

Detecting Real Time Phishing URL’s using
URL Cleaning Technique

MSc Research Project

Cybersecurity

Vikas Naidugari

Student ID: x22237020

School of Computing

National College of Ireland

Supervisor: Raza Ul Mustafa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Vikas Naidugari

Student ID:

x22237020

Programme:

MSc. in Cybersecurity

Year:

2023-2024

Module:

Research Project

Supervisor:

Raza Ul Mustafa

Submission

Due Date:

16 Sep 2024

Project Title:

Detecting Real Time Phishing URL’s with URL Cleaning Technique

Word Count:

 7098 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Vikas Naidugari

Date:

16 Sep 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Detecting Real Time Phishing URL’s using URL

Cleaning Technique

Vikas Naidugari

x22237020

Abstract

This paper seeks to establish the best approach to detecting the phishing URLs in the ever-

shifting cybersecurity environment in order to enhance the safety of online operations. In this

report, the URLs are processed and analysed using the data classification and feature extraction

approaches that are used to detect the existence of phishing threats. URL related features are

present in the dataset such as length of the URL, structure of domains, and other important

attributes necessary for evaluation of phishing. The fundamental purpose of this work is to

increase the reliability of phishing filters, which are crucial for preserving confidentiality and

users’ trust. The model contains a comprehensive preprocessing stage that has relevant features

that are derived from raw URLs. Subsequently, we use Logistic Regression, Support Vector

Machine, Kneighbor, Random Forest, Decision Tree, and Naïve Bayes as a suitable machine

learning model to predict the websites as either legitimate or phishing. The analysis shows that

the accuracy for the different predictive algorithms used for classification of the URLs based

on the processed data set, is high with accurate classification of the phishing and genuine URLs.

The research shows that methods that were used in feature extraction proved to be successful.

In addition to the strong capability that has been proved by this research for enhancing online

security through machine learning for enhanced phishing detection. This report will be a rich

source of ideas for those interested in this field for future investigations and applications.

Keywords: Phishing Detection, URL Cleaning, Machine Learning, Naïve Bayes, Random

Forest, Decision Tree.

1 Introduction

In the present world involving electronic devices for personal and business purposes,

phishing attacks have become more frequent. As per the Anti-Phishing Working Group, in

second quarter 2024 the APWG observed 877,536 phishing assaults, while the number of

reported phishing cases has also been increasing which threatens the security of contents and

also makes the user vulnerable and distrustful about the websites. Most frequently phishing

attacked sectors are via Phone call and text messages (for payment service users), social media

platform, 72.4% of Gmail account users were reported for Business Email Compromise (BEC)

scams (‘APWG | Phishing Activity Trends Reports’). Phishing is a technique that uses

disguised links to manipulate users into providing their login info and other personal details.

According to the Anti-Phishing Working Group (APWG), there has been an increase in

phishing attacks, and the need to enhance the measures for detecting these attacks cannot be

expanded. The name "phishing attacks" is derived from "fishing" for victims. Scammers, also

known as "phishers," fool users into accessing fake websites that resemble the legitimate site.

For the past two years, researchers have become interested in such threats. Obviously, all these

web pages should have distinct URLs from the authentic page but with similar graphical

2

interfaces. The expert user can almost always identify fake pages by viewing their URLs. The

target or end users generally do not view the entire url or url’s of sites received through social

media, emails, or text messages. Phishers utilize fake url’s to take away victims financial and

personal username and password details. If the user is deceived into accessing a fake website

that looks real, then the person may end up disclosing their personal information (Gupta,

Arachchilage and Psannis, 2018). Researchers have discovered a lot of reasons have been

found out by researchers as to why people who use computers are vulnerable to frauds like

phishing. These were the reasons that came into light (Such as -- i) The user does not have an

overall understanding of Url’s. ii) People using the internet do not know how to identify

legitimate websites. iii) The redirect Url’s or Tiny Url’s hide the complete website address

from a user. iv) Unknown sites are often viewed because either people do not have the time or

simply do not know to check the URL).

Since phishing attacks are becoming more common and complex, there is a need to

improve the detection methods. The popular methods like blacklists, and heuristic-based filters

cannot detect new or advanced forms of phishing attacks because their algorithms have been

designed with traditional forms of attacks in mind. Using ML in an attempt to improve the

identification of phishing threats is a viable approach to detecting such threats because ML has

the capability to detect patterns in large sets of data that may otherwise go undetected by

traditional algorithms.

The ability to identify a phishing URL is essential in securing an organization against

cyber threats. The main concentration would be on feature extraction and machine learning

algorithms on a dataset of phishing URLs. This method is appreciated due to its clarity,

interpretability and applicability to the cases with binary outcomes. In terms of the

performance, the assessment will be made based on modelling in relation to identifying the

phishing URLs to determine whether this approach is efficient in performing this function

(Verma and Das, 2017).

Research Aim: To develop and evaluate an efficient machine learning model for

accurate detection of phishing URLs, enhancing cybersecurity measures and user protection

online.

Objectives:
• To identify and extract relevant features from URLs that effectively distinguish

between legitimate and phishing websites.

• To design and implement a robust machine learning model capable of classifying

URLs as either phishing or legitimate with high accuracy.

• To assess the performance and reliability of the developed model in real-world

scenarios and compare it with existing phishing detection methods.

Research Questions:

o What are the most significant URL features that contribute to effective phishing

detection?

o How does the choice of feature extraction techniques impact the overall performance

of the phishing detection model?

o To what extent can a machine learning-based approach improve upon traditional rule-

based methods for identifying phishing URLs?

o How does the proposed model perform in terms of accuracy, precision, recall, and F1-

score?

3

o What are the potential limitations and challenges in implementing the developed model

for real-time phishing URL detection, and how can they be addressed?

2 Related Work

This section incorporates a literature review of previous studies on phishing detection and

focuses on applying the machine learning approach. Phishing, in which users are tricked

into entering their personal information on fake websites or into opening phishing emails,

has evolved into a complex practice. This has become a massive problem most of the time

when it comes to detecting phishing attempts since it has caused extensive exploration of

most of the kinds of machine learning. In this section, we provide a brief overview of

major developments in this line of research, comparing and contrasting their approaches,

advantages, and disadvantages.

According to Verma and Das (2017), the URL detection has highlighted the importance

of URL cleaning and feature extraction. Several techniques have been proposed aiming at

preprocessing URLs, such as normalization, encoding standardization, and noise removal.

Feature extraction methods have ranged from staraightforward lexical analysis of URL

strings to more advanced host-based features and even content attributes. Some of the

previous works have considered n-gram analysis of URL subparts and some other works

have tried to extract the semantic information with the help of natural language processing

techniques. Previous works stressed on identifying the most suitable features that would

enable the system to distinguish between legitimate and phishing URLs. Furthermore,

studies have focused on the effects of feature extraction and feature space compression on

the model’s learning and detection performance in an attempt to find the best compromise

between these two factors.

Basit et al. (2020) did a comprehensive review on the application of ensemble learning

techniques in phish detection. They considered approaches like Random Forests and

Gradient Boosting in which several decision trees work in parallel to enhance the rate of

classification. Their study also shows that ensemble methods are very accurate in detecting

phishing websites, and this is possible because of the use of the diversity of decision trees

so as to fully maximize in making the best decision. The main survey of Basit’s paper

speaks of their all-round assessment of ensemble methods, which ranked much above

traditional classifiers. On the same note, the study also covered limitations whereby

ensemble versions proved appreciably more complex and time-consuming to train as

compared to models that operate independently. These can prove to be a disadvantage in

applications based on real-time phishing detection, where timely detection is the top

priority.

Yerima et al. (2020) described deep learning approaches propose the use of CNNs for

phishing detection. CNNs can learn advanced details about the data sets features and can

be effective when identifying intricate phishing modalities. Yerima also compared CNNs

to traditional machine learning algorithms in terms of detection rates and noted that CNNs

4

give high detection rates because they have the ability to extract features from raw data

automatically. This is an advantage of deep learning because it requires little input of the

feature that needs to be extracted compared to conventional models. But, similarly to other

researchers, Yerima stated some issues; for example, large labeled datasets were required,

and training of deep learning models was quite computationally intensive. Such

requirements can pose a challenge in implementing CNN- based solutions in scenarios that

may have restricted resources.

In their experiment, Vanitha and Vinodhini (2019) used a simpler form of classification

known as logistic regression to identify phishing attacks. In their study, they focus on the

simplicity of the logistic regression model because this is the model that is easiest to apply

compared to the other models. In a study by Vanitha, it was shown that, when used in

conjunction with the right set of features as URL length and the number of characters like

‘@’, the logistic regression model offers a decent accuracy. Their strategy is also a strength

in the sense that it is simple and can be very easily implemented, and the results can be

easily interpreted to make decisions. It also pointed out that using logistic regression might

be problematic for more complicated forms of phishing that utilize firmer features. This

limitation suggests that logistic regression works well for relatively basic instances but it

may not be helpful for identifying complex phishing URLs.

Feng et al. (2024) have examined other forms of integrating machine learning types, like

the SVMs and Neural Networks. Their work focused on using multiple models to try and

improve the model’s performance in detecting phishes. SVMs assist in cases where the

data cannot be separated by a linear hyperplane, while involving Neural Networks aids in

making complex pattern detections. The hybrid approach results in a model with higher

complexity and potential issues with interpretability/overfitting/underfitting. Adopting

and integrating such hybrid models can be more challenging than employing single

models.

Balogun et al. (2021) investigated the effect of feature engineering for phishing detection

using various modelling techniques, as well as feature extraction for URL cleaning. Other

scholars have consistently noted the fact that URL cleaning and feature selection are

critical in enhancing the performance of phishing detection models. Some of the examples

of techniques that may help to improve the result of logistic regression models are

recursive feature elimination (RFE) and principal component analysis (PCA) if applied to

cleaned URL data. The benefit within this approach is more focused on the identification

of features, which is critical to model performance. URL cleaning techniques may include

removing unnecessary parameters, standardizing protocols (e. g. , converting all URLs to

use 'http:Blogs contain various symbols like ‘/’ (greater than or equal to) and slashes ‘//’

as well as slashes ‘/’ (less than or equal to). Some of the features that can be extracted from

cleaned URLs include the number of characters in the domain, usage of symbols, number

of sub-domains, and depth of the path. Poor URL cleaning or inadequate feature selection

can result in models that struggle to identify sophisticated phishing attacks. Therefore,

5

ongoing refinement of URL cleaning techniques and feature extraction methods is

essential to keep pace with evolving phishing tactics.

Shahrivari et al. (2022) have provided some studies on hybrid models, which include

logistic regression and anomaly detection techniques. Their work was done with the

objective of overcoming the drawbacks of earlier phishing detection techniques and

included an anomaly detection strategy to detect newer and more complex schemes. It is

possible to improve the detection of phishing attacks that are not recognizable by the initial

models through integration of difference detection with logistic regression. This is a better

solution than the previous method because it incorporates the dynamic aspect of phishing.

However, the proposed hybrid model exposes the additional level of model complexity,

which may turn into problems with model implementation or management; thus, the issue

of the correct balance of the model’s complexity and practicability arises again.

2.1 Summary of findings

The analysed literature highlights numerous works reporting various classification algorithms

in the phishing detection problem space, with their advantages and disadvantages. Combining

methods with deep learning techniques also gives high accuracy, but at the higher cost of

computational power. As a result, approaches like the involvement of multiple classifiers and

the use of other approaches, including SVM and anomaly detection, that are combined with

logistic regression to overcome these drawbacks also create more complications.

2.2 Justification for Research

The increasing complexity of phishing attacks poses a significant threat to online security,

making efficient and accurate detection crucial. This research is justified by the urgent need

for improved phishing URL detection methods to protect users from financial loss, data

breaches, and identity theft. Traditional rule-based systems often struggle to keep pace with

evolving phishing techniques, demanding more adaptive approaches. Machine learning offers

a promising solution, capable of identifying complex patterns and adapting to new threats. By

developing an advanced model for phishing URL detection, this research aims to enhance

cybersecurity measures, reduce the success rate of phishing attempts, and contribute to a safer

online environment for individuals as well as for organizations.

2.3 Detailed Review of Significant Literature

Author(s) Year Methodology Strengths Weaknesses Key Findings

Verma and

Das

2017 Feature

extraction

Better handling of

dataset

Sometime

inappropriate

feature extraction

leads for the issue

with results

URL cleaning

can be performed

for better

modelling

outcomes.

6

3 Research Methodology

A phishing website is a social engineering strategy that is used to mimic legitimate

webpages and uniform resource locators. Uniform Resource Locator, or URL, is the most

standard mode through which phishing attacks take place. Phisher has full control over the

URL’s sub-domains. URLs can be easily manipulated by the phisher since they are made

up of file components and directories (Das et al., 2020).

3.1 Research Architecture

Basit et al. 2020 Ensemble

Learning

(Random

Forests,

Gradient

Boosting)

High accuracy due

to aggregation of

decision trees.

Increased

computational

complexity and

training time.

Improved

phishing

detection with

ensemble

methods.

Yerima et

al.

2018 Deep Learning

(CNNs)

Superior

performance in

detecting complex

phishing attacks.

Requires large

datasets and

significant

computational

resources.

CNNs outperform

traditional

methods in

detection rates.

Vanitha et

al.

2019 Random Forest Simplicity and

interpretability;

easy

implementation.

May struggle with

sophisticated

phishing tactics.

Effective with

simpler phishing

attacks; limited

for complex

cases.

Feng et al. 2020 Hybrid Models

(+ SVMs,

Neural

Networks)

Enhanced

performance by

combining strengths

of multiple models.

Increased model

complexity and

maintenance

challenges.

Hybrid models

improve detection

rates and handle

complex patterns.

Balogun et

al.

2021 Feature

Engineering

(RFE, PCA)

Focus on feature

selection improves

logistic regression

performance.

Dependence on

quality of

features; limited

for advanced

phishing.

Feature selection

crucial for

optimizing

logistic

regression.

Shahrivari

et al.

2022 Hybrid Models

(Anomaly

Detection)

Enhanced detection

of novel and

sophisticated

attacks.

Complexity in

integration and

implementation.

Hybrid approach

addresses

evolving phishing

tactics

effectively.

7

Fig 1 Research Framework

3.2 Language

I worked primarily on Python. While writing, in case one is to use machine learning,

then Python is the language to use. With only an import, it comes with a number of

machine learning libraries ready to go. Due to the large library of machine learning

modules, Python is widely used by developers across the world when working with

machine learning. The existence of a robust community ensures that new functionality

is included in each update iteration of the Python developers.

3.3 Collecting Data

This dataset for this research was obtained from phishing and legitimate URLs

repositories which are easily accessible. This dataset is composed of URL’s

characteristics these include: URL length and a number of dots, hyphens and other

structures. The data was collected to contain at least half of them as phishing and the

other half as legitimate to make sure the training was not skewed.

3.4 Data Preprocessing

Preprocessing is relevant to the stage at which the data will be processed by the machine

learning models. This entails feature preprocessing in which data is cleaned and features

transformed: missing values are also managed.

3.5 Techniques Applied

1. Data Cleaning: To delete or update the wrong record entered in the database.

2. Encoding Categorical Features: converting categorical data to numerical data.

3. Scaling Numerical Features: Normalizing the range of numerical attributes.

4. Handling Missing Values: Finding strategies and methods for handling the missing

values.

5. Encoding: Converting the categorical values present in the status column into the

numerical form so that our model can perform better.

6. Python Libraries: pandas, scikit-learn (API Reference), numpy.

8

3.6 Data handling and processing

In the process of developing a phishing URL detection model, several key stages are

implemented. The exploratory data analysis (EDA) phase utilizes Matplotlib to

visualize and understand the dataset's characteristics. The feature engineering stage is

crucial, where columns are classified into numerical and categorical features. This

classification guides the creation of preprocessing pipelines using Scikit-learn, which

handle missing values and perform one-hot encoding for categorical variables.

3.7 Feature extraction

The feature extraction process is particularly important, focusing on deriving relevant

attributes from the URLs. This may include lexical features such as URL length,

number of subdomains, presence of special characters, and use of URL shortening

services. Host-based features like IP address, domain age, and WHOIS information

might also be extracted. Additionally, content-based features could be derived from the

webpage itself, such as the presence of login forms or suspicious JavaScript (Zhang,

Zhao and LeCun, 2016).

It refers to various kinds of features used by machine learning algorithms in the

process of academic study detection (Buber, Demir and Sahingoz, 2017).

• Address bar based features

o Domain of the URL

o IP Address of the URL

o "@" Symbol in URL

o Special Character Analysis (such as %20 – for space)

o Look-alike character detection (such as ‘0’ and ‘O’, ‘l’ and ‘1’)

o IP Address Substitution (e.g., https://192.9.68.88/nai.html instead of

https://vikasnaidugari/nai.html)

o Length of URL

o Depth of URL

o Redirection "//" in URL

o Http/Https in Domain name

o Shortening of the URL

o Prefix or Suffix "-" in Domain

• Domain based features

o DNS Record

o Web Traffic

o Age of Domain

o End Period of Domain

Following feature extraction, feature scaling is applied using StandardScaler from

Scikit-learn to normalize the feature set. The model building phase involves splitting

the data into training and testing sets, and implementing some of the machine learning

models for classification. Finally, the model's performance is evaluated using the

accuracy score metric from sklearn.metrics. This comprehensive approach ensures a

robust feature set and an effective model for phishing URL detection.

4 Design Specification

9

4.1 Techniques

• Loading the data by using Panda’s library.

• Clean the data and handle the missing values.

• Plot the data to get an understanding of the data.

• Converting categorical features using One Hot Encoding and Label Encoding.

• Scale the feature in a specific range using the Standard Scaler.

• Splitting the data into training and testing sets to evaluate the model’s performance.

• Used Logistic Regression, SVM (Wu, Qiang & Zhou, Ding-Xuan. (2006)), Random

Forest (Biau and Scornet, 2016), Naïve Bayers (Rish, Irina. (2001)), Decision

Tree(Swain and Hauska, 1977), and Kneighbor for this classification problem.

• To evaluate the model’s performance, determine its accuracy.

4.2 Machine learning algorithms

The logistic regression model is a basic yet commonly utilized classification algorithm in

machine learning and statistics used for binary classification mainly. This is used to predict

the likelihood of a categorical dependent variable given one or more independent variables.

In the context of phishing detection, logistic regression can be utilized to classify URLs

into two categories - legitimate or phishing.

In order to detect phishing websites, we assessed a number of machine learning models,

such as Logistic Regression, SVM, KNN, Random Forest, Decision Tree, and Naïve Bayes.

A dataset of labelled webpages was used to train and evaluate each model. Performance

measures including recall, accuracy, and precision were used to evaluate and contrast how

well each model performed in identifying phishing- and legitimate-content websites.

In our analysis Logistic Regression, SVM, KNN, Random Forest, Decision Tree, and Naïve

Bayes models were considered to compare various types of machine learning techniques in

the context of phishing detection. This choice includes models of various degrees of

complexity and therefore offers a broad outlook at its performance. SVM and Random

Forest are good for non-linear & interactive features. Logistic Regression and Naïve Bayes

provides interpretability. KNN offers a non-parametric approach, and Decision Tree offers

a simple yet robust classification technique. The employment of performance measures

such as recall, accuracy, and precision is effective in addressing this by factoring in the

capacity each of the models has under different situations to identify phishing sites and

differentiate between them and other genuine sites.

4.3 Data Cleaning

4.3.1 Handling Missing Values

Data completion is necessary to ensure that the data set used for model training does not

contain incomplete information. There are several ways of handling missing values,

including using taken average values or using models for predictions.

10

4.3.2 Feature Encoding

Categorical data transformation into numerical ones. For instance, a categorical variable

such as “status” (legitimate and phishing) will require binarization or encoding to include

values of 0 and 1. Standardizing the features such that they have comparable scales.

4.3.3 Data Splitting

For the assessment of the performance of the model, the dataset is split into the training and

test datasets. This makes it possible to determine the overall performance of the model by

testing it on unseen data that was not used during the model training process.

4.3.4 Model Training

Logistic Regression is initiated using Scikit-Learn’s LogisticRegression class. Then we fit

and transform the data and then predict the results (Vanitha et al. 2019).

5 Implementation

5.1 Transformed Data

Preprocessing:
The characteristics of the raw dataset were further cleaned to make it more appropriate

for the machine learning technique.

• Encoding categorical variables: Some attribute data in the dataset was converted from

categorical formats into numerical formats using encoding processes, such as one hot

encoding. This process is crucial, especially when the algorithm is expected to feed on

numerical data. These steps were done using the Pandas and Scikit-Learn libraries on

the Python platform (Pedregosa et al., 2011). Pandas is used for data handling and

cleaning, and the scikit-learn library is used in encoding the categorical variables using

OneHotEncoder.

• Scaling numerical Features: Variables were normalized to bring their values on the

same scale, which was often zero mean and unit variance. This normalization process

is critical for algorithms that are heavily influenced by feature scales. StandardScaler

from the scikit-learn library was used for this purpose (Pedregosa et al., 2011).

• Handling Missing Values: Imputation methods were also used in handling cases of

missing values on the available set of data. For numerical features, missing values were

imputed using a constant, for example, the mean or median of the variable, whereas for

categorical features, missing values were replaced with the most frequent category.

Tools and Languages: Data pre-processing for missing value imputation was done

using the SimpleImputer class through the scikit-learn library (Pedregosa et al., 2011).

• Splitting of data: In order to train the model efficiently and to test it on unseen data

the preprocessed data set was split into a training data set and a testing data set. This

split makes it possible for the model to be tested on data that has not been seen by the

algorithm. Another function from the scikit-learn package called train_test_split was

used to split the data. During this process, Python’s Pandas library was also used for

managing and analyzing the data.

11

5.2 Model Developed

• Machine learning model: A simple model of logistic regression was built to detect

whether a given URL was genuine or a phishing one. Logistic regression is one of the

most straightforward yet powerful linear models for binary classification. It uses a

function probability model to evaluate the likelihood that the input will be of a certain

class.

• Model Evaluation: Accuracy measures the number of correct classifications out of the

actual total number of instances. It offers a simple measure of the model’s accuracy and

performance.

• Tools and Languages: The accuracy_score function from scikit-learn was used to

evaluate the accuracy.

5.3 Brief Description of Tools and Languages

• Python: The language of choice for writing the implementation code, which

encompasses the manipulation of the data, development of the models, and assessment

of the findings.

• Pandas: Used for extracting and pre-processing data, as well as for data manipulation.

• Scikit-Learn: Used in preprocessing stages, model training as well as in the evaluation

of models and the calculation of performance parameters of a model.

• Matplotlib: Used for plotting frequency distribution, model performance, and

assessment outcomes.

• Jupyter Notebook: Served as the development platform, allowing for the process of

interactive coding and data analysis and visualization.

6 Evaluation

6.1 Data Loading

The first step for training the model is the data loading. Loaded the dataset named (dataset

phishing) using Pandas’ library (Fumo, 2017). It is presented in the .csv format. Once the

dataset is loaded, we acquire some basic information about the dataset, such as numbers

of rows and columns, columns names, etc. In this dataset, we have 11430 numbers of rows

and 89 columns. This dataset contains numbers of features such as url, length_url and so

on., and one has a target variable ‘status’ that contains two values - legitimate and phishing.

So we have to build a model that can predict whether the URL is legitimate or phishing.

Figure 1: Loading the Data

6.2 Handling Categorical Data

After data loading, the next step is to handle the categorical data. Handling the categorical

data is a very important step because most of the machine learning models do not support

the categorical data, or sometimes, due to the presence of categorical data, predictions

made by the model can be wrong.

12

So here, we are converting the categorical data into numerical form which is present in the

status column. To achieve this, we use Label Encoder. Label encoding is a technique that

is used to convert the categorical columns into numerical form so that the machine learning

model can easily understand the data.

In the code below, first we make the object of the Label Encoder import from scikit-learn,

and then we fit it into the status columns, and the new numerical values generated by using

the label encoder are then stored in the new variable named ‘encoded status’.

In the above code, we make a new column named ‘encoded_status’, this column contains

the numerical data (0 for legitimate and 1 for phishing). After converting into numerical

format, the categorical data present in the status column is of no use for us, so we dropped

this column. Now the status column that contains the categorical data is of no use because

we created a new column named encoded_status that contains 0 for legitimate and 1 for

phishing. So, we dropped the column status.

6.3 Exploratory Data Analysis

Exploratory data Analysis is the primary step in the data analysis process. It helps to

visualize the patterns, characteristics, and relationships between the variables present in

the data. Here we can use the Matplotlib Library (Using Matplotlib — Matplotlib 3.9.1

documentation), for visualizing the data. First, we calculate the count of unique values

present in the encoded status column and store it in a variable named x.

Then we plot a bar graph where the x-axis represents the unique values in the encoded

_status and the y-axis contains the count of each unique value.

6.4 Handling the URL Column

After handling the categorical data in the status column, you have to handle the URL

column also. So, to handle the URL column first, we classify columns into numerical and

categorical features. Then, separate pipelines for both the numerical and categorical

features are created. If there is a missing value in a numerical feature present, impute it

with a constant value, while a missing value in a categorical feature is imputed with the

most frequent value and then categorical features are one-hot encoded.

6.5 Feature Scaling

Many machine learning algorithms require data scaling for producing good results. So, it

is important that all the features that are given as the input to the model are in a particular

range. So, in the below code, we standardize the features using StandardScaler. Standard

Scaler helps to get a standardized distribution with a zero mean and standard deviation of

one. For this first we import Standard Scaler from Scikit-learn then create an object of

Standard Scaler name ss. And fit it on X_train and X_test to standardize it.

6.6 Data Splitting

To get the model with the best accuracy and for better performance of the model, we split

the data into training and testing sets. Where we take 80 percent of the data as training data

and the remaining 20 percent of data as testing data with a random state value of 42. It is

very important to split the data into training and testing set to evaluate the performance of

13

the model. If we do not split the data, then the problem of 42 and inaccurate performance

of the model can be seen.

6.7 Machine Learning Algorithm

As our data is a classification problem, we are using the logistic regression. Logistic

regression is a supervised machine learning algorithm that is used for classification

problems. In the below code, we imported the modelling from the scikit-learn library

(Pedregosa et al., 2011) and then we created its object named lr. After this we fit it in the

X_train and y_train for training purpose. It learns the relationship between the features i.e.,

X_train and between the target variable, which is y_train. Then, we make predictions on

the testing data i.e., X_test.

We evaluated many machine learning models to determine if websites are phishing or real.

The findings were interesting. Tests included Decision Tree, Random Forest, K-Nearest

Neighbours (KNN), Support Vector Machine (SVM), Logistic Regression, and Naïve

Bayes. The Random Forest classifier outperformed the rest in terms of accuracy,

successfully differentiating between reputable and fraudulent websites. Although its

accuracy was a little bit decreased, the SVM's classification performance was still strong.

The Naïve Bayes classifier exhibited the lowest accuracy, while the Decision Tree and

KNN models had reasonable performance. These findings demonstrate the effectiveness

of margin- and ensemble-based phishing detection techniques.

6.8 Cross – Validation Process

The very last step is to find the accuracy, f1 score, precision and recall of the model. For

this, we import accuracy_score, f1_score, precision_score and recall_score from the scikit-

learn library. Through the accuracy score, we get to know about the performance of our

model (Fumo, 2017).

14

6.9 Receiver Operating Characteristics (ROC) Curve

It is used for predicting the classification thresholds. A ROC curve is a graph that is used

for showing the performance of a classification model at all thresholds. This curve plots

two parameters: True Positive Ratio and False Positive Ratio.

6.10 Discussion

Advantages
1. Simplicity and Interpretability

The main strength of Random Forest, therefore, is its interpretability, which is a major

advantage considering its application. The random forest model is some what easy to

implement though it has limited understanding in the aspect of machine learning. The

model works with the assessment of the odds of an event occurring in one of two ways

given one or more characteristics. This interpretability is useful for cases like Phishing

detection in which knowing how URL attributes influence the occurrence of phishing

attacks can be extremely helpful in optimizing detection.

It is necessary to notice that the authors of Adeli note that the use of random forest

model would provide information on features’ contribution thus enabling practitioners

to determine which aspects are highly informative for identifying cases of phishing.

This is crucial when it comes to explaining the model’s decisions to the outside world,

an important aspect in ensuring that the security model being developed is accepted in

cases where decisions made will affect many people (Adeli et al. 2019).

2. Feature Utilization

Feature engineering is applied in random forest model in order to boost its capabilities.

When it comes to the feature selection in phishing detection, the features related with

URL parameters for instance URL length, the usage of special characters and the

15

characteristics of the domain are rather significant. By having these kinds of features in

this model, random forest easily analyze characteristics that may lead to the act of

phishing.

Disadvantages

1. Handling Complex Patterns

When it comes to various limitations, the model exhibits some significant weaknesses,

especially when dealing with intricate relations. Phishing attacks are most of the time

complex and use URL features in a manner that is not easily identifiable by modelling.

Current and more refined strategies of phishing do involve domain names that are

similar to those of the genuine sites or even have small shades of metamorphic

characteristics that are hard to capture using basic linear models.

7 Conclusion and Future Work

Cybercrimes such as phishing continue to pose an enduring threat to the sustainable use of

internet-based processes and applications. Phishing scams trick clients into providing

important details through fake web addresses or domains. Towards this goal, the current

research aims to design and implement a robust machine learning model for categorizing

the URLs as phishing or genuine. The purpose of this research is to evaluate the

effectiveness of the Random Forest model in classifying URLs to be either legitimate or

phishing based on features extracted from them. This approach solves some of the

problems with previous solutions such as blacklists and heuristic filters since advanced

techniques may escape these measures.

The methodology consists of a wide URL preprocessing stage, which removes noise

parameters, converts all URLs to HTTPS, and normalizes domain names. Feature

extraction is all about extracting significant features from the URLs that have been

cleaned. The Random Forest model is trained and tested on these features. The study shows

that the adopted model has a 95% accuracy in classifying URLs, proving the viability of

the approach suggested. It is worth noting that this research makes a contribution to the

field by presenting the ability of random forest to phishing and underscoring the

significance of appropriate URL cleaning and selection of features (Sameen, Han and

Hwang, 2020). It is possible to learn some of the basic URL features from this study that

may catalyze the development of enhanced security systems to detect/avoid phishing

attacks. The limitations are as follows: This study shows that there is a constant need for

improvement in URL cleaning methodology and feature extraction algorithms in order to

adapt to these new techniques, hence paving the way for improvement of better real time

phishing detection systems.

The hypothesis in the study is that a random forest model will be useful in classifying

URLs as being phishing or legitimate based on extracted features, and it will perform well

in terms of accuracy as well as give insight into features that are most likely to signify

phishing. However, it is also expected that even though random forest will provide good

results, it is not going to outcompete more complex methods in all metrics. Data

preparation involves managing categorical data, missing values, and feature scaling

besides data partitioning as achieved in the following steps. The random forest model was

developed and tested with an improvement of 95% and thus proves that the proposed

approach can classify the URL and can be used in practice. This research can contribute

to the advancement in the area by proving the effectiveness of random forest in phishing

16

detection and proposing that selected URL features are suitable for detecting a phishing

attempt.

There should be further research using more sophisticated modeling techniques, for

instance, Gradient Boosting, as well as Deep Networks, such as CNNs and LSTMs, in an

attempt to tackle the interaction effects and enhance the detecting capability. Extending

the current model for temporal, contextual, and behavioral elements might improve the

predictions even further. Real-time detection and lower latency are also important for

practical deployment to immediately address phishing attacks while minimizing the time

needed to do so. In conclusion, this research paves the way for further work in the field of

phishing detection, highlighting the requirement for additional and constant developments

in the areas of machine learning and feature engineering that underpin cybersecurity

initiatives.

8 References

API Reference (no date) scikit-learn. Available at: https://scikit-learn/stable/api/index.html (Accessed:

12 August 2024).

‘APWG | Phishing Activity Trends Reports’ (no date a). Available at: https://apwg.org/trendsreports/

(Accessed: 16 September 2024).

‘APWG | Phishing Activity Trends Reports’ (no date b). Available at: https://apwg.org/trendsreports/

(Accessed: 12 August 2024).

Biau, G. and Scornet, E. (2016) ‘A random forest guided tour’, TEST, 25(2), pp. 197–227. Available

at: https://doi.org/10.1007/s11749-016-0481-7.

Buber, E., Demir, Ö. and Sahingoz, O.K. (2017) ‘Feature selections for the machine learning based

detection of phishing websites’, in 2017 International Artificial Intelligence and Data Processing

Symposium (IDAP). 2017 International Artificial Intelligence and Data Processing Symposium

(IDAP), pp. 1–5. Available at: https://doi.org/10.1109/IDAP.2017.8090317.

Das, A. et al. (2020) ‘SoK: A Comprehensive Reexamination of Phishing Research From the Security

Perspective’, IEEE Communications Surveys & Tutorials, 22(1), pp. 671–708. Available at:

https://doi.org/10.1109/COMST.2019.2957750.

Fumo, J. (2017) ‘Pandas Library in a Nutshell — Intro To Machine Learning #3’, Simple AI, 29

January. Available at: https://medium.com/simple-ai/pandas-library-in-a-nutshell-intro-to-machine-

learning-3-acbd39ec5c9c (Accessed: 12 August 2024).

Gupta, B.B., Arachchilage, N.A.G. and Psannis, K.E. (2018) ‘Defending against phishing attacks:

taxonomy of methods, current issues and future directions’, Telecommunication Systems, 67(2), pp.

247–267. Available at: https://doi.org/10.1007/s11235-017-0334-z.

Pedregosa, F. et al. (2011) ‘Scikit-learn: Machine Learning in Python’, J. Mach. Learn. Res., 12(null),

pp. 2825–2830.

Sameen, M., Han, K. and Hwang, S.O. (2020) ‘PhishHaven—An Efficient Real-Time AI Phishing

URLs Detection System’, IEEE Access, 8, pp. 83425–83443. Available at:

https://doi.org/10.1109/ACCESS.2020.2991403.

17

Swain, P.H. and Hauska, H. (1977) ‘The decision tree classifier: Design and potential’, IEEE

Transactions on Geoscience Electronics, 15(3), pp. 142–147. Available at:

https://doi.org/10.1109/TGE.1977.6498972.

Using Matplotlib — Matplotlib 3.9.1 documentation (no date). Available at:

https://matplotlib.org/stable/users/index.html (Accessed: 12 August 2024).

Zhang, X., Zhao, J. and LeCun, Y. (2016) ‘Character-level Convolutional Networks for Text

Classification’. arXiv. Available at: https://doi.org/10.48550/arXiv.1509.01626.

Balogun, A.O., Akande, N.O., Usman-Hamza, F.E., Adeyemo, V.E., Mabayoje, M.A. and Ameen,

A.O., 2021. Rotation forest-based logistic model tree for website phishing detection.

In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari,

Italy, September 13–16, 2021, Proceedings, Part IX 21 (pp. 154-169). Springer International

Publishing.

Basit, A., Zafar, M., Javed, A.R. and Jalil, Z., 2020, November. A novel ensemble machine learning

method to detect phishing attack. In 2020 IEEE 23rd International Multitopic Conference

(INMIC) (pp. 1-5). IEEE.

Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L. and Wang, J., 2024. The application of a novel neural

network in the detection of phishing websites. Journal of Ambient Intelligence and Humanized

Computing, pp.1-15.

Heitz, A., Launay, P. and Beziat, A., 2019. Heterogeneity of logistics facilities: an issue for a better

understanding and planning of the location of logistics facilities. European Transport Research

Review, 11(1), p.5.

Shahrivari, V., Darabi, M.M. and Izadi, M., 2022. Phishing detection using machine learning

techniques. arXiv preprint arXiv:2009.11116.

Vanitha, N. and Vinodhini, V., 2019. Malicious-URL detection using logistic regression

technique. International Journal of Engineering and Management Research (IJEMR), 9(6), pp.108-

113.

Venkatesh, B. and Anuradha, J., 2019. A review of feature selection and its methods. Cybernetics and

information technologies, 19(1), pp.3-26.

Yerima, S.Y. and Alzaylaee, M.K., 2020, March. High accuracy phishing detection based on

convolutional neural networks. In 2020 3rd International Conference on Computer Applications &

Information Security (ICCAIS) (pp. 1-6). IEEE.

Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E. and Imran, M., 2019. Real-

time big data processing for anomaly detection: A survey. International Journal of Information

Management, 45, pp.289-307.

Lok, L.K., Hameed, V.A. and Rana, M.E., 2022. Hybrid machine learning approach for anomaly

detection. Indonesian Journal of Electrical Engineering and Computer Science, 27(2), p.1016.

Wu, Qiang & Zhou, Ding-Xuan. (2006). Analysis of support vector machine classification. Journal of

Computational Analysis and Applications. 8.

Rish, Irina. (2001). An Empirical Study of the Naïve Bayes Classifier. IJCAI 2001 Work Empir

Methods Artif Intell. 3.

18

Verma, R. and Das, A., 2017, March. What's in a url: Fast feature extraction and malicious url detection.
In Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics (pp. 55-

63).

