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SSRF threat detection using AI/ML 
Laxmi Kumthe - x23126001  

 

Abstract 

Server-Side Request Forgery (SSRF) vulnerabilities present serious security threats to 

web applications, allowing attackers to use these applications as gateways to gain 

unauthorized access to internal services or execute arbitrary commands. Although SSRF 

was recognized as a distinct threat in the 2021 OWASP Top 10 list of web security risks 

and has become more common in contemporary web applications, there is still a notable 

deficiency in systematic methods for detecting these vulnerabilities effectively. In this 

study, a machine learning model was developed that integrates Randomforest and 

Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) 

networks for detecting Server-Side Request Forgery (SSRF) attacks to analyze and 

classify attack patterns effectively. The study involved preprocessing a comprehensive 

dataset, including feature selection and data balancing, to train the CNN-LSTM model, 

which achieved an accuracy of 99.65%. In comparison, a RandomForest model was also 

trained, achieving an accuracy of 98.41%.  This high level of accuracy underscores the 

model’s effectiveness in distinguishing between attack and non-attack scenarios. The GUI 

provides detailed feedback and logs of the entire prediction process, including 

preprocessing steps and the detection outcomes. An additional feature includes automated 

email alerts to notify users of detected attacks, enhancing the system's responsiveness. 

Keywords - SSRF, AI/ML, Web application security, RandomForestClassifier, CNN-

LSTM, SMOTE, Chi2. 

 

1 Introduction 

1.1  Background 

Machine learning (ML), a branch of AI, enables systems to learn from extensive data, identify 

patterns, and make precise predictions or decisions. This adaptability makes it ideal for 

malware detection. By training on large datasets of both clean and malicious files, ML models 

can identify subtle features that differentiate benign software from malware. This capability is 

crucial for addressing the evolving nature of threats. For example, if an account is 

compromised, it might show unusual network activity or connect to suspicious servers. ML 

can detect these anomalies and alert security analysts. Additionally, ML can identify system-

level irregularities, such as unexpected privilege escalations or unusual system usage.1 

Machine learning can significantly enhance the detection of Server-Side Request Forgery 

(SSRF) attacks by identifying patterns and anomalies that traditional methods might miss. By 

training machine learning models on vast datasets of both legitimate and malicious traffic, 

machine learning algorithms can learn to distinguish between normal and suspicious activities. 

These models can then analyze incoming requests in real-time, flagging those that deviate from 

typical behavior for further investigation. Machine learning can adapt to new attack vectors as 

they emerge, continuously improving its detection capabilities. This proactive approach helps 

 
 
1 https://www.akkio.com/post/malware-detection-using-machine-learning 
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in early identification and mitigation of SSRF attacks, safeguarding systems from potential 

breaches. 

 

Figure (1): Shows simple architecture of machine learning model.2 

Figure (1) shows a machine learning (ML) architecture diagram that outlines the 

process from data collection to prediction. Initially, raw data is collected and divided into two 

subsets: a training dataset for teaching the algorithm and a testing dataset for evaluating 

performance. The training dataset is fed into an algorithm, which learns to recognize patterns. 

The model is then evaluated using the testing dataset to measure its accuracy and ability to 

generalize. Based on the evaluation results, the model may be iterated and refined. Once 

sufficiently trained and evaluated, the final model is deployed to make predictions on new data. 

This structured approach ensures the development of robust and accurate ML models. 

A Server-Side Request Forgery (SSRF) attack occurs when an attacker leverages server 

functionality to access or alter internal resources by manipulating the URLs utilized by the 

application. By supplying or altering a URL, the attacker can trick the server into reading or 

submitting data to unintended locations, potentially gaining access to internal services and data 

not meant for public exposure, such as HTTP-enabled databases and server configurations. 

This attack leverages the server's ability to handle URLs to bypass normal access controls and 

access sensitive information.3 According to Bitdefender Labs, SSRF attacks have surged since 

late November 2022, targeting over 100,000 organizations globally, with most victims in the 

US and Europe, across various sectors including arts, consultancy, legal, manufacturing, real 

estate, and wholesale. The attacks exploit two chains, ProxyNotShell and OWASSRF, 

involving CVE-2022-41080 and CVE-2022-41082 vulnerabilities in Microsoft Exchange, with 

OWASSRF bypassing previously implemented mitigations. Bitdefender emphasizes a defense-

in-depth strategy, focusing on patch management, detection of misconfigurations, multiple 

layers of security, and strong detection and response tools to protect against evolving cyber 

 
 
2 https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94 
 
3 https://www.imperva.com/learn/application-security/server-side-request-forgery-
ssrf/#:~:text=A%20Server%2DSide%20Request%20Forgery 

https://www.imperva.com/learn/application-security/server-side-request-forgery-ssrf/#:~:text=A%20Server%2DSide%20Request%20Forgery
https://www.imperva.com/learn/application-security/server-side-request-forgery-ssrf/#:~:text=A%20Server%2DSide%20Request%20Forgery
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threats.4 Server-Side Request Forgery (SSRF), ranked 7th on the OWASP API Security Top 

10 as of June 2023, occurs when a user-controlled URL passed through an API is processed by 

the back-end server. This creates a security risk if the server attempts to connect to the user-

supplied URL, potentially allowing SSRF exploitation.5 Various methods, primarily involving 

machine learning techniques, have been employed to detect and mitigate these attacks (Al-

talak and Abbass, 2021). 

A successful SSRF attack can lead to unauthorized actions or data access within an 

organization, affecting the vulnerable application or other back-end systems it communicates 

with. In some cases, the vulnerability may allow attackers to execute arbitrary commands. 

Additionally, SSRF exploits that connect to external third-party systems can result in malicious 

attacks that appear to arise from the organization hosting the application that is vulnerable.6 

This study is to develop a machine learning model that can accurately detect and prevent 

Server-Side Request Forgery (SSRF) attacks using AI and ML techniques. This study will 

employ publicly available datasets to train and validate the models. The graphical user interface 

(GUI) will be created using Python's Tkinter, allowing users to input data and view the 

prediction results on the same page. This approach involves pre-processing the dataset by 

removing null values, duplicates, and unnecessary columns, followed by feature selection and 

scaling. This study will then split the dataset into training and testing sets. Two machine 

learning models such as RandomForestClassifier and CNN-LSTM will be used to train and 

evaluate the dataset, with the model demonstrating higher performance being selected for 

prediction tasks. The final model will predict whether inputs are normal or indicate an attack, 

with results displayed in the GUI. 

1.2  Aim and Importance 

The aim of this study is to develop a machine learning model capable of accurately detecting 

SSRF attacks and distinguishing malicious requests. 

This study makes a significant contribution by advancing the detection of Server-Side 

Request Forgery (SSRF) attacks through the application of an ensemble model combining 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) techniques, 

alongside a Random Forest model. By integrating deep learning techniques, this study 

enhances the accuracy and reliability of SSRF attack detection, surpassing the performance of 

traditional machine learning models. The performance of the machine learning models is also 

enhanced due to the feature selection method used in the study ensuring an effective attack 

detection model (Pasha and Mohamed, 2022). 

1.3  Research questions 

The study has the following research questions: 

1) What machine learning algorithms can be used to perfect the detection of Server-Side 

Request Forgery (SSRF)? 

 
 
4 https://www.computerweekly.com/news/252529519/SSRF-attacks-hit-100000-businesses-globally-since-
November 
5 https://salt.security/blog/api7-2023-server-side-request-forgery 
 
6 https://portswigger.net/web-security/ssrf 

https://www.computerweekly.com/news/252529519/SSRF-attacks-hit-100000-businesses-globally-since-November
https://www.computerweekly.com/news/252529519/SSRF-attacks-hit-100000-businesses-globally-since-November
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2) Is it possible to improve the model’s ability to detect SSRF anomalies using machine 

learning by utilizing SMOTE and Chi2 feature selection? 

1.4  Objectives  

The objectives of the study are: 

1. Pre-process the dataset by removing null rows and columns, duplicates, and 

unnecessary columns. 

2. Select relevant features using Chi-squared (Chi2) feature selection. 

3. Train the dataset using a RandomForestClassifier, CNN-LSTM models and evaluate its 

performance using various evaluation matrices. 

4. Select and save the model with higher performance for prediction tasks. 

5. Implement a GUI using Python's Tkinter to allow users to input data and view 

prediction results. 

1.5 Limitations  

A limitation of this study is its lack of live monitoring capabilities for attack detection. While 

the study successfully employs machine learning models and integrates them into a user-

friendly GUI for offline analysis and prediction, it does not address real-time monitoring of 

network traffic or domain activities. The current setup relies on user-input data and pre-existing 

datasets, which limits its applicability to real-time threat detection and response. Live 

monitoring is crucial for promptly identifying and mitigating attacks as they occur, and the 

absence of this feature reduces the system’s effectiveness in dynamic, real-world scenarios. 

Implementing real-time monitoring would require additional infrastructure and techniques, 

such as continuous data capture and analysis, to provide immediate feedback and alerts. 

Addressing this limitation could significantly enhance the system’s capability to detect and 

respond to threats in real-time, offering more protection against evolving cyber threats. 

Another limitation of this study is its focus solely on binary classification, which 

restricts the model to distinguishing between only two classes: attack and benign. This 

approach does not extend to classifying different types of attacks, which could be crucial for a 

more nuanced understanding and response to various threats. In a real-world scenario, 

differentiating between types of attacks such as SQL injection, cross-site scripting, or SSRF is 

essential for implementing targeted security measures and response strategies. The current 

binary classification model simplifies the problem but lacks the granularity needed for a 

comprehensive security assessment. Incorporating multi-class classification would allow for 

the identification and categorization of multiple attack types, enhancing the overall 

effectiveness of the system. 

1.6 Assumptions 

It is assumed that the feature selection enhances the performance of the machine learning model 

used for the detection of SSRF attacks. 

1.7  Report Structure 
The report has the following sections: 
 
Section 1 Outlines the reason behind developing a machine learning approach for detecting 
SSRF anomalies, including the aim and specific objectives.  
Section 2 Provides a review of current literature on the use of machine learning for identifying 
various attacks.  
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Section 3 Details the methodologies employed in creating the SSRF anomaly detection system 
using machine learning techniques.  
Section 4 Covers the design specifications for this study.  
Section 5 Discusses the implementation process of the developed system.  
Section 6 Presents the results achieved from the system and evaluates its effectiveness.  
Section 7 Concludes with a summary of the main methods used and proposes potential future 
enhancements. 
 

2 Literature Review 
 

A review of the different literature associated with detecting various attacks using machine 

learning is presented in this section. 

2.1  Cyber attack detection using Machine Learning 

A new web-based architecture for protecting web applications against CSRF attacks in a 

malicious environment was proposed in this study by (Srokosz, Rusinek and Ksiezopolski, 

2018). The data consists of the proceedings of a federated conference on computer science and 

information systems. The study also extends the classic, static WAF approach with behavioral 

and historical analysis, based on actions done by the user in the past. The results show that the 

proposed approach reduces the need for additional forms of authorization, increasing the 

responsiveness and general feel of the application. This study highlights the importance of 

incorporating behavioral analysis into security measures, which enhances its robustness and 

adaptability to different attack patterns. This study uses a WAF approach combined with 

behavioral and historical analysis, rather than utilizing machine learning techniques, which 

could potentially enhance the system's ability to adapt to new and evolving CSRF attack 

patterns. 

A framework called JAW that leverages hybrid property graphs (HPGs) to detect and 

analyze client-side Cross-Site Request Forgery (CSRF) vulnerabilities in JavaScript-based web 

applications was employed in this study by (Khodayari and Pellegrino, 2021). The data 

collected consisted of 4,836 web pages from 106 popular web applications, covering over 228 

million lines of JavaScript code. JAW also generated symbolic models for 31 commonly used 

JavaScript libraries to improve the efficiency of the analysis. The study used declarative graph 

traversals on the constructed HPGs to identify forgeable client-side requests. The results 

showed that JAW uncovered 12,701 forgeable client-side requests affecting 87 web 

applications, and successfully created client-side CSRF threats against 203 forgeable requests 

in 7 web applications. The study also identified 25 distinct request templates that highlight the 

fields that can be controlled and the type of manipulation. This study demonstrates the 

effectiveness of using declarative graph traversals and hybrid property graphs (HPGs) to detect 

and analyze client-side CSRF vulnerabilities in web applications based on JavaScript, 

uncovering thousands of forgeable requests and identifying manipulable request templates. The 

main limitation of the study is that the vulnerabilities found are bound by the properties 

associated with the soundness of the static analysis tools used for building the property graphs. 

CSRF attacks have been detected using machine learning methods in several other studies 

(Calzavara et al. (2019); Agrawal, (2023); Kumar (2022); Muddham and Srimathi, (2022)). 

Machine learning techniques are also effective in detecting XSRF and XSS attacks (Kshetri, et 

al. (2024); Rathore, Sharma and Park, (2017); Kaur, Garg and Bathla (2023); Kaur and Garg 

(2021)). 

Machine learning and artificial intelligence techniques were used to analyze cyber 

security datasets which was proposed in this study by (Yavanoglu and Aydos, 2017). The 

datasets used in the study include KDD Cup 1999, ECML-PKDD 2007, ISOT, HTTP CSIC 
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2010, CTU-13, and ADFA. Additionally, the study also discussed other datasets such as 

UNSW-NB15 and their characteristics. The study employed various machine learning 

algorithms such as Support Vector Machines, Naive Bayes, Decision Trees, and Genetic 

Algorithms, among others, to detect different types of cyber attacks like DDoS, botnets, and 

web application attacks. The results show that the proposed models achieved high detection 

rates, with one study reporting an accuracy of up to 98% on the normalized CAIDA dataset. 

This study highlights the effective use of various machine learning algorithms on multiple 

cybersecurity datasets to achieve high detection rates for different types of cyber attacks. 

However, the study acknowledges the limitations of the datasets, as they may not fully 

represent the characteristics of modern computer systems. 

Machine learning (ML) and deep learning (DL) algorithms were used to detect cyber-

attacks which was proposed in this study by (Dasgupta, Akhtar and Sen, 2020). The dataset 

used in the study consisted of various types of cyber-attacks, such as Denial of Service (DoS), 

probe, User-to-Root (U2R), and Remote-to-Local (R2L) attacks, along with normal network 

traffic. The study also employed feature extraction and selection techniques to improve the 

performance of the ML and DL models. The results showed that the proposed methods 

achieved high accuracy, with the best-performing model, a hybrid approach combining 

Artificial Neural Network (ANN) and Support Vector Machine (SVM), achieving an accuracy 

of 98.13% on the NSL-KDD dataset. However, the study acknowledged the limitations of the 

work, particularly in addressing zero-day attacks and the need for more comprehensive and 

representative datasets to ensure the generalization of the proposed techniques. 

The application of machine learning techniques in the field of cybersecurity, focusing 

on prediction and classification tasks was discussed in this study by (Torres, Comesaña and 

García-Nieto, 2019). The data used in the study included various types of cybersecurity threats, 

such as malware, phishing, and spam. In addition to the primary machine learning methods, 

the study also discussed other approaches, including clustering, self-organizing maps, and 

decision trees. The results showed that support vector machines (SVMs) and Naive Bayes 

classifiers performed well in detecting and classifying cybersecurity threats, with accuracy 

rates ranging from 80% to 95%. The study also highlighted that the choice of error criteria, 

such as false positive and false negative rates, is crucial in cybersecurity applications. However, 

the study acknowledged the limitations of the reviewed methods, particularly in terms of their 

ability to adapt to evolving threats and the need for continuous model updates. 

A methodology for enhancing cyber detectors based on the random forest algorithm 

against adversarial attacks was proposed in this study by (Apruzzese et al., 2019). The 

experimental evaluation is performed on a large public dataset of over 20 million network flows 

containing benign and malicious samples from different botnet families. The study also 

generates adversarial datasets by manipulating specific flow features to assess the robustness 

of the proposed detector. The results demonstrate that the distilled random forest detector 

outperforms the baseline undistilled model, achieving an average F1-score of 0.9777 and a 

detection rate up to 250% higher in adversarial settings. The study concludes that while the 

proposed approach represents a significant step towards more robust cyber defensive platforms, 

there is still room for further improvements to enhance the detection rates. The study's 

effectiveness in detecting adversarial attacks could potentially be limited by the absence of 

explicit feature selection techniques, which are crucial for optimizing model performance and 

robustness across diverse attack scenarios and datasets. 

A two-step approach of feature selection based on Random Forest, where the first step 

selects the features with higher variable importance score and the second step outputs the final 

feature subset for classification which was proposed in this study by (Hasan et al., 2016). The 

study used the KDD'99 intrusion detection dataset and derived a new dataset called RRE-KDD 

by eliminating redundant records from the original dataset. The study also used Random Forest 
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for model selection to optimize the number of random features, number of trees, and minimum 

node size. The experimental results show that the approach proposed in this study can select 

the most significant and relevant features, which reduces the time and number of input features, 

and enhances the classification accuracy. The test accuracy for Random Forest with 25 features 

is 91.90%, which is better than the accuracy of 91.41% with 41 features. The study's results 

may be influenced by the absence of comprehensive data preprocessing steps, such as handling 

missing values, normalization, or addressing class imbalance, which are essential for ensuring 

robust feature selection and optimal model performance across different datasets and scenarios. 

Feature selection techniques like Chi-Square have also been successfully used for selecting the 

best features in machine learning based intrusion detection (Thaseen, Kumar and Ahmad, 

(2018); Rustam and Ariantari (2018); Kocher and Kumar (2021)). 

Applying machine learning techniques, such as Bayesian networks, decision trees, 

clustering, and neural networks, to various cyber security problems was proposed in this study 

by (Das and Morris, 2021). The data used in the study included network packet data, NetFlow 

data, and a MODBUS dataset from a simulated gas pipeline, which contained 35 distinct 

attacks. Additionally, the study discussed other methods like inductive learning, Hidden 

Markov Models, Genetic Algorithms, and Genetic Programming, and their applications in 

cyber security. The results showed that the J48 decision tree algorithm performed the best 

among the evaluated methods, achieving an area under the ROC curve (AUC) of 0.995, 

precision of 0.992, and recall of 0.992 on the MODBUS dataset. The study offers a 

comprehensive evaluation of these methods' effectiveness in detecting and mitigating cyber 

threats. The inclusion of different datasets, including network packet data and a MODBUS 

dataset from a simulated gas pipeline with 35 distinct attacks, enhances the study's 

applicability. This study focuses on specific datasets like network packet data and NetFlow 

data may not directly translate to the unique characteristics and challenges posed by SSRF 

attacks, which often require specialized feature engineering and model adaptation to effectively 

detect and mitigate in web application environments. 

Various popular machine learning classification techniques such as Bayesian Network, 

Naive Bayes, Random Forest, Decision Tree, Random Tree, Decision Table, and Artificial 

Neural Network, to detect cyber intrusions was employed in this study by (Alqahtani et al., 

2020). The dataset used in the study was the KDD'99 cup dataset, which contains 4,898,431 

instances with 41 attributes and different categories of cyber-attacks. The study also discussed 

the data preprocessing steps, including attack class labeling and feature extraction. The results 

showed that the Random Forest classifier-based IDS model consistently performed better than 

other classifiers, with the highest accuracy, precision, recall, and F1-score. The study found 

that the Random Forest model achieved the best performance, indicating its effectiveness in 

detecting various cyber-attacks. However, while Random Forest performed exceptionally well 

in detecting various cyber-attacks on the KDD'99 cup dataset, its application effectiveness may 

vary when detecting specific types of attacks like SSRF, which require tailored feature 

selection and model tuning to capture the unique characteristics. 

A deep random forest model (FS-DPRF) that combines feature segmentation and a deep 

structure of parallelized random forest for network intrusion detection was proposed in this 

study by (Liu et al., 2020). The data used in the study includes four intrusion detection datasets: 

NSL-KDD, UNSW-NB15, CICIDS2017, and CICIDS2018. The study also introduces a cache 

replacement optimization for parallelization on the Spark environment. The results show that 

the proposed FS-DPRF model outperforms the parallel random forest (PRF) and DSSVM 

algorithms, achieving F1-measure scores of 0.9897 on NSL-KDD, 0.9737 on UNSW-NB15, 

0.9661 on CICIDS2017, and 0.9572 on CICIDS2018, which are higher than the deep neural 

network (A-DNN) method. The limitation of the study is that the model consumes a lot of 

memory, and the current structure is not suitable for GPU acceleration. 
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A systematic literature review (SLR) methodology was used to summarize the use of 

AI and ML methods, specifically the use of classifiers, in the detection of cyber security attacks 

which was employed in this study by (Ali et al., 2020). The data consisted of 63 research 

articles retrieved from the online libraries of ScienceDirect and Google Scholar, which were 

further filtered and refined to 21 articles. The study also applied inclusion and exclusion criteria 

to select the relevant studies. The meta-level analysis of the selected studies revealed that 

Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Artificial 

Neural Network (ANN) are the most frequently used classifiers in the area of cyber security 

attack detection. The study concluded that these classifiers have been extensively used in 

various application domains, such as smart grid ecosystems, mobile environments, and internet 

of things (IoT) devices, with promising results. However, the study was limited to the analysis 

of published research articles and did not include other forms of literature, such as gray 

literature or non-English papers. 

2.2  SSRF Attack detection using machine learning 

Machine learning algorithms such as Random Forest, KNN, SVM, Naive Bayes Classifier, 

Logistic Regression, and Decision Tree was used to analyze the probability of incidents in 

determining forgery vulnerabilities in server-side request attack exposure which was proposed 

in this study by (Aanandha et al., 2024). The dataset was obtained from the CISA standard of 

known exploited vulnerabilities with different attributes. The study also performed a 

vulnerability analysis to identify potential system weaknesses. The results show that the 

Random Forest, SVM, Naive Bayes Classifier, Logistic Regression, and Decision Tree models 

achieved an accuracy of 100%, while the KNN model achieved an accuracy of 96%. The study 

suggests that the Random Forest, SVM, Naive Bayes Classifier, Logistic Regression, and 

Decision Tree models are the best performers in predicting server-side request forgery 

vulnerabilities. This study demonstrates that machine learning models can effectively predict 

server-side request forgery vulnerabilities with high accuracy. One limitation of the study is 

that it does not address the potential overfitting of the machine learning models, especially 

given the perfect accuracy rates of 100% for several algorithms. Overfitting can occur when a 

model performs exceptionally well based on the data used for training but fails to generalize to 

new, unseen data.  

SSRFuzz a novel methodology to effectively identify SSRF vulnerabilities in PHP web 

applications, which consists of three phases: an SSRF oracle-based picker to identify sensitive 

sinks, dynamic taint inference to pinpoint feasible input points, and mutation-based fuzzing to 

generate testing payloads was presented in this study by (Wang et al., 2021). The study 

evaluated SSRFuzz on 27 real-world web applications, comprising 15.6 million SLOC and 

110.9K files. Additionally, the study compared SSRFuzz against existing tools, including 

BurpSuite and SSRFmap. The results show that SSRFuzz identified 28 vulnerabilities, 

including 25 previously unknown, and obtained 16 new CVE IDs.  This study highlights 

effective methodologies for identifying SSRF vulnerabilities, providing valuable insights and 

techniques that can inform and enhance the development of machine learning models for SSRF 

attack detection. One limitation of this study is the lack of feature selection, which could have 

potentially enhanced the precision and efficiency of the SSRFuzz methodology in identifying 

SSRF vulnerabilities. 

A novel defense approach to protect internal services from Server-Side Request Forgery 

(SSRF) attacks, which involves modifying incoming requests to redirect them to a helper server 

that fetches resources from the Internet was discussed in this study by (Jabiyev et al., 2021). 

The data for the study consisted of more than 60 HackerOne SSRF vulnerability reports from 

2014 to 2019, which were manually analyzed to understand the attack landscape. The study 

also developed a prototype by improving the functionality of a popular reverse proxy 
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application and deployed a set of web applications that are vulnerable to evaluate the 

effectiveness of the proposed approach. The results show that the solution can prevent all in-

band SSRF attacks, with only one application requiring minimal developer collaboration, and 

the performance impact on web applications is negligible. The study's limitation is that it cannot 

prevent out-of-band SSRF attacks, as the payload is not transferred between the attacker and 

the victim application. 

Long Short-Term Memory (LSTM), a deep learning technique, to build a model for 

detecting Server-Side Request Forgery (SSRF) attacks was implemented in this study by (Al-

talak et al., 2021). The dataset used in the study was obtained from the Canadian Institute for 

Cybersecurity of the University of New Brunswick, which covered various types of SSRF 

attacks. The data was preprocessed and transformed into a numerical form to facilitate the 

training process of the LSTM deep learning algorithm. Additionally, feature scaling was 

applied to normalize the range of independent variables. The LSTM model achieved an 

accuracy of 0.969, a precision of 0.975, a recall of 0.965, and an F1-score of 0.970, indicating 

the strength of the model in detecting SSRF attacks. This study demonstrates the effectiveness 

of using deep learning techniques, specifically LSTM, for detecting SSRF attacks, providing a 

strong benchmark and methodology that can guide the implementation and evaluation of your 

CNN-LSTM model for similar purposes. The study notes that the limitation is the need to 

explore other machine learning and deep learning models to compare their performance with 

the LSTM model. 

 

 

2.3  Summary 

A summary table is provided in Table (1).  

The table (1) shows research on Server-Side Request Forgery (SSRF) vulnerabilities 

reveals several critical areas for advancement. The demonstrated effectiveness of various 

machine learning models in predicting SSRF vulnerabilities have a notable lack of attention to 

the risk of overfitting, which can impact the generalizability of proposed models. They do not 

incorporate feature selection, which could improve precision and efficiency. The need for more 

comprehensive methods that integrate feature selection, data balancing and data scaling have 

advanced defense strategies, and diverse model evaluations to enhance the detection and 

prevention of SSRF vulnerabilities. 

 
Table (1): Literature survey based on Server-Side Request Forgery (SSRF) 

Author Proposed 

Methods. 

Dataset Used Result Limitation 

Aanandha 

et al., 

(2024) 

Random Forest, 

KNN, SVM, 

Naive Bayes 

Classifier, 

Logistic 

Regression, 

Decision Tree 

CISA standard 

of known 

exploited 

vulnerabilities 

Random Forest, 

SVM, Naive Bayes 

Classifier, Logistic 

Regression, and 

Decision Tree: 100% 

accuracy; KNN: 96% 

accuracy 

Potential 

overfitting of 

models due to 

perfect accuracy 

rates for several 

algorithms 

Wang et 

al., (2021) 

SSRFuzz (SSRF 

oracle-based 

picker, dynamic 

27 real-world 

web 

applications, 

Identified 28 

vulnerabilities, 25 

previously unknown, 

Lack of feature 

selection could 

have enhanced the 
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Author Proposed 

Methods. 

Dataset Used Result Limitation 

taint inference, 

mutation-based 

fuzzing) 

15.6 million 

SLOC, 110.9K 

files 

obtained 16 new 

CVE IDs 

precision and 

efficiency of 

SSRFuzz 

Jabiyev et 

al., (2021) 

Modification of 

incoming 

requests to 

redirect to a 

helper server 

More than 60 

HackerOne 

SSRF 

vulnerability 

reports (2014-

2019) 

Prevented all in-band 

SSRF attacks; 

minimal developer 

collaboration 

needed; negligible 

performance impact 

Cannot prevent 

out-of-band SSRF 

attacks as payload 

is not transferred 

between attacker 

and victim 

application 

Al-talak 

et al., 

(2021) 

Long Short-

Term Memory 

(LSTM) for 

detecting SSRF 

attacks 

Canadian 

Institute for 

Cybersecurity 

dataset 

Accuracy: 0.969, 

Precision: 0.975, 

Recall: 0.965, F1-

score: 0.970 

Needs exploration 

of other machine 

learning and deep 

learning models 

for performance 

comparison 

 

3 Research Methodology 
This research study introduces detecting Server-Side Request Forgery (SSRF) attacks using 

advanced machine learning techniques. SSRF is a critical security vulnerability that allows 

attackers to make unauthorized requests from the server, potentially compromising sensitive 

information. The study aims to develop a machine learning model to accurately identify and 

classify SSRF attacks, using a combination of RandomForestClassifier and CNN-LSTM 

architectures.  

Figure (2) is the block diagram that outlines the workflow of this study. The process 

begins with data acquisition from publicly available datasets, including benign, malicious 

datas. Each dataset is labeled appropriately to differentiate between benign and malicious 

instances. The study consolidates these datasets, ensuring consistent feature representation by 

aligning and standardizing columns across all data sources. Missing values are addressed, and 

categorical features are encoded using LabelEncoder to facilitate model training. To address 

class imbalance, the study employs Synthetic Minority Over-sampling Technique (SMOTE) to 

generate a balanced dataset. Feature selection is performed using Chi2 to identify the most 

relevant features, which are then scaled using StandardScaler to standardize the data for model 

training. This preprocessing step ensures that the input data is well-suited for machine learning 

algorithms.  
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Figure (2): The workflow of detecting SSRF by Using Machine Learning. 

Two distinct models are trained and evaluated: a RandomForestClassifier and a CNN-

LSTM network. The RandomForestClassifier is initialized and trained on the preprocessed 

data, with hyperparameters set for optimal performance. The model is evaluated based on 

classification metrics such as accuracy, F1-score providing insights into its effectiveness in 

detecting SSRF attacks. A CNN-LSTM model is constructed to capture spatial and temporal 

patterns in the data. The model architecture includes Conv1D layers for feature extraction, 

MaxPooling1D for down-sampling, and LSTM layers for capturing sequential dependencies. 

Dropout layers are used to prevent overfitting, and the model is trained with early stopping and 

checkpointing mechanisms to enhance performance.  

The CNN-LSTM model is evaluated similarly, with a focus on accuracy and 

classification report metrics. The study also uses Python Tkinter GUI to enable user interaction 

with the trained models. The GUI allows users to input data and receive real-time predictions 

on whether the data indicates normal behavior or an attack. The trained models and necessary 

preprocessing components, such as scalars and label encoders, are saved for future use. This 

research provides a practical solution for detecting SSRF attacks using machine learning, 

offering insights into model performance and potential improvements. The combination of 

RandomForestClassifier and CNN-LSTM demonstrates the effectiveness of integrating 

traditional and deep learning techniques in addressing complex security challenges. 

3.1  Dataset 

In this study, the CIC-Bell-DNS 2021 dataset7 is employed to develop and evaluate machine 

learning models for detecting and preventing Server-Side Request Forgery (SSRF) attacks 

(CIC-Bell-DNS 2021 | Datasets | Research | Canadian Institute for Cybersecurity | UNB, 

2021). This dataset was developed by the Canadian Institute for Cybersecurity in collaboration 

with Bell Canada, offers a comprehensive collection of DNS (Domain Name System) traffic 

data designed to support network security research and anomaly detection. This dataset 

includes both legitimate and malicious DNS traffic, providing a broad spectrum of scenarios 

from typical network operations to simulated attack patterns. The dataset is used to train and 

test models such as RandomForestClassifier and CNN-LSTM by providing a rich mix of DNS 

traffic data, which includes both benign and malicious examples. This diverse dataset aids in 

feature extraction and selection, helping to identify critical indicators of SSRF attacks. 

Additionally, it addresses class imbalance issues through techniques like SMOTE, ensuring a 

balanced representation of different traffic types. By evaluating the models using this realistic 

 
 
7 https://www.unb.ca/cic/datasets/dns-2021.html  

https://www.unb.ca/cic/datasets/dns-2021.html
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dataset, the study ensures that the detection mechanisms are effective and applicable to real-

world scenarios. Ultimately, the CIC-Bell-DNS 2021 dataset is crucial for building robust and 

practical solutions for SSRF attack detection. 

3.2  Data preprocessing 

Data preprocessing involves the systematic cleaning, transforming, and organizing of raw data 

to make it suitable for analysis and model training (Hussein et al., 2019). This step typically 

includes handling values that are missing, normalizing or scaling data, encoding categorical 

variables, and addressing class imbalances to ensure the data is accurate and in a format that 

enhances the performance of machine learning models. In this study, data preprocessing is used 

to prepare the CIC-Bell-DNS 2021 dataset for training machine learning models aimed at 

detecting Server-Side Request Forgery (SSRF) attacks. The preprocessing steps involve 

several critical tasks: first, handling missing values by filling them with zeros to avoid 

disruptions during model training. Next, categorical variables are encoded using LabelEncoder 

to convert them into numerical formats suitable for machine learning algorithms. The 

preprocessing steps are essential for enhancing the quality of the dataset, ensuring that the 

models are trained on clean, well-structured data, and improving the overall effectiveness of 

SSRF detection and prevention mechanisms. 

 

3.3  Data Balancing 

Data balancing refers to the process of adjusting the distribution of classes within a dataset to 

ensure that each class is equally represented (Almomani et al., 2021). This is crucial in machine 

learning to prevent models from being biased towards the majority class, which can lead to 

poor performance in the minority class. In this study, data balancing is employed to address 

the class imbalance present in the CIC-Bell-DNS 2021 dataset, which can negatively impact 

the performance of machine learning models for detecting Server-Side Request Forgery 

(SSRF) attacks. The imbalance is corrected using Synthetic Minority Over-sampling 

Technique (SMOTE), a method that generates synthetic samples for the underrepresented class, 

thereby equalizing the number of instances in each class. Implemented through the `SMOTE` 

class from the imbalanced-learn library, this technique effectively enhances the dataset by 

creating new, plausible examples of the minority class. This balancing process is crucial for 

training models like RandomForestClassifier and CNN-LSTM, as it ensures that the models 

are exposed to a balanced distribution of both benign and attack data. Consequently, the models 

are less likely to be biased towards predicting the majority class and can more effectively learn 

to identify and differentiate between SSRF attacks and normal traffic. By employing SMOTE, 

the study improves the reliability and accuracy of the models in detecting SSRF attacks, leading 

to more robust and fair evaluation of their performance. 

3.4  Feature selection 

Feature selection is a process used to identify and retain the most relevant attributes or variables 

from a dataset, which significantly impacts the performance of machine learning models (Li et 

al., 2017). By eliminating unwanted or redundant features, feature selection improves model 

efficiency, reduces overfitting, and enhances overall accuracy. In this study, feature selection 

is utilized to refine the CIC-Bell-DNS 2021 dataset, focusing on identifying the most pertinent 

features for detecting Server-Side Request Forgery (SSRF) attacks. The process involves using 

the Chi2 statistical test to evaluate the relationship between each feature and the target variable, 

selecting those that exhibit the strongest associations. This ensures that only the most 

informative features are retained for model training. Implemented through the `SelectKBest` 
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method, feature selection reduces the dimensionality of the data, which helps to streamline the 

machine learning models by eliminating noise and irrelevant information. By concentrating on 

the top-ranked features, the study enhances the models' ability to identify SSRF attacks with 

greater precision. The reduced feature set also accelerates the training process and mitigates 

the risk of overfitting. This strategic selection of features is crucial for building effective 

models that can accurately detect SSRF attacks while maintaining computational efficiency. 

3.5 Feature scaling 

Feature scaling is a technique used to normalize the range of independent variables or features 

in a dataset to ensure that they contribute equally to the model's learning process (Wan, 2019). 

This process adjusts the scale of features so that they have similar ranges, which prevents 

features with larger ranges from disproportionately influencing the model's performance. In 

this study, feature scaling is used to standardize the CIC-Bell-DNS 2021 dataset, preparing it 

for effective machine learning model training. The scaling process involves transforming the 

features so that they have a mean of zero and a standard deviation of one, which is achieved 

using the StandardScaler from the scikit-learn library. This is implemented by fitting the scalar 

to the data and then applying it to both the training and testing datasets to ensure consistency. 

Standardization is particularly important in this study as it allows algorithms like 

RandomForestClassifier and CNN-LSTM to process features on a comparable scale, thus 

improving their convergence during training and ensuring fair weight distribution among 

features. By scaling the data, the study mitigates potential issues related to feature magnitude 

differences, such as skewed model performance and slower training times. This preprocessing 

step enhances the overall effectiveness of the models by ensuring that each feature is treated 

equitably, leading to more accurate detection of Server-Side Request Forgery (SSRF) attacks 

and better model performance across different types of network traffic. 

3.6  Training 

Machine learning model training involves using algorithms to learn patterns from a dataset by 

adjusting the model's parameters to minimize prediction errors. This iterative process involves 

feeding the algorithm a labeled dataset, allowing it to adjust and optimize its internal 

parameters based on the differences between predicted and actual outcomes. In this study, 

machine learning model training is employed to develop and refine models for detecting 

Server-Side Request Forgery (SSRF) attacks using the CIC-Bell-DNS 2021 dataset. The 

training process involves two key models: RandomForestClassifier and CNN-LSTM. For the 

RandomForestClassifier, the model is trained using a subset of the preprocessed dataset, where 

it learns to distinguish between benign and malicious DNS traffic based on various features. 

This training is conducted with hyperparameters tuned to optimize performance, and the 

model’s effectiveness is evaluated using metrics like accuracy and F1-score. The CNN-LSTM 

model, on the other hand, leverages convolutional and recurrent layers to capture temporal 

patterns in DNS traffic data. The model is trained using sequences of data with the aim of 

learning complex patterns that indicate SSRF attacks. Training involves specifying the model 

architecture, compiling it with appropriate loss functions and optimizers, and fitting it to the 

data using techniques like early stopping and model checkpointing to avoid overfitting. By 

employing these training techniques, the study develops robust models capable of accurately 

detecting SSRF attacks, thereby improving network security and threat detection capabilities. 

 

4 Design Specification 
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4.1 Chi2 

Chi2 (Chi-square) is a statistical test used in machine learning for feature selection (Rupapara 

et al., 2023). It evaluates the relationship between categorical variables by comparing the 

observed frequencies with expected frequencies. Chi2 determines the importance of each 

feature's association with the target variable, aiding in the identification of the most pertinent 

features for the model. 

4.2 SMOTE 

Synthetic Minority Over-sampling Technique (SMOTE) is an approach designed to tackle 

class imbalance in machine learning datasets (Dablain, Krawczyk and Chawla, 2023). It 

generates synthetic samples for the minority class by creating new instances that are similar, 

but not identical, to the original minority class examples. This method enhances the class 

distribution balance by augmenting the dataset with these new synthetic samples. By doing so, 

SMOTE improves the performance of models trained on imbalanced datasets by offering a 

more representative set of examples for the underrepresented class. 

4.3 CNN-LSTM 

The CNN-LSTM model combines Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks to use both spatial and temporal patterns in sequential data 

(Lu et al., 2020). CNNs are used for feature extraction from spatial data, such as images or 

sequences, by applying convolutional layers to capture hierarchical features and patterns. This 

is particularly effective for identifying local structures and reducing dimensionality. LSTMs, a 

type of Recurrent Neural Network (RNN), are then employed to analyze these features over 

time or sequence. LSTMs are designed to capture long-term dependencies and temporal 

relationships by using memory cells that can retain information across many time steps, making 

them well-suited for sequential or time-series data. In a CNN-LSTM model, the CNN layers 

first process the input data to extract relevant features. These features are then fed into LSTM 

layers, which learn the temporal dependencies and sequential patterns in the data. This 

combination enables the model to effectively capture both spatial and temporal information, 

making it powerful for tasks involving sequences with complex patterns. 

4.4 Randomforest 

Random Forest is an ensemble learning method used for classification and regression tasks 

(Paul et al., 2018). It operates by constructing a multitude of decision trees during training and 

outputs the mode of the classes (classification) or mean prediction (regression) of the individual 

trees. Each decision tree in the Random Forest is trained on a random subset of the data, and 

each split within the tree is made based on a random subset of features. This approach helps in 

reducing overfitting and increases the model's generalization capability. The main advantages 

of Random Forest include its robustness to overfitting, ability to handle large datasets with 

numerous features, and effectiveness in estimating feature importance. It is particularly useful 

in scenarios where there are complex interactions and non-linear relationships between 

features. By aggregating the results of multiple decision trees, Random Forest provides a more 

stable and accurate prediction compared to a single decision tree, making it a popular choice 

for a wide range of machine learning tasks. 

 

5 Implementation 
This study develops machine learning models to detect Server-Side Request Forgery (SSRF) 

attacks using the CIC-Bell-DNS 2021 dataset. It involved preprocessing the dataset to handle 

missing values and normalize feature scales. Data balancing was performed using SMOTE to 
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address class imbalances, ensuring fair model training. Feature selection with Chi2 helped 

identify the most relevant features, while feature scaling standardized data for consistent model 

performance. Two machine learning models were trained: RandomForestClassifier, which 

learns from multiple decision trees to improve accuracy, and a CNN-LSTM model that 

combines convolutional layers for feature extraction with LSTM layers to capture temporal 

dependencies. The study aimed to enhance the detection of SSRF attacks by employing these 

techniques to build robust models that can accurately differentiate between benign and 

malicious network traffic. 

In this study, the integration of machine learning predictions into a user-friendly 

graphical user interface (GUI) was central to detecting SSRF (Server-Side Request Forgery) 

attacks. The GUI, developed using Tkinter, facilitates interaction with the CNN-LSTM model 

by providing a straightforward platform for users to input data and receive predictions. The 

core functionality was encapsulated in the `predict()` function, which played a crucial role in 

the prediction process. When the `predict()` function was triggered, it first loaded the pre-

trained CNN-LSTM model along with necessary preprocessing tools, including a scaler and a 

label encoder, which was essential for ensuring the model's predictions were accurate and 

relevant. The function then retrieves user input from the GUI, processes this input by 

converting it into a numerical format compatible with the model, and reshapes it to fit the 

model's input requirements. This step was crucial as the model expects data in a specific shape 

for accurate prediction. Once the data was properly formatted, the function used the CNN-

LSTM model to make predictions regarding the potential presence of SSRF attacks. The 

results, which indicate the likelihood of an attack, were displayed to the user through the GUI. 

If the model detects an SSRF attack, the system further enhances security by sending an email 

alert. This email functionality was integrated into the GUI through the ̀ send_email()` function, 

which configured email settings, composes the message, and sends notifications about detected 

threats. The GUI itself was divided into two main tabs: "Home" and "Check." The "Home" tab 

serves as an introductory page with a brief description of the tool and a button for navigating 

to the "Check" tab. In the "Check" tab, users can input data into a designated entry field, view 

a log of activity in a text box, and initiate the prediction process using a button. The text box 

logs each stage of the prediction process, providing users with detailed feedback from model 

loading to prediction results and email notifications. 

 

6 Result and Evaluation 

6.1  Result 

The classification report for a RandomForestClassifier model shows its performance metrics. 

Precision measures the accuracy of positive predictions, with class '0' achieving a precision of 

0.97 and class '1' attaining a perfect precision of 1.00. Recall evaluates the model's ability to 

identify all relevant cases, with class '0' having a recall of 1.00 and class '1' having a recall of 

0.97. The F1-Score, which is the harmonic mean of precision and recall, is 0.98 for both classes, 

indicating a balanced performance. Support reflects the number of actual occurrences in the 

dataset, with 78,838 instances for class '0' and 79,267 instances for class '1'. The model's overall 

accuracy stands at 0.9841, meaning it correctly predicted 98.41% of the instances. 

Additionally, the ROC AUC Score of 0.9966 signifies excellent capability in distinguishing 

between classes.  

The classification report for the CNN-LSTM model highlights its performance metrics. 

Precision quantifies the accuracy of positive predictions, with both classes '0' and '1' achieving 

a precision of 1.00, indicating perfect accuracy in positive predictions. Recall assesses the 

model's ability to identify all relevant cases, with a recall of 1.00 for both classes, signifying 
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that the model successfully detected all relevant instances. The F1-Score, representing the 

harmonic mean of precision and recall, is 1.00 for both classes, reflecting an ideal balance 

between these metrics. Support reveals the number of actual instances per class, with class '0' 

having 78,838 instances and class '1' having 79,267 instances. The Accuracy of the model 

stands at 0.9965, indicating that the model accurately predicted the class for 99.65% of 

instances. Additionally, the Macro Avg and Weighted Avg rows, which average the 

performance metrics across all classes, both show values of 1.00 for precision, recall, and F1-

score, demonstrating consistent performance across the different classes. The model has been 

saved as 'random_forest_model.pkl'. For any further questions or additional clarification on 

these metrics, please feel free to inquire. 

 

 
Figure (3): Selected features 

Figure (3) outlines a list of features associated with internet domains, which are used 

for machine learning purposes. The State feature indicates the current status of the domain, 

such as whether it is active or inactive.  typos represent the count of typographical errors present 

in the domain name, which can be useful for detecting potential phishing or fraud.  3gram  

refers to trigrams, which are sequences of three consecutive characters from the domain name, 

used for text analysis and pattern recognition.  2_3x  might represent a combined measure of 

bigrams and trigrams, offering a more detailed text analysis.  char_distribution shows the 

frequency distribution of different characters in the domain name, which can help in identifying 

unusual patterns. The Registrar feature identifies the entity responsible for registering the 

domain.  Domain denotes the actual name of the domain.  TTL (Time to Live) is a DNS setting 

that specifies how long a domain's record is cached before being refreshed. The oc_8 feature 

could represent a specific dataset-related metric, possibly indicating occurrence counts or other 

relevant statistics.  subdomain details the part of the URL that precedes the main domain, 

potentially indicating sub-categories or sections of the domain.  2gram denotes bigrams, or 

pairs of two consecutive characters, used similarly to trigrams for text analysis. The IP feature 

lists the IP address associated with the domain, which can be useful for network analysis and 

tracking.  ASN1 (Autonomous System Number 1) is used to identify the network to which the 

domain belongs.  Email(s) lists any email addresses associated with the domain, which can be 

useful for identifying domain owners or potential spam. Puny_code is the encoded 

representation of internationalized domain names, allowing non-ASCII characters to be used 

in domain names.  Country specifies the country where the domain is registered, which can be 

useful for geographical analysis. Lastly, numeric_percentage indicates the percentage of 

numeric characters within the domain name, which can help in assessing the domain's 

complexity or potential for obfuscation. Registrant Nameidentifies the individual or 

organization who registered the domain. 

GUI was built as a desktop application. The interface in which detection of SSRF 

attacks takes place contains a title and two main tabs: "Home" and "Check"(Figure (4)). At the 

top of the interface is the title, "SSRF Attack Detector," which clearly identifies the purpose of 

the tool. The "Home" tab features a prominent label with the same title and includes a "Check" 

button that allows users to navigate to the "Check" tab. In the "Check" tab, users are presented 

with two main sections. The "Features" section includes a label indicating its purpose and an 

entry box where users can input features, such as numerical values ("307589315, -

19995573906193613"). This section also contains a "Predict" button that initiates the 
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prediction process. The "Activity Log" section, on the other hand, provides real-time feedback 

on the system's operations. It features a label and a text box that displays various status 

messages related to the preprocessing steps and prediction process. For instance, messages such 

as "Loading the model...", "Model loaded successfully.", "Loading the scaler...", and "Scaler 

loaded successfully." are shown, culminating in a final message like "Predicted attack: 

['benign']." Additionally, the interface includes a message box that displays the prediction 

result, which in this case is "Predicted attack: ['benign']." The message box also contains an 

"OK" button to close the alert. This setup allows users to input their data, observe the real-time 

processing and results, and understand the predicted outcomes clearly. The design ensures that 

users can interact effectively with the machine learning model and obtain timely feedback on 

potential SSRF attacks. 

 

 
Figure (4): Predicted as attack 

The "SSRF Attack Detector" application interface is designed for ease of use and 

functionality. At the top of the interface, the title "SSRF Attack Detector" clearly identifies the 

application's purpose. The interface is organized into two main tabs: "Home" and "Check." The 

"Home" tab prominently features a label with the application's title and includes a "Check" 

button that allows users to navigate to the "Check" tab. In the "Check" tab, users interact with 

two main sections. The "Features" section comprises a label and an entry box where users can 

input feature values, such as "2562634767, 0.6744842667980225." There is also a "Predict" 

button that initiates the prediction process. The "Activity Log" section, meanwhile, provides 

real-time feedback through a text box. This section logs various messages related to the 

processing steps, including "Loading the model...", "Model loaded successfully.", "Loading the 

scaler...", and "Scaler loaded successfully.", leading up to the final prediction result, such as 

"Predicted attack: ['Attack']." A message box further enhances the user experience by 

displaying the final prediction result, such as "Predicted attack: ['Attack']" as shown in the 

figure (4) and includes an "OK" button to close the message box. The functionality of the 

interface allows users to input feature values, trigger the prediction model, and view the results 

and preprocessing steps dynamically. If the model detects an attack, the system can also send 

an email alert, ensuring timely notifications of potential threats. This design effectively 

facilitates user interaction with the machine learning model and provides clear, real-time 

feedback on predictions. 

 

The research questions of the study were answered, and these are: 
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What machine learning algorithms can be used to perfect the detection of Server-Side Request 

Forgery (SSRF)? 

To enhance the detection of Server-Side Request Forgery (SSRF), various machine 

learning algorithms can be employed. The study demonstrates the effectiveness of integrating 

Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks, 

achieving a high accuracy of 99.65% in SSRF detection. This approach uses CNNs for feature 

extraction and LSTMs for sequential pattern recognition, making it adept at identifying 

complex attack patterns. Additional methods like RandomForest, which achieved an accuracy 

of 98.41% in the study, can be beneficial due to their robustness and ability to handle diverse 

data features. 

 

Is it possible to improve the model’s ability to detect SSRF anomalies using machine learning 

by utilizing SMOTE and Chi2 feature selection? 

Improving the model’s ability to detect SSRF anomalies using machine learning can be 

achieved through techniques like SMOTE and Chi2 feature selection. In the study, SMOTE 

(Synthetic Minority Over-sampling Technique) was employed to address class imbalances by 

generating synthetic samples, which enhanced the model’s ability to detect rare SSRF attacks 

effectively. This balancing approach ensures that the model is trained on a more representative 

dataset, reducing bias toward the majority class. Additionally, Chi2 feature selection was 

utilized to identify the most relevant features, thereby improving the model's performance by 

focusing on the most significant variables and reducing dimensionality. By eliminating 

irrelevant or less important features, Chi2 helps in building a more efficient and accurate 

model. The combined use of SMOTE and Chi2 not only aids in managing imbalanced data but 

also enhances feature relevance, leading to a more robust detection system for SSRF anomalies. 

6.2  Evaluation 

The study provides a comprehensive analysis of domain-related features, incorporating 

machine learning models to enhance domain classification and detection. The dataset includes 

critical features such as typographical errors, character distributions, and DNS attributes, which 

are instrumental in evaluating domain legitimacy and potential threats. The use of advanced 

models like CNN-LSTM and RandomForestClassifier demonstrates a robust approach to 

handling complex data, yielding high precision, recall, and accuracy. The integration of these 

models into a user-friendly GUI with real-time prediction and email alert functionalities adds 

practical value, facilitating effective monitoring and response to potential attacks.  

 

7 Conclusion and Future Enhancement 
This study introduces a machine learning-based approach to detecting Server-Side Request 

Forgery (SSRF) attacks using a convolutional neural network (CNN) and long short-term 

memory (LSTM) model. This approach demonstrates superior performance compared to 

Random Forest model, offering enhanced accuracy and effectiveness in identifying SSRF 

anomalies. The implementation integrates a user-friendly graphical user interface (GUI) that 

facilitates real-time data input and prediction. The study demonstrates the effectiveness of the 

CNN-LSTM model in identifying potential SSRF attacks with high precision and recall, 

achieving robust performance metrics. The GUI enhances user interaction by providing clear 

feedback and detailed logs of the prediction process, while also enabling email notifications 

for detected attacks. However, the study has notable limitations, including the absence of live 

monitoring capabilities and the restriction to binary classification, which excludes the 

differentiation of various attack types. Future work should address these limitations by 
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incorporating real-time monitoring and expanding the model to classify different attack 

categories, thus offering a more comprehensive security solution.  

Future enhancements to this study could focus on several key areas to improve the 

SSRF attack detection system. Integrating live monitoring capabilities into the SSRF attack 

detection system represents a significant enhancement that would substantially improve its 

effectiveness and responsiveness. By implementing real-time monitoring, the system could 

continuously analyze network traffic and other relevant data streams to detect and respond to 

SSRF attacks as they occur. This dynamic approach would enable the system to identify 

potential threats immediately, rather than relying on periodic checks or batch processing.  

Incorporating advanced techniques such as ensemble methods or hybrid models 

presents a promising avenue for future work to enhance the detection accuracy of SSRF attacks 

and minimize false positives. Ensemble methods, which combine multiple models to make a 

final prediction, can utilize the strengths of different algorithms and improve overall 

performance by aggregating their outputs. Hybrid models, which integrate various types of 

machine learning approaches, such as combining CNNs with GRUs or transformers, can 

capture both spatial and sequential features more effectively. 
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