

Configuration Manual

MSc Research Project

Cybersecurity

Sabareesan Mohandass

Student ID: X22215786

School of Computing

National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Sabareesan Mohandass …………………………………………………………………………

Student ID:

X22215786……………………………………………………………….……………………………

Programme:

Cybersecurity………………………………………………

Year:

2023-2024

Module:

MSc Research Project………………………………………………………………………………

Lecturer:

Michael Prior……………………………………………………………………………………………

Submission
Due Date:

12/08/2024…………………………………………………………………………………….………

Project Title:

Addressing Cloud Security Challenges using AI-Driven IoT Intrusion

Detection Systems with UQ-IDS Dataset …………………………………….………

Word Count:

1879……………………………… Page Count: 9……………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

12/08/2024
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Sabareesan Mohandass

X22215786

1 Introduction

The purpose of this document is to outline the steps necessary to execute the research

project and to specify the configuration required to run the models and access the webpage.

The key stages involve accessing the online platform and installing the essential software,
libraries and packages, as well as the minimal setup needed for the project to function properly.

2 Experimental Setup

2.1 System Configuration

Hardware Used in this

Experiment

Version Purpose

MacBook Pro

Processor: 2.3 GHz 8-Core

Intel Core i9

Memory: 16 GB 2667 MHz

DDR4

macOS Ventura Version

13.5.2 (22G91)

Workstation

2.2 Software Used in this Experiment

2.2.1 Google Colab is a free cloud service hosted by Google for machine learning

education and research. Since my research work is based on ML, I took an

advantage of it. It provides a Jupyter notebook environment that requires no
setup to use and runs entirely in the cloud, but code requires the following

libraries:

• NumPy 1.22.4

• Pandas 1.5.3

• Plotly 5.13.1

• Matplotlib 3.7.1

• Seaborn 0.12.1

• Scikit-learn 1.2.2

• TensorFlow 2.12.0

• Keras 2.12.0

2.2.2 To run this code, will need a Google account and a web browser, open the code in

Google Colab and run it by clicking the "Run" button.

2

2.3 Dataset

The newly published dataset NF-UQ-NIDS 2023 includes flows from various network

configurations and attack parameters. The NF-UQ-NIDS dataset has a total of 11,994,893

records, out of which 9,208,048 (76.77%) are benign flows and 2,786,845 (23.23%) attacks.

Source: https://staff.itee.uq.edu.au/marius/NIDS_datasets/

2.3.1 Steps to upload dataset into Google Collab

1) Upload CSV file to Google Drive:

2) Mount Google Drive in Google Colab:

3) In Colab notebook, execute the following code:
from google.colab import drive
drive.mount('/content/drive')

4) Access the CSV file in Colab:
file_path = '/content/drive/My Drive/data.csv'

2.4 Web Framework

 Flask is a lightweight and flexible web framework for Python. It's designed to be easy

to learn and use, making it a popular choice for building web applications, APIs, and

microservices.

Here, to enhance the usability and accessibility of IDS, developed a web application using

Python Flask, provides a user-friendly interface to interact with the IDS, initiate and stop

analysis, and view real-time predictions. Flask's API endpoints enable seamless

communication between the frontend and backend, allowing for efficient data processing and

visualization. By integrating Flask with my Conv-LSTM model, monitors the network traffic

and receive immediate alerts on potential security threats."

https://staff.itee.uq.edu.au/marius/NIDS_datasets/

3

2.4.1 Configuration for Python Flask in Google Colab:

1. Installation: Install Flask and Flask-Ngrok using pip:
!pip install flask-ngrok
!pip install Flask==3.0.0 pyngrok==7.1.2

2. Ngrok Setup: Use Ngrok to expose your Flask application running on Colab to the public
internet. You'll need an Ngrok auth token (obtain one from their website).

ngrok_key = "YOUR AUTH KEY"
port = 5000
from pyngrok import ngrok
ngrok.set_auth_token(ngrok_key)
ngrok.connect(port).public_url

3. Flask App: Create a basic Flask application
Initialize Flask app
app = Flask(__name__, template_folder=template_folder, static_folder=static_folder)

4. Create API to connect between the app to the endpoints
/start-prediction to initiate the IDS analysis.

/stop-prediction to halt the analysis.

/get-predictions to retrieve the latest predictions.

/traffic-summary to provide an overview of detected attacks.

@app.route('/start-prediction', methods=['GET'])

def start_prediction():

 thread = threading.Thread(target=predict_rows)

 thread.start()

 return jsonify({'message': 'Prediction started.

Monitoring network packets...'})

5. Run the App
if __name__ == '__main__':
 app.run(port=5000) # Specify a port if necessary

3 Implementation Steps

This code has two sections

• Section 1 of notebook contains code to train and evaluate a two different deep

learning models and one hybrid model for classifying network traffic.

• Section 2 has a code to set up a Flask web application to provide a user interface for

interacting with trained intrusion detection model.

3.1 Pre-requisites to run the code in Section 1

• Google Colab Environment with python libraries and packages as shown in 3.1.1

4

• File (Code): uq-ids-Thesis.ipynb

• Data Files:

o NetFlow_v1_Features.csv': Contains a mapping or description of network

flow features.

o 'NF-UQ-NIDS.csv': Contains the raw network traffic data.

o 'UQ_IDS_Final_Data.csv': Contains a sampled version of the raw data

(created in a previous run).

o 'final_sampled_data_rough.csv': Contains processed version of the data.

3.1.1 Importing necessary python libraries

3.2 Loading raw data from file

The raw data contains many records which can be computationally expensive to

process. To address this, the code performs random sampling to reduce the dataset size while

preserving its statistical properties for efficient analysis and model building.

shape of raw data is: (11994893, 15)

This line of code is for randomly sampling 2% of the data from the raw_data DataFrame

and storing it in a new DataFrame called final_data. Since the original dataset was very large,

this was done to reduce the size of the data, which in turn reduces the computational resources

required for analysis and model building.

5

3.3 Data Preprocessing

The original dataset has many unique attack types, leading to a multi-class classification

problem. Training a model on such a large number of classes would require a lot of data and

computational resources.

class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 16 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 IPV4_SRC_ADDR 100000 non-null object
 1 L4_SRC_PORT 100000 non-null int64
 2 IPV4_DST_ADDR 100000 non-null object
 3 L4_DST_PORT 100000 non-null int64
 4 PROTOCOL 100000 non-null int64
 5 L7_PROTO 100000 non-null float64
 6 IN_BYTES 100000 non-null int64
 7 OUT_BYTES 100000 non-null int64
 8 IN_PKTS 100000 non-null int64
 9 OUT_PKTS 100000 non-null int64
 10 TCP_FLAGS 100000 non-null int64
 11 FLOW_DURATION_MILLISECONDS 100000 non-null int64
 12 Label 100000 non-null int64
 13 Attack 100000 non-null object
 14 Dataset 100000 non-null object
 15 Attack_Category 100000 non-null object
dtypes: float64(1), int64(10), object(5)
memory usage: 12.2+ MB

To deal with this, the code maps the different attack types to broader domain categories,

such as "Network Attacks" and "Exploitation Attacks". This reduces the number of classes and

simplifies the problem, making it more manageable with the available resources. This is

achieved using the categorize attack function, which maps each attack type to its corresponding

category. For example, attacks like 'DDoS', 'DoS' are categorized as 'Network Attacks', and

attacks like 'injection', 'Exploits' are categorized as 'Exploitation Attacks'.

Numerical Features Count 11
['L4_SRC_PORT', 'L4_DST_PORT', 'PROTOCOL', 'L7_PROTO', 'IN_BYTES', 'OUT_BYTES', 'IN_PKTS',
'OUT_PKTS', 'TCP_FLAGS', 'FLOW_DURATION_MILLISECONDS', 'Label']
Categorical Features Count 3
['IPV4_SRC_ADDR', 'IPV4_DST_ADDR', 'Attack_Category']

• Conversion of IP addresses to decimal values.

3.4 Data Analysis and Visualisations

The data analysis section aims to visually explore the distribution of individual features and

their relationship with the target variable (Attack_Category) is generated through the code.

a. Histogram plot of IPV4_SRC_ADDR vs Attack Category

b. Histogram Plot of IPV4_SRC_ADDR vs Attack Category

c. Bar plot of TCP Flag Column

d. Sunburst plot of TCP Flag Column vs Attack Category

e. Pie plot of Network Protocols

f. Sunburst plot of Network Protocols vs Attack Category

g. Pie plot of IN_BYTES and OUT_BYTES distribution vs Attack Category

6

3.5 Feature Engineering

3.5.1 Feature Selection

• Balance the dataset using SMOTE oversampling.

• Apply OneHotEncoder to the target variable.

• Scale numerical features using MinMaxScaler.
The number of classes before fit Counter({0: 44238, 2: 32029, 1: 22579})
The number of classes after fit Counter({0: 44238, 2: 44238, 1: 44238})

3.5.2 Feature Extraction

• Uses Random Forest model to determine feature importances.

• Select the top 8 features based on importance.

• Splitting the data into training and testing sets

• Uses a test_size of 0.2, 20% of the data will be used for testing and remaining 80% of the

data will be used for training.

3.6 Model Implementation

3.6.1 CNN Model

With 10 filters, a kernel size of 1, and ReLU activation. A dropout layer is then added

to prevent overfitting.

CNN Model Accuracy: 83.46%
CNN Model Precision: 0.8334
CNN Model Recall: 0.8346
CNN Model F1_score: 0.8304

7

3.6.2 LSTM Model

A batch normalization layer is included to stabilize training, followed by an LSTM

layer with 12 units, configured to return sequences for potential stacking with more layers.

LSTM Model Accuracy: 81.49%
LSTM Model Precision: 0.8414
LSTM Model Recall: 0.8149
LSTM Model F1_score: 0.8105

3.6.3 Conv-LSTM Model

Firstly, reshapes the data to have the following dimensions: (samples, time steps, rows,

cols, features). and LSTM layer with 12 units, configured to return sequences for potential

stacking with more layers.
Conv-GRU Model Accuracy: 86.76%
Conv-GRU Model Precision: 0.8659
Conv-GRU Model Recall: 0.8676
Conv-GRU Model F1_score: 0.8665

3.7 Web Framework with a Best Model Chosen

Based on the above metrics (accuracy, precision, recall, F1-score), the Conv-LSTM

model generally outperforms the CNN and LSTM models suggests that the combination of

local feature extraction (CNN) and temporal modelling (LSTM) is most effective for this

intrusion detection task. The Conv-LSTM likely captures both the subtle patterns within

individual flows and the broader temporal dependencies across multiple flows that characterize

different attack types.

3.7.1 Pre-requisites to run the code

• Google Colab Environment with desired libraries and packages

• File (Code): uq-ids-Thesis.ipynb

• Webpage file: index.html

• Data Files:

o Trained Model: Ensure you have a trained deep learning model saved as a HDF5

file (/content/drive/MyDrive/Colab Notebooks/Best_Model_Conv_LSTM.h5) in

the specified location.

o Data for Prediction: A CSV file (/content/drive/MyDrive/Colab

Notebooks/Pred_data.csv) containing network traffic data that want to analyse

for intrusions.

1. Install Necessary Libraries:

!pip install flask-ngrok

!pip install Flask==3.0.0 pyngrok==7.1.2

2. Set Up Ngrok Account and Authentication Token:

8

3. Run the Flask App

Execute the second Flask code block in notebook which will start the Flask app and make it

accessible through a public URL provided by ngrok.

4. Access the Web Interface:

Open a web browser and paste the public URL generated by ngrok above in step 2 and this will

load the web interface of your Flask app.

5. Interact with the App:

Use the buttons and visualizations in the web interface to start/stop predictions, view real-

time results, and analyze the network traffic summary.

9

from Python Flask: Backend API Calls for reference

End*****************

	1 Introduction
	2 Experimental Setup
	2.1 System Configuration
	2.2 Software Used in this Experiment
	2.2.1 Google Colab is a free cloud service hosted by Google for machine learning education and research. Since my research work is based on ML, I took an advantage of it. It provides a Jupyter notebook environment that requires no setup to use and run...
	2.2.2 To run this code, will need a Google account and a web browser, open the code in Google Colab and run it by clicking the "Run" button.

	2.3 Dataset
	2.3.1 Steps to upload dataset into Google Collab

	2.4 Web Framework
	2.4.1 Configuration for Python Flask in Google Colab:

	3 Implementation Steps
	3.1 Pre-requisites to run the code in Section 1
	3.1.1 Importing necessary python libraries

	3.2 Loading raw data from file
	3.3 Data Preprocessing
	The original dataset has many unique attack types, leading to a multi-class classification problem. Training a model on such a large number of classes would require a lot of data and computational resources.
	To deal with this, the code maps the different attack types to broader domain categories, such as "Network Attacks" and "Exploitation Attacks". This reduces the number of classes and simplifies the problem, making it more manageable with the available...
	3.4 Data Analysis and Visualisations
	3.5 Feature Engineering
	3.5.1 Feature Selection
	3.5.2 Feature Extraction

	3.6 Model Implementation
	3.6.1 CNN Model
	3.6.2 LSTM Model
	3.6.3 Conv-LSTM Model

	3.7 Web Framework with a Best Model Chosen
	3.7.1 Pre-requisites to run the code

