\""‘*
\ National

Collegeof
Ireland

Configuration Manual

MSc Research Project

DEEP LEARNING-BASED INTRUSION DETECTION
SYSTEM IN THE INTERNET OF THINGS

Abinash Mishra
X23153903

School of Computing
National College of Ireland

Supervisor: Eugene Mclaughlin

‘-
National College of Ireland \ National

MSc Project Submission Sheet ﬁoelizglfg
School of Computing
Student Name: Abinash Mishra
Student ID: X23153903
Programme: Msc Cybersecurity Year: 2024.
Module: Msc Research Practicum
Lecturer: Eugene Mclaughlin
Submission Due
Date: 16-09-2024
Project Title: DEEP LEARNING-BASED INTRUSION DETECTION SYSTEM IN THE

INTERNET OF THINGS
Word Count: 1050 Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Abinash Mishra

Date: 16-09-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | 4
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | 4
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signhature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Abinash Mishra
X23153903

1 Introduction

The deep-learning best technique is implemented to detect the intrusion in the IoT network.
This defines the evaluation of the IoT system devices by using the network analysis process.
The execution supports to determine the factors that are necessary for the evaluation. The
introduction determining approach defines the implementation of data construction process
that is usable for the detection of network threats. The detection parameter defines the
evaluation elements that are necessary for the execution (Amouri et al., 2020). The deep
learning techniques highlights the prototypes such as Linear Regression, SVM, Seqential
Neural Network. All the algorithms are applicable to construct the predictive model for the
intrusion detection process.

2 Project Overview

The functional parameter defines the relevance of the language and especially of Python in
coding and specifically in the execution of deep learning methodical approaches. This
evaluation sheds light on some of the fundamental components of Python coding that is
relevant in the deployment of deep learning models. This leads to a more formal approach
that ensures tasks in terms of a plan can be executed in a step wise manner. Some
requirements of this process relate to identifying the correct elements that will enhance the
possible success of the outcome. In general, the presented discussion covers all the aspects
concerning effective utilization of deep learning parameters towards the prediction of the
network behaviors. Also, the incorporation of detection mechanisms sheds light on the
necessity of recognizing threats within a network as pointed out by Alkahtani and Aldhyani
(2021).

3 Hardware/Software Implementation

1. Hardware

Processor: Intel Core 15
GPU : NVIDIA RTX 3050
Storage: 512 GB

RAM: 16 GB

2. Software
Jupyter Notebook: VERSION 7
Anaconda: 1.10

4 Data Collection

The data is collected form a secondary resource, ‘Kaggle’ named as IDS 2018 Intrusion
CSVs (CSE-CIC-IDS2018) 02-14-2018.csv. This resource provides the necessary data which
contains the details of the network parameters with necessary network details (Ge et al.,
2021). This defines the flow duration, packet forwarded section, labels, and many more. In
this case labels define the section of attack types such as Benign, FTP-Brute Force, and SSH-
Brute Force. This is the major target valuable for this investigation.

S Data Analysis

import pandas as pd
import numpy as np

Figure 1: Libraries
(Source: Jupyter Notebook)

The libraries determines the evaluation of the key evaluation factors for the initialization of
the examination process. This defines the execution of the testing approach which assists in
the intrusion detection process.

df = pd.read csv("92-14-2818.csv")

df
Fwd Fwd Fwd
Tot Tot Totlen Totlen - " . .
Flow Pkt Pkt Seq Active Active Active Active i
Timestamp Duration ;;I: Em ;':\g ?l:‘;g Len len = GSize Mean Std Max Min Idle Mean Idle 5td Idle Max Idle Min Label
Max Min Min

e nmmme 3 0 0 o © 0. 00 00 0 0 563208595 139.300036 56320858 56320761 Benign
02208 yo6a1as6 3 0 o 0 o0 0 0 00 00 0 0 563207330 114551299 56320814 56320652 Beni

08:93:50 . | . 207 55 2 5 &nign
1410212013 y

20 meames 3 0] 0o o o0 . 0 00 00 0 0 563193115 301934596 56319525 56319035 Benign
TANIE0IS Gasases 15 10 1239 273 M4 0 L @2 00 00 0 o 00 0.000000 0 0 Benign
A0S Bs0a066 14 1 1143 2209 T4 0 . 32 00 0.0 0 o 0.0 0.000000] 0 Benign
TANZE0E amsssss 5 5 1089 1923 saT 0 20 00 00 0] D0 0000000 0 0 Benign
14/0212018 ;

hopas "2 0 o o o 0 . 20 00 00 0 0 00 0.000000 0 0 Benign
1410212015 '

201G soess 3 0 0 o0 o0 . 20 00 00 0 0 00 0.000000 0 0 Benign
14/0212013 4

20008 mamsstt 3 1 o 0 o 0 . 20 00 00 0 0 00 0.000000 0 0 Benign
1anZ0S ssor2ss 6 4 37 145 245 0 . 20 2915680 0.0 291569 291559 55156500 0000000 5515650 5515650 Benign

Figure 2: Data read
(Source: Jupyter Notebook)

The CSV data read functionality is implemented to read the collected secondary CSV data
which contains necessary information about the network.

print{df.isnull().sum{))

Dst Port a8
Protocol 5]
Timestamp =)
Flow Duration e
Tot Fwd Pkts e

Idle Mean
Idle Std
Idle Max
Idle Min
Label

Length: 8@, dtype: inted

O ®-

Figure 3: Null check
(Source: Jupyter Notebook)

The null checking section to check the null factors present in the collected data. This
initialize the cleaning of the data.

df = df.dropna()

df['Protocol’] = df['Protocol’].astype(' category’).cat.codes
Figure 4: Drop column
(Source: Jupyter Notebook)

Drop approach is implemented to remove or eliminate those columns which are not required
for the determination. The type conversion approach is implemented to convert the type of a

particular column, ‘Prototype’ into integer format.

print{df.dtypes)

Dst Port inted4
Protocol int3
Timestamp datetimesd[ns])
Flow Duration inted4
Tot Fwd Pkts inted4
Idle Mean floated
Idle 5td floated
Idle Max inted4
Idle Min inted4
Label object

Length: 5@, dtype: object

Figure 5: Data type
(Source: Jupyter Notebook)

The type of the data defines the integer, date/time, float, and the object type data types.

df.describe()

Dst Port Protacol Timestamp G fotfwd Phis TotbwdBits TOLEREw] CTolentenl FwdPkiLen FwdPkilen . B

count 1.045298e+06 10462932406 1046298 10462982+06 1.046398e+06 1.046298e+06 1.046298e+06 1.046298e+06 1046208e+06 1.046298e+06 _ 1
mean 47769156403 11868512400 o - ZISIEIS 60601686406 62157802400 72268700400 44896862400 45316448503 17495358+02 84077938400 . 2
min 0.000000e+00 0.000000+00 1870005 9.190110e+11 1000000¢+00 0.000000e+00 0.000000¢+00 0.000000e+00 0.000000e~00 0.000000e+00 . O

25% 2200000e+01 1.000000+00 A e 7.000000e+00 1.000000e+00 1000000¢+00 0.000000c+00 0.000000¢+00 0.000000e+00 0.000000+00 .. 0.
50% 5.300000e+01 1.0000002+00 A Il 1033000603 20000002400 10000008400 35000002401 5.500000e+01 3400000e+01 0.0000008+00 _ 0.
75% 4.430000e+02 1.000000e+00 A0 1Y 4073898¢+05 7.000000e+00 5.000000¢+00 4550000c+02 7.880000e+02 2.000000e+02 0.000000+00 .. 41
max £.553300e+04 2.0000008+00 Ay 1200000e-08 571150002+03 9.198000e+03 85915542408 1.336773e+07 64410006+04 1460000803 _ 11
std 1430012804 4 175120e-01 Nal 1261662e+09 4452545e+01 1.049817e+02 1575251e+04 1516667e+05 20870607e<02 1950004e+01 _ 5.

8 rows = 79 columns
Figure 6: Descriptive statistics
(Source: Jupyter Notebook)

Descriptive determination evaluates the statistical determining factors that assist in the
investigation.

sns.set(re={'figure.figsize': (12, 6)})

plt.xlabel ('Attack Type')

sns.set_theme()

ax = sns.countplot(x='Label’, data=df)
ax.set({xlabel="Attack Type', ylabel='Mumber of Attacks')
plt.show()

600000
500000

400000

Number of Attacks

100000

Benign FTP-BruteForce SSH-Bruteforce
Aftack Type

Figure 7: Visualization of various attacks
(Source: Jupyter Notebook)

The visualization defines the count of the number of Benign, FTP-Brute Force, and SSH-
Brute Force types. In this case, Benign has maximum value of evaluation.

test _dataset = train_dataset.sample(frac=8.1)
target_train = train_dataset['Label’]

target test = test dataset['Label']

target train.unique(), target test.unique()

{array([@, 1, 2]), erray([1, ®, 2]))

Figure 8: Data preprocessing
(Source: Jupyter Notebook)

The data preprocessing determines the executable parameters such as test, and training data.
This determines the target data section for the evaluation of the intrusion.

.drop(columns=non_numeric_columns)

N
= df['Label']

df
df
X.replace([np.inf, -np.inf], np.nan, inplace=True)
X.fillna(X.mean(), inplace=True)

label encoder = LabelEncoder()
y_enceded = label encoder.fit_transform(y)

y_categorical = to_categorical{y_encoded)
X train, X test, y train, y test = train_test split(X, y categorical, test size=0.2, random_ state=42)

scaler = StandardScaler()
X_train = scaler.fit transform(X_train)
X_test = scaler.transform(X_test)

Figure 9: Data setting
(Source: Jupyter Notebook)

The data setting approach is implemented to set the data for the processing. This highlights
the test, and train data spliting approach. The encoding method is implemented to encode the
data section. The scaling process is implemented to transform the scaler part of the data that
are usable for the execution.

model = Sequential()

model . add(Dense(64, ir im= rain.shape ctivation="relu'))
sodel;add(Dense(64, input dim=X Srainshape(1], activation="rely’))
model . add(Dense(32, activation='relu'))

model .add(Dense(y_train.shape[1], activation='softmax'))
model.compile(loss="categorical_crossentropy’, optimizer='adam®, metrics=['accuracy'])
history = model.fit(X_train, y train, epochs=58, batch_size=32, validation_split=0.2)
Epoch 1/5@

20926/20926 ————————————— 195 866us/step - accuracy: ©.9971 - loss: ©.0153 - val_accuracy: ©0.9999 - val loss: 9.2178e-84
Epoch 2/50@

20926/20926 = 165 772us/step - accuracy: ©.9999 - loss: 6.8428e-04 - val_accuracy: 1.0000 - val_loss: 2.3830e-04
Epoch 3/5@

20926/20926 —————————— 165 777us/step - accuracy: 1.0000 - loss: 4.0820e-04 - val_accuracy: ©.9999 - val_loss: ©.0012
Epoch 4/5@

20926/20926 —————————————— 16s 774us/step - accuracy: ©.9999 - loss: 7.2139e-04 - val_accuracy: 1.0000 - val_loss: 2.9506e-24
Epoch 5/5@

20926/20926 ———— 165 768us/step - accuracv: 1.8000 - loss: 4.5895e-@4 - val accuracv: 1.8000 - val loss: 7.3996e-04

Figure 10: DL model setting and evaluation
(Source: Jupyter Notebook)

The deep learning model/prototype initialization approach is implemented in this point. This
also defines the model fit approach and also the model execution functionality by using
epochs.

loss, accuracy = model.evaluate(X test, y test)
primt(f Accuracy: {accuracy®16@:.2f}%")

6548/6548 [====== ====z=======] - 95 Ims/step - loss: B.171le-84 - accuracy: 1.8000
Accuracy: 188.08%

y_pred = model.predict{X_test)
y_pred_classes = np.argmax(y_pred, axis=1)
y_true = np.argmax(y_test, axis=1)

£540/6548 [============ s==========] - 95 Ims/step

Figure 11: Loss, accuracy, and prediction of the model
(Source: Jupyter Notebook)

from sklearn.model selection import train_test_split

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.linear_model import LinearRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

v = df['Label']
x.replace([np.inf, -np.inf], np.nan, inplace=True)
X.fillna(X.mean{)}, inplace=True)

model_ linear = LinearRegression()
model linear.fit(X_train, y_train)

P LinearRegressicn|

:LinearREgressinn(]é

Figure 12: Linear Regression
(Source: Jupyter Notebook)

The above code is explaining the preparing data, handling mising data and infinite values
where:

model linear = LinearRegression(): It initializes a Linear Regression model.
model linear.fit(X train, y train): It trains the Linear Regression model by using the training
data X train and y_train.

mse_linear = mean_squared error(y_test, y_pred_linear)
rmse_linear = mean_squared_error(y_test, ¥ _pred linear, sguared=False)
r2_linear = r2_score(y_test, y_pred_linear)

print{"Linear Regression:")
print{"Mean squared Error:", rmse_linear)
print{f"R-squared: {r2_linear:.z2f}")

Figure 13: Evaluation Metrics for Linear Regression Model
(Source: Jupyter Notebook)

The above code evaluates the performance of a Linear Regression model using three metrics:
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R?). MSE
measures the average squared difference between actual and predicted values, RMSE
provides with the standard deviation of these errors, and R? indicates that how well the model
explains the variability of the response data.

from sklearn.svm import SVC

label encoder = LabelEncoder()
y_encoded = label encoder.fit_transform(y)

¥_traln, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=@.2, random_state=42)

scaler = StandardScaler()
X_train = scaler.fit_transform{x_train)
¥ _test = scaler.transform{X_test)

svm_model = SVC{Kernel='linear", C=1.0, random_state=42)

svm_model.fit(X_train, y_train)

SVC

iSVC(kernelZ'linear', randnm_state:42]§

Figure 14: Support Vector Machine (SVM) Model Training Process
(Source: Jupyter Notebook)

The above figure 14, shows that the training of a Support Vector Machine (SVM) model was
using a linear kernel. It begins by encoding the target labels, splitting the dataset into training
and testing sets, and standardizing the features. The SVM model is then initialized and then
trained on the training data, with a specified regularization parameter C and with a random
state for reproducibility.

def evaluate model(y_ test, y_pred, model_name):

print({f"Model: {model_name}")

print{f"Accuracy: {accuracy_score{y test, y _pred) * 1806:.2f}%")
print{"Classification Report:")
print{classification_report(y_test, y_pred})

print{"Confusion Matrix:")

print{confusion_matrix(y_test, y_pred)})

print{"%n")

— i — —

¢ Evaluate each model

evaluate_model(y_test, y pred, "Neural Network")
evaluate_model(y_test, y_pred_svm, "SVM")
evaluate_model(y_test, y pred_lr_class, "Linear Regression")

Figure 15: Model Evaluation Function for Classification Models
(Source: Jupyter Notebook)

This code defines a function by evaluating the model by printing the evaluation metrics for
different classification models w hich includes accuracy, classification report and confusion

matrix. It is then used to evaluate three models that are a Neural Network, an SVM, and a
Linear Regression model which provides a comprehensive comparison of their performance
on the test dataset.

References

Amouri, A., Alaparthy, V.T. and Morgera, S.D., 2020. A machine learning based intrusion
dete ction system for mobile Internet of Things. Sensors, 20(2), p.461.

Alkahtani, H. and Aldhyani, T.H., 2021. Intrusion Detection System to Advance Internet of
Things Infrastructure-Based Deep Learning Algorithms. Complexity, 2021(1), p.5579851.

Ge, M., Syed, N.F., Fu, X., Baig, Z. and Robles-Kelly, A., 2021. Towards a deep learning-
driven intrusion detection approach for Internet of Things. Computer Networks, 186,
p.107784.

	1Introduction
	2Project Overview
	3Hardware/Software Implementation
	1.Hardware
	2.Software

	4Data Collection
	5Data Analysis
	Figure 1: Libraries
	Figure 2: Data read
	Figure 3: Null check
	Figure 4: Drop column
	Figure 5: Data type
	Figure 6: Descriptive statistics
	Figure 7: Visualization of various attacks
	Figure 8: Data preprocessing
	Figure 9: Data setting
	Figure 10: DL model setting and evaluation
	Figure 11: Loss, accuracy, and prediction of the m
	Figure 12: Linear Regression
	Figure 13: Evaluation Metrics for Linear Regressio
	Figure 14: Support Vector Machine (SVM) Model Trai
	Figure 15: Model Evaluation Function for Classific

	References

