Matplotlib 3.9.1 

documentation), for visualizing the data. First, we calculate the count of unique values 

present in the encoded status column and store it in a variable named x. 

Then we plot a bar graph where the x-axis represents the unique values in the encoded 

_status and the y-axis contains the count of each unique value. 

6.4 Handling the URL Column 

After handling the categorical data in the status column, you have to handle the URL 

column also. So, to handle the URL column first, we classify columns into numerical and 

categorical features. Then, separate pipelines for both the numerical and categorical 

features are created. If there is a missing value in a numerical feature present, impute it 

with a constant value, while a missing value in a categorical feature is imputed with the 

most frequent value and then categorical features are one-hot encoded. 

6.5 Feature Scaling 

Many machine learning algorithms require data scaling for producing good results. So, it 

is important that all the features that are given as the input to the model are in a particular 

range. So, in the below code, we standardize the features using StandardScaler. Standard 

Scaler helps to get a standardized distribution with a zero mean and standard deviation of 

one. For this first we import Standard Scaler from Scikit-learn then create an object of 

Standard Scaler name ss. And fit it on X_train and X_test to standardize it.  

6.6 Data Splitting 

To get the model with the best accuracy and for better performance of the model, we split 

the data into training and testing sets. Where we take 80 percent of the data as training data 

and the remaining 20 percent of data as testing data with a random state value of 42. It is 

very important to split the data into training and testing set to evaluate the performance of 
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the model. If we do not split the data, then the problem of 42 and inaccurate performance 

of the model can be seen. 

6.7 Machine Learning Algorithm 

As our data is a classification problem, we are using the logistic regression. Logistic 

regression is a supervised machine learning algorithm that is used for classification 

problems. In the below code, we imported the modelling from the scikit-learn library 

(Pedregosa et al., 2011) and then we created its object named lr. After this we fit it in the 

X_train and y_train for training purpose. It learns the relationship between the features i.e., 

X_train and between the target variable, which is y_train. Then, we make predictions on 

the testing data i.e., X_test.   

 

We evaluated many machine learning models to determine if websites are phishing or real. 

The findings were interesting. Tests included Decision Tree, Random Forest, K-Nearest 

Neighbours (KNN), Support Vector Machine (SVM), Logistic Regression, and Naïve 

Bayes. The Random Forest classifier outperformed the rest in terms of accuracy, 

successfully differentiating between reputable and fraudulent websites. Although its 

accuracy was a little bit decreased, the SVM's classification performance was still strong. 

The Naïve Bayes classifier exhibited the lowest accuracy, while the Decision Tree and 

KNN models had reasonable performance. These findings demonstrate the effectiveness 

of margin- and ensemble-based phishing detection techniques. 

6.8 Cross – Validation Process 

The very last step is to find the accuracy, f1 score, precision and recall of the model. For 

this, we import accuracy_score, f1_score, precision_score and recall_score from the scikit-

learn library. Through the accuracy score, we get to know about the performance of our 

model (Fumo, 2017). 
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6.9 Receiver Operating Characteristics (ROC) Curve 

It is used for predicting the classification thresholds. A ROC curve is a graph that is used 

for showing the performance of a classification model at all thresholds. This curve plots 

two parameters: True Positive Ratio and False Positive Ratio. 

 

6.10 Discussion 

 

Advantages  
1. Simplicity and Interpretability 

The main strength of Random Forest, therefore, is its interpretability, which is a major 

advantage considering its application. The random forest model is some what easy to 

implement though it has limited understanding in the aspect of machine learning. The 

model works with the assessment of the odds of an event occurring in one of two ways 

given one or more characteristics. This interpretability is useful for cases like Phishing 

detection in which knowing how URL attributes influence the occurrence of phishing 

attacks can be extremely helpful in optimizing detection.  

 

It is necessary to notice that the authors of Adeli note that the use of random forest 

model would provide information on features’ contribution thus enabling practitioners 

to determine which aspects are highly informative for identifying cases of phishing. 

This is crucial when it comes to explaining the model’s decisions to the outside world, 

an important aspect in ensuring that the security model being developed is accepted in 

cases where decisions made will affect many people (Adeli et al. 2019).  

 

2. Feature Utilization 

Feature engineering is applied in random forest model in order to boost its capabilities. 

When it comes to the feature selection in phishing detection, the features related with 

URL parameters for instance URL length, the usage of special characters and the 
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characteristics of the domain are rather significant. By having these kinds of features in 

this model, random forest easily analyze characteristics that may lead to the act of 

phishing. 

 

Disadvantages  

1. Handling Complex Patterns 

When it comes to various limitations, the model exhibits some significant weaknesses, 

especially when dealing with intricate relations. Phishing attacks are most of the time 

complex and use URL features in a manner that is not easily identifiable by modelling. 

Current and more refined strategies of phishing do involve domain names that are 

similar to those of the genuine sites or even have small shades of metamorphic 

characteristics that are hard to capture using basic linear models. 
 

7 Conclusion and Future Work 
 

Cybercrimes such as phishing continue to pose an enduring threat to the sustainable use of 

internet-based processes and applications. Phishing scams trick clients into providing 

important details through fake web addresses or domains. Towards this goal, the current 

research aims to design and implement a robust machine learning model for categorizing 

the URLs as phishing or genuine. The purpose of this research is to evaluate the 

effectiveness of the Random Forest model in classifying URLs to be either legitimate or 

phishing based on features extracted from them. This approach solves some of the 

problems with previous solutions such as blacklists and heuristic filters since advanced 

techniques may escape these measures.  

The methodology consists of a wide URL preprocessing stage, which removes noise 

parameters, converts all URLs to HTTPS, and normalizes domain names. Feature 

extraction is all about extracting significant features from the URLs that have been 

cleaned. The Random Forest model is trained and tested on these features. The study shows 

that the adopted model has a 95% accuracy in classifying URLs, proving the viability of 

the approach suggested. It is worth noting that this research makes a contribution to the 

field by presenting the ability of random forest to phishing and underscoring the 

significance of appropriate URL cleaning and selection of features (Sameen, Han and 

Hwang, 2020).  It is possible to learn some of the basic URL features from this study that 

may catalyze the development of enhanced security systems to detect/avoid phishing 

attacks. The limitations are as follows: This study shows that there is a constant need for 

improvement in URL cleaning methodology and feature extraction algorithms in order to 

adapt to these new techniques, hence paving the way for improvement of better real time 

phishing detection systems. 

 

The hypothesis in the study is that a random forest model will be useful in classifying 

URLs as being phishing or legitimate based on extracted features, and it will perform well 

in terms of accuracy as well as give insight into features that are most likely to signify 

phishing. However, it is also expected that even though random forest will provide good 

results, it is not going to outcompete more complex methods in all metrics. Data 

preparation involves managing categorical data, missing values, and feature scaling 

besides data partitioning as achieved in the following steps. The random forest model was 

developed and tested with an improvement of 95% and thus proves that the proposed 

approach can classify the URL and can be used in practice. This research can contribute 

to the advancement in the area by proving the effectiveness of random forest in phishing 
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detection and proposing that selected URL features are suitable for detecting a phishing 

attempt.  

 

There should be further research using more sophisticated modeling techniques, for 

instance, Gradient Boosting, as well as Deep Networks, such as CNNs and LSTMs, in an 

attempt to tackle the interaction effects and enhance the detecting capability. Extending 

the current model for temporal, contextual, and behavioral elements might improve the 

predictions even further. Real-time detection and lower latency are also important for 

practical deployment to immediately address phishing attacks while minimizing the time 

needed to do so. In conclusion, this research paves the way for further work in the field of 

phishing detection, highlighting the requirement for additional and constant developments 

in the areas of machine learning and feature engineering that underpin cybersecurity 

initiatives. 
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