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Deep Learning-based Android Malware Detection 

with CNN-GRU Model  
 

Harisankar Kalathil Salim  

x23151552 
Abstract 

Android malware presents substantial security hazards to mobile users worldwide, 
jeopardizing personal, financial, and device data. Given the exponential increase in these 

dangers, it is imperative to implement effective detection systems to safeguard 

consumers and preserve the integrity of the smartphone ecosystem. Conventional 
approaches frequently lack strong security measures because of the ever-changing 

characteristics of malicious software. Therefore, advanced techniques based on deep 

learning have emerged as promising approaches to enhance detection accuracy and 

efficiency, this study developed a sophisticated hybrid detection model using 
Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to classify 

Android applications as either benign or malicious, thereby contributing to the ongoing 

effort against mobile malware threats. The research involved preprocessing the dataset in 
four distinct ways, including SMOTE and Chi-square to address imbalance and optimize 

feature selection. The result demonstrated that the developed CNN-GRU model achieved 

superior performance with the highest accuracy of 99% accuracy surpassing several 
existing models 

           Keywords: CNN-GRU Model, SMOTE, Chi-square 

1 Introduction 
The installation of malicious applications can cause major problems for people who use 

Android smartphones, the applications that are installed can be used to gather data for 

targeting advertising, commit fraud, secretly collect personal information about the user, 

retrieve data, such as capturing passwords, harmful activities and enabling malicious 

activities (e.g.: - turning a device into parts of botnets) (Tully and Mohanraj,2017). 

Android maintains a dominant position in the global smartphone market with a 70.5% share. 

Among Android devices, Samsung leads with a market share of 35.30% followed by Xiaomi 

at 14.70%, Oppo at 10.00%, vivo at 9.50%, Huawei at 6.30%, RealMe at 4.00%, Motorola at 

3.30% and others collectively holding 16.90% 1 

By the end of 2025, there will be 3.9 billion Active users spread across 190 countries. This 

shows the domination of Android in the Global market2, global mobile spending is projected 

to exceed $270 billion. Notably, 32% of users aged 11-20 regularly use mobile apps daily, 

and 45% have numerous applications. For the 31-40 age group, 17% use mobile applications 

daily, with 38% having a reasonable application. In the 41-50 age range, 16% use 

applications daily, with 24% having a limited number of applications. Among those aged 51-

60, 8% use applications regularly with 22% having a smaller selection of applications 3 

                                                             
 
1 https://www.enterpriseappstoday.com/stats/android-phones-statistics.html 
 
2 https://www.bankmycell.com/blog/how-many-android-users-are-there 
 
3 https://www.enterpriseappstoday.com/stats/mobile-app-industry-statistics.html 
 

https://www.enterpriseappstoday.com/stats/android-phones-statistics.html
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.enterpriseappstoday.com/stats/mobile-app-industry-statistics.html
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The global mobile application market is valued at USD 206.73 billion in 2022, and is 

predicted to grow at a compound Annual Growth Rate (CAGR) of 8.83% from 2022 to 2027 

by the end of 2027 revenue generated by the mobile application industry will be US$673.80. 

billion. Key growth factors include China and India. Additionally, the evolution of the online 

retail sector and rising mobile gaming popularity play a significant to this growth. The 

COVID-19 pandemic also increased the downloads of games, social media, and 

entertainment applications4   

Google Play Store remains the leading app store, over 113 billion apps and games were 

downloaded from Google Play store in 2023. Currently, around 2.61 billion apps and games 

are available in Google Play store5. Other major app stores include Xiaomi Apps Store, 

Galaxy Store, Vivo Appstore, RealMe Store, Huawei AppGallery, Amazon App Store, and 

Tencent App Store. Where Huawei AppGallery had over 580 million users by the end of 

20226 . While the Amazon App Store had 528,164 apps 80.81% of apps are free and 19.19% 

are paid apps7. Tencent App Store has 64,194 apps, all of which are free apps for use. 8 

Xiaomi's App has 200 billion downloads all around the world and 564 million Global 

monthly active users9. Samsung’s Phone is available in over 180 countries, having hundreds 

of millions of active Galaxy Device users who download billions of apps from the Galaxy 

store.10  

In the Chinese market Appstore Market, Huawei AppGallery having the largest share of 

22.03% market share with 284.35 million monthly active users (MAU) and 37.82 million 

daily active users (DAU). Tencent Appstore comes next with a 13.72% share having 177.07 

million MAU and 40.60 million DAU. Oppo Software store has a monthly active users 

around 162,281,900 and daily active user count of 44,236,300 giving it a market share of 

12.58%. ,The Xiaomi Market on other hand maintains a market share of 12.14% having 

156,671,100 MAU and 56,278,100 DAU. The Vivo App Store holds a market share of 

10.27% with 132,491,900 MAU and 24,765,900 DAU.The Samsung App Store holds a 

A market share of 4.89%  with a Monthly active user (MAU) count of 63,09,100 and 

5,562,00 Daily active users respectively, following closely is the 360 Mobile Assistant with a 

market share of  4.13% and a Monthly active user (MAU) count of 53,264,800 and 9,89,200 

Daily active users (DAU), following up  Baidu Mobile Assistant having 3.64% share hold 

with 47,406,300 Monthly active users (DAU) and 3,827,600 Daily Active Users (DAU) 

lastly  Lenovo Le Store with  a share of 0.44%  with 5,723,700 Monthly Active Users (MAU) 

and 355,400 Daily Active Users (DAU)11 

Given the widespread usage and market penetration of Android devices and Android apps, 

addressing Android malware threats is crucial for ensuring user security and maintaining 

                                                             
 
4 https://www.enterpriseappstoday.com/stats/mobile-application-revenue-statistics.html 
 
5 https://www.businessofapps.com/data/google-play-statistics/ 
 
6 https://www.enterpriseappstoday.com/stats/huawei-statistics.html 
 
7 https://42matters.com/amazon-appstore-statistics-and-trends 
 
8 https://42matters.com/tencent-appstore-statistics-and-trends 
 
9 https://global.developer.mi.com/document?doc=quickStart.aboutGetApps 
 
10 https://developer.samsung.com/galaxy-store/discover-galaxy-store.html 
 
11 https://appinchina.co/market/app-stores/ 

https://www.enterpriseappstoday.com/stats/mobile-application-revenue-statistics.html
https://www.businessofapps.com/data/google-play-statistics/
https://www.enterpriseappstoday.com/stats/huawei-statistics.html
https://42matters.com/amazon-appstore-statistics-and-trends
https://42matters.com/tencent-appstore-statistics-and-trends
https://global.developer.mi.com/document?doc=quickStart.aboutGetApps
https://developer.samsung.com/galaxy-store/discover-galaxy-store.html
https://appinchina.co/market/app-stores/
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trust. With such a vast user base and expensive app ecosystem, robust measures to combat 

malware are essential for protecting personal data, ensuring safe app downloads, and 

sustaining the overall health of the Android Platform Globally. 

 

Research Question 1. Does the performance of the CNN-GRU model built in the study with 

the Drebin dataset surpass that of other existing deep learning studies using the same Derbin 

dataset in terms of accuracy? 

Research Question2. Can employing SMOTE and Chi2 feature selection enhance the 

model's performance in detecting Android malware? 

Research Question3. Does cross-k validation technique normal training making any 

significant impact on the performance of models? 

 

Section 1 of the report comes first; Section 2 reviews the literature with reference to 

traditional approaches, hybrid models, and algorithms under discussion. Section 3 includes 

the specifics of the approach used for developing the Android malware detection model 

suggested in this work. The information related to the design criteria of the system suggested 

for the research is found in Section 4 of the report. Section 5 comprises the specifics related 

to the application of the Android malware detection technique. Section 6 covers the specifics 

related to the outcomes of the research and the evaluation of the performance of the model 

developed in this work. Section 7 offers the study's findings as well as potential 

improvements the work can get. 

 

2 Related Work 
The review of the different literature associated with the detection of Android malware using 

machine learning and deep learning methods are presented in this section 

 

2.1 Traditional Android Malware Detection Methods 

Growing concerns about dangerous software on Android systems have spurred a lot of study 

on malware detection techniques. (Pardhi, Jitendra Kumar Rout and Niranjan Kumar Ray, 

2021) Use static code analysis in a signature-based method to find known malware. Their 

solution tells users of possible security threats by classifying applications according to the 

permissions they want. Including safe browsing and app lockdown, it demonstrates efficiency 

with low system resource needs. It depends on a thorough and constantly updated malware 

signature database, though, which might be a drawback when new malware types develop. 

After that, (Alam et al., 2017) introduce DroidNative, a fresh method aiming at native code to 

fill in voids left by tools mostly analysing Java bytecode. With a 93.57% detection rate and 

strong resistance to obfuscations, DroidNative uses intermediate language MAIL to detect 

malware efficiently using signature generating methods. The complexity and diversity of 

native code as well as very high computing needs for real-time detection could restrict the 

method even with its great speed.Using feature extraction and classification approaches, 

(Apvrille and Apvrille, 2015) presented the SherlockDroid framework shifts emphasis to 

spotting unidentified malware. SherlockDroid improves detection accuracy by combining 

several algorithms and marketplace crawlers, therefore focussing on fresh dangers. 

Comprehensive testing confirms its effectiveness, however depending on proper feature 

extraction and the possibility of false positives still present difficulties. 

Finally, (Liang et al., 2022) presents a structured approach to behavior-based detection by 

means of a formal method using process algebra to describe and evaluate Android application 

behaviours. Extending the π-calculus theory, this approach provides theoretical foundation 

for precisely characterising app behaviour, hence increasing detection accuracy. Still, it might 
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be challenging to precisely replicate behaviours and guarantee minimal false positive rates. 

Although conventional approaches show different degrees of success in malware detection, 

they can have restrictions including a reliance on updated signature databases, computational 

complexity, and difficulties in modeling app behaviour.   

 

2.2 Existing Machine Learning and Deep Learning Models in Malware 

Detection 

Existing Android malware detection methods are now applied using ML and DL, therefore 

displaying a high degree of accuracy, strength, and relevance. (Kouliaridis and Kambourakis, 

2021).   examined conventional ML models and discovered Naive Bayes (NB) with 99.8% 

detection accuracy to be the best (Gupta et al., 2020). On the Malgenome dataset, Random 

Forests (RF) performed best with a TPR of 0.99 and an FPR of 0.014, however their 

shortcomings in dynamic behaviour identification were recognised. While (Feng et al., 2021) 

created MobiTive, a real-time DL-based malware detection system with 96.75% accuracy, 

subject to adversarial assaults, (Almarshad et al., 2023) employed a Siamese neural network 

with one-shot learning and achieved 98.9% accuracy. (Alkahtani and Aldhyani 2022) 

investigated several ML and DL models; SVM scored 100% on the CICAnd Mal2017 dataset 

while LSTM scored 99.40% on the Drebin dataset. With severe gradient boosting, 

(Hadiprakoso, Kabetta and Buana, 2020) suggested a hybrid static-dynamic analysis method 

attaining 99.36% accuracy. Targeting zero-day assaults using static analysis mixed with ML 

and DL models, (Sara and Hossain 2023) obtained a 96% F1 score on the Drebin dataset. 

With static APK analysis, trained models Logistic Regression, KNN, and Decision Tree, 

attaining 97.8%,98.6% and 97.6% accuracy, (Vanusha D et al., 2024) Combining 

Grammatical Evaluation with XGBoost, (Jundi and Hasanen Alyasiri, 2023) obtained up to 

99.28% accuracy over many datasets. Reaching 97% accuracy, (Tian et al., 2024) combined 

static and dynamic ML analysis for privacy leakage detection. Reaching 98.36% accuracy, 

(Kirubavathi G and Nithish S, 2024) presented a dynamic ensemble learning system with 

explainable AI. Showing great promise for efficient distributed security systems, (Ullah et al., 

2024)  utilised a semantic-based FL approach with transformer-based transfer learning to 

achieve 99.38% detection accuracy on CIC-And Mal2017 and 99.14% on CIC MalDroid2020 

datasets. 

.(Ganesh et al., 2017) demonstrated a CNN model with a 93% accuracy in identifying 

malicious apps through permission patterns analysis. Building on this, (Brahami Menaouer et 

al., 2023).  reported a remarkable 98.50% accuracy by integrating stacked AutoEncoders for 

dimensionality reduction with CNNs for classification on the Drebin-2015 dataset. 

(Muhammad Aamir et al., 2024) further improved results with the AMDDL model, achieving 

an extraordinary 99.92% accuracy, alongside high precision (98.61%), recall (99.16%), and 

F1-score (98.88%) on the Drebin dataset. These models' efficacy extends beyond a single 

dataset. (Lachtar, Ibdah and Bacha, 2020)    evaluated various CNN architectures, including 

LeNet, AlexNet, and InceptionV3, attaining a 99.7% detection accuracy with LeNet on a 

balanced dataset and addressing performance on imbalanced datasets. (Marwa Ben Jabra et 

al., 2023)  employed seven pre-trained CNN models and a custom CNN model across Drebin 

and Malimg datasets, achieving an average accuracy of 98.26% and a peak accuracy of 

100%. They effectively utilized regularization techniques such as L1 and L2 regularization, 

dropout, and data augmentation to mitigate overfitting and enhance generalization. Practical 

considerations like energy efficiency were also addressed, with LeNet found to be the most 

efficient, with a runtime of 342 ms and energy consumption of 1 J for classification.Despite 

these advancements, challenges remain. Studies acknowledge potential false positives and the 

dynamic nature of malware threats (Ganesh et al., 2017; Brahami Menaouer et al., 2023). 
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(Muhammad Aamir et al., 2024)  pointed out issues related to model interpretability and 

scalability. Future research directions include exploring different CNN architectures and 

combining CNN models with other machine learning techniques to enhance performance 

further (Marwa Ben Jabra et al., 2023).Hybrid models have shown superior performance over 

traditional and single deep learning approaches. 

(Lu et al., 2020) introduced a hybrid deep learning model combining Deep Belief Network 

(DBN) and Gated Recurrent Unit (GRU), achieving 97.79% detection accuracy. . (Dong, Shu 

and Nie, 2024)   presented a hybrid CNN and Deep Neural Network (DNN) model, achieving 

96.80% accuracy on the Drebin and Google Play Store datasets by integrating permission 

features and API call graphs for comprehensive feature representation. (Xu et al., 2020)   

proposed a hybrid CNN and Long Short-Term Memory (LSTM) model for detecting 

malicious behaviour in power systems, demonstrating superior accuracy and efficiency. Both 

studies highlight the effectiveness of combining CNNs with other deep learning frameworks, 

offering substantial benefits for malware detection. These hybrid models leverage the 

strengths of individual components to provide a deeper understanding and more 

comprehensive feature representation, enhancing detection accuracy, robustness, and 

resistance to sophisticated malware attacks. The success of these models in their respective 

fields underscores the potential of hybrid architectures for a wide range of applications, 

including malware detection, where combining CNNs with models like GRU can enhance 

accuracy and efficiency in cybersecurity solutions 

 

2.3 The Critical Role of SMOTE and Chi-square Feature 

Using RFECV for optimal feature selection, the research by (Mehedi Hasan Shakil and Md. 

Mynul Hasan, 2023) showed an ensemble deep learning strategy combining Bi-LSTM, Bi-

GRU, and 1D CNN, with a startling accuracy of 98.99% on the Drebin dataset. Likewise, 

(Liu, Zhang and Long, 2022) presented an enhanced CNN model, BIR-CNN, which 

combines Batch Normalisation and Inception-Residual networks, obtaining an accuracy of 

0.97 and AUC of 0.99 on the CICAnd Mal2017 dataset, thereby proving the potency of 

advanced feature learning approaches. Using Chi-Square feature selection mixed with NLP 

approaches, (Areeg Fahad Rasheed, M. Zarkoosh and Sana Sabah Al-Azzowitz, 2023) 

concentrated on the IoT ecosystem and achieved an amazing accuracy of 99.93% using SVM 

on the IoTPot dataset. Achieving 98.02% accuracy in Android malware detection, (Dhalaria 

and Gandotra, 2020) also used Chi-Square feature selection in conjunction with an ensemble 

learning technique. In order to maximise Random Forest classifiers, (Habib and Hafsa Binte 

Kibria, 2024) used several feature selection strategies like Chi-Square and Mutual 

Information alongside sampling techniques like SMote-NC, so obtaining 98.5% accuracy and 

stressing explainable AI for model transparency. (Eom et al., 2018) highlighted how well 

feature selection enhanced Random Forest's performance on the Malware Genome Project 

data. By means of Gain Ratio and ReliefF, (K., Chakravarty and Varma P., 2020) obtained 

94.47% accuracy with a smaller feature set. (Ahsan, Gomes and Denton, 2018) showed how 

well SMote balanced datasets by mproved efficiency of model detection from 89.87% to 

97.17% using oversampling techniques, greatly raising XGBoost phishing detection 

accuracy. Using static properties of Windows executables, (Aslam et al., 2020) underlined 

how better Random Forest performs in malware categorisation. Finally, (Khoda et al., 2020) 

outperformed conventional methods by addressing the unbalanced data problem in mobile 

malware detection using a new synthetic oversampling technique. These investigations taken 

together highlight the need of Chi-Square feature selection, SMote for data balancing, and 

cross-valuation for accuracy increase in building strong and effective malware detection 

systems. 

                                                  Table 1: summary of the literature 
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Study Methods Dataset Result Limitation 

(Pardhi, 

Jitendra 

Kumar Rout 

and Niranjan 

Kumar Ray, 

2021) 

Signature-based approach Norton database( 

collection of 

malware 

signatures) 

Implemented a 

malware scanner 

Limited to 

signature-based 

detection 

(Alam et al., 

2017) 

Static analysis using Malware 

Analysis Intermediate 

Language (MAIL) 

5490 Android 

applications 

(1758 malware) 

Detects 93.57% of 

malware with a 

2.7% false positive 

rate 

Limited to static 

analysis, struggles 

with excessive 

control flow 

obfuscations and 

packed malware 

Brahmi 

Menaouer et 

al., (2023) 

Stacked AutoEncoders (SAE), 

Convolutional Neural 

Networks  

Drebin-215 

dataset 

Achieved accuracy 

of 98.50% 

no feature 

selection methods 

considered 

Lu et al., 

(2020) 

Deep Belief Network , Gate 

Recurrent Unit  

Mixed datasets 

from Google 

Play, APKpure, 

VirusShare, 

PRAGuard 

The hybrid DBN-

GRU model attained 

97.79% accuracy in 

detecting Android 

malware, 

showcasing robust 

performance across 

varied datasets. 

The computational 

complexity 

associated with 

deep learning 

methods posed 

challenges in 

practical 

deployment. 

(Muhammad 

Aamir et al., 

2024) 

CNN model Drebin dataset The model achieved 

an outstanding 

accuracy of 99.92% 

critical issues in 

interpretability and 

scalability of the 

model for practical 

deployment 

(Almarshad et 

al., 2023)   

Siamese neural network with 

one-shot learning 

Drebin dataset  achieved 98.9% 

accuracy  

The model it may 

still struggle with 

completely novel 

malware  

(Alkahtani 

and Aldhyani, 

2022 

SVM,KNN,LDA,LSTM,CNN-

LSTM models 

CICAndMal2017 

- Drebin 

SVM achieved 

100% accuracy with 

CICAndMal2017 

dataset - LSTM 

achieved 99.40% 

accuracy with 

Drebin dataset 

LDA performed 

poorly,autoencoder 

less effective 

compared CNN-

LSTM models 

(Hadiprakoso, 

Kabetta and 

Buana, 2020). 

 SVM,K-NN,MLP,Random 

Forest,Decision Tree, Naïve 

Bayee, GB 

Drebin dataset, GB achieved 96% , 

random forest 

95.91%.MLP 

achieved 96%,Naïve 

Bayes achieved 

80%, Decision Tree 

92%, SVM 94%, K-

NN 80% 

Significant 

Training time for 

SVM. The 

accuracy for Naïve 

bayes and K-NN 

Is not particularly 

high 

(Sara and 

Hossain, 

Random Forest ,LR,SVM, 

multi model 

Drebin dataset Random forest 

93%,LR 83%,SVM 

Requires extensive 

feature extraction 
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2023) opcode+permission+ API 

(CNN) 

89%, multi model 

opcode+permission+ 

API (CNN) 96% 

and combination 

performance 

depends on feature 

selection and 

tuning 

 (Dong, Shu 

and Nie, 

2024) 

CNN-DNN model Drebin dataset 

5560 malware 

samples and 

benign samples 

5560 from 

google play store 

and other app 

stores 

Achieved  accuracy 

96.80% 

10-cross-fold 

validation chosen 

and Requires more 

training time 

(Vanusha D 

et al., 2024) 

 Decision Tree, Logistic 

Regression,  KNN 

Drebin dataset Decision Tree 

Achieved accuracy  

97.6%, Logistic 

regression achieved 

97.8 and KNN 

achieved 98.6 

Even with the use 

of GridSearchCV 

hyperparameter 

tuning. Might still 

overfit the training 

data 

(Eom et al., 

2018). 

Pre- and post-feature selection 

procedures 

API data Almost 100% 

accuracy in 

detection 

High 

computational cost 

due to extensive 

feature selection 

(Ahsan, 

Gomes and 

Denton, 

2018)    

Oversampling methods dataset from UCI 

Machine 

Learning 

Repository 

Improved efficiency 

of model detection 

from 89.87% to 

97.17% using 

oversampling 

techniques 

Overfitting 

potential due to 

oversampling 

 

3 Research Methodology 
 

Given the Current Scenario, the Usage of Android mobile phones is increasing rapidly .broad 

criteria of people using Android phones not just teenagers but also older adults and those who 

are less technologically savvy. As a result, they may unknowingly install applications without 

understanding the potential dangers Compared with IOS Android remains more affordable in 

the market which makes Android users more prone to malware attacks.   

This situation shows the need for advancement in Android malware detection. One method 

that has been used effectively for the detection of malicious smartphone applications is 

machine learning (Chowdhury et al.., 2023). With the rapid increase in Android malware, it is 

crucial to continuously update research on machine learning for malware detection. 

Additionally, new machine-learning techniques should be explored to enhance the detection 

of Android malware. Focusing on static features of mobile applications allow us to identify 

malicious apps before they are run or installed. This paved the idea to develop a deep 

learning hybrid model using the Android malware detection AI model 

 

3.1 Selection of Dataset  
Two main criteria dominated the process of choosing a dataset: the availability of trustworthy 

data on malicious Android application static features and the inclusion of static features from 

Android applications. First under consideration were a number of datasets, including the 
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Android Malware Genome Project and the AndroZoo collection. These datasets also included 

dynamic elements, which did not fit the particular criteria of the research, though. In the end, 

the Drebin dataset was chosen since it is well-known and emphasises only static features, 

which is perfect for Android malware detection. Peer-reviewed research have made great use 

of the Drebin dataset, therefore guaranteeing its relevance and dependability. Furthermore, 

employing this dataset enables performance comparison with other studies, thereby opening 

the path for the creation of a unique Hybrid deep model for Android detection grounded on 

this dataset. 

 

  3.2 Model Selection 
Examining the current research on model selection for Android malware detection shows that 

many recent studies especially those involving deep learning hybrid models  those including 

CNNs are aiming higher on the Drebin dataset (Muhammad Aamir et al., 2024). CNN models 

are adept at spotting trends in feature sets that is, particular combinations of permission that 

can point to fraudulent activity, including access to contacts, SMS, and the internet. Though 

the Drebin dataset is not naturally time-series data, the sequence and connections between 

stationary features nonetheless provide important information. In this sense, GRU models are 

useful since they can learn these dependencies and help the model to realize how the presence 

or absence of some features, when paired with others, can indicate malware. For example, a 

GRU can evaluate the sequence of events if permissions or API calls follow a certain order, 

which might be absolutely vital for spotting malware trends. Combining CNN and GRU 

helps a hybrid model to maximize the advantages of both methods: While GRUs capture the 

sequence and dependencies inside these features, which is crucial for efficient malware 

identification, CNNs are skilled in extracting significant local patterns and interactions 

between static features. 

  3.3 Considering feature selection and data balancing 
It was found that during preprocessing imbalances between malicious and non malicious 

samples were found in the dataset. SMOTE, an oversampling method creating synthetic 

samples for the minority class, was introduced experimentally to solve this problem even if 

the imbalance was not significant. 

Apart from SMOTE, for feature selection Chi-square algorithms were considered. With 215 

features in the dataset, the Chi-square method helps to find the most pertinent features having 

a statistically significant correlation with the target variable. This method not only lowers the 

dimensionality of the data but also improves the capacity of the model to concentrate on the 

most important indicators of malicious behavior. 

 

 

3.4 Experimental Analysis of Model Performance 
Four different approaches of preprocessing the Drebin dataset produced four independent 

datasets for study. The first dataset was preprocessed which involved removing any null 

values and undesired columns were deleted. Using feature selection where 60 features were 

chosen from the initial 215 for the second dataset While (Brahmi Menaouer et al. 2023) 

obtained 98.5% without feature selection, previous research include (Almarshad et al. (2023) 

selected 40 features with an accuracy of 98.9%. Experiments involving 60 features were 

carried out to investigate this more. To solve class imbalance, the third dataset was handled 

with both feature selection and SMOTE. The fourth dataset underwent Smote alone during 

preprocessing. 

Training on these four datasets and comparing their performance will help to find the ideal 

performing model. This approach aims to assess the performance of the AI model and the 

influence of every preprocessing step feature selection, SMOTE, or a mix of both. Each of 
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the four datasets was trained using a CNN-GRU model both with a normal training of dataset 

and with k-fold cross-validation, therefore guaranteeing a strong comparability. By means of 

this study, can ascertain whether training the CNN-GRU model on various preprocessed 

datasets results in any appreciable performance variations. 

. 

3.5 Evaluation and Comparison 
The performance of the four models was evaluated based on several metrics, including F1-

score, accuracy, precision, recall, as well as testing and training time. Additionally, the 

accuracy of the four models was compared between those trained using the standard method 

and those trained with k-fold cross-validation. Finally, the optimal model was selected, and 

its performance was compared to existing models. 

 

4 Design Specification 
 
 

 

4.1  CNN-GRU model Architecture 

This model uses CNN's feature extraction strengths as well as GRUs for sequence learning. 

CNNs are good at spotting unique patterns, like odd combinations of permissions or frequent 

API calls pointing to malware. Conversely, GRUs excel in catching temporal dependencies 

which are essential for comprehending the flow of events normal for malware. The model can 

identify suspicious patterns of API requests, for example, accessing sensitive data and then 

network communication. Particularly on datasets such as Drebin, this combined approach of 

CNN and GRU model can be a useful tool for malware detection since its capacity to manage 

high-dimensional data and learn complex feature interactions improves its detection 

accuracy, so reducing false positives and negatives. The arrangement of this model made use 

of the following libraries. Pandas for data manipulation; scikit-learn for model selection and 

preprocessing; pickle for serialisation; tensorflow and keras for deep learning model 

building; matplotlib and seaborn for data visualization and numpy for numerical calculations.  

Conv1D layers of the model are meant to progressively extract and refine sequential data 

characteristics. To capture first patterns, the first Conv1D layer employs 256 filters with a 3-

pixel kernel size ReLU activation. Maintaining a kernel size of 3, the second Conv1D layer 

decreases the number of filters to 128 and keeps processing the features via ReLU activation, 

hence enabling more complicated representations. Focussing on higher-level features and 

maintaining the kernel size and ReLU activation, the third Conv1D layer further downsplays 

the filters to 64. At last, the fourth Conv1D layer with 32 filters, a kernel size of 3, and ReLU 

activation polishes the feature maps even more, so guaranteeing the model catches the most 

abstract and high-level patterns required for the next layers to operate effective 

categorisation. Following every Conv1D layer, batch normalisation is used to stabilise and 

speed up training; dropout at a rate of 0.3 helps to prevent overfitting. Following the second, 

third, and fourth Conv1D layers to lower dimensionality, Max Pooling 1D with a 2 pool size 

then capture temporal dependencies with two GRU layers; the first GRU layer has 128 units 

and return sequences enabled; the second GRU layer has 64 units. Dropout and recurrent 

dropout set to 0.3 are used both at GRU layers. ReLu activation and dropout abound in the 

dense layer; the final output dense layer comprises one unit with sigmoid activation for 

binary classification. The Adam optimiser, binary cross-entropy loss function, and accuracy 

measure build the model to assess performa 
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5 Implementation 
 

This research study focuses on detecting Android malware using a CNN-GRU model. The 

Drebin dataset was utilized, and eight experimental studies were conducted. The dataset 

underwent four distinct preprocessing approaches: the first included data processing with 

SMOTE, the second combined feature selection with SMOTE, the third involved only feature 

selection, and the fourth applied basic preprocessing. During the preprocessing stage, label 

encoding and feature selection processes were saved. These four newly preprocessed datasets 

were then trained using the CNN-GRU model, both with k-fold cross-validation and with a 

train-test split, resulting in a total of eight experiments. The performance of the models was 

subsequently evaluated, and the models were saved for integration into the GUI application 

 

 
 

       

              Figure 1: Workflow of CNN-GRU-Based Android Malware Detection 

 
 

 

5.1 Dataset 

The Drebin dataset 12 is an extensive collection specifically created to support research in 

Android malware detection. The dataset comprises 129,013 Android applications, out of 

which 5,560 have been classified as malware samples belonging to 179 distinct malware 

families crawled from August 2010 to October 2012. Each application in the dataset is 

represented by a feature vector encompassing several key attributes (Arp et al., 2014): 

                                                             
 
12 https://www.kaggle.com/datasets/likhithadurusoju/drebindataset 
 

https://www.kaggle.com/datasets/likhithadurusoju/drebindataset
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 Hardware Components: This includes access to hardware features like the camera 

and GPS, which can be indicators of malicious intent.  

 Requested Permissions: Permissions listed in the manifest file, often signal 

potentially   harmful behavior 

 App Components: The types and names of components such as activities, services, 

content providers, and broadcast receivers, which may help identify malware. 

Filtered Intents: Intents used for inter-component communication, often exploited by 

malware for actions like Boot completed. 

 Restricted API Calls: Critical API calls that require specific permissions, which may 

reveal malicious activities. 

 Used Permissions: Permissions utilized by the application, providing an overview of 

its behavior.  

 Suspicious API Calls: Calls accessing sensitive data, network operations, SMS, 

external commands, and employing obfuscation techniques.  

 Network Addresses: IP addresses, hostnames, and URLs used for malicious network 

connections. 

 

5.2  Dataset Preprocessing 

Four alternative approaches of preprocessing the dataset helped to produce separate pre-

processed datasets. Pre-processed Dataset 3 loaded necessary libraries including pandas, 

SelectKBest, chi2, LabelEncoder, and SMOTE. Drebin.csv was the source of the dataset; the 

last row was deleted and null value columns were noted. The target variable "class" was 

evaluated for class imbalance; columns with the "?" character were found; the pointless 

"TelephonyManager.getSimCountryIso" column was deleted. LabelEncoder encoded the 

"class" column; features (X) and the target variable (y) were split; SelectKBest with a chi-

squared statistic chose the top 60 features. Oversampling the minority class using SMOTE 

helped to balance the dataset, producing a balanced dataset preserved as 

"Drebin_balanced_dataset".Though without using SMOTE, the approach for Pre-processed 

Dataset 2 was same to Pre-processed Dataset 3. Importing fundamental libraries including 

pandas, SelectKBest, chi2, and LabelEncoder, the same preprocessing techniques were 

followed. The dataset stayed unbalanced, nonetheless, and was saved as 

"Drebin_unbalanced1_dataset." Pre-processed Dataset 1 loaded necessary libraries like 

pandas and LabelEncoder. The dataset was read; the last row was deleted; null value columns 

were noted; and columns with the '?' character were found. The "class" field was encoded 

with LabelEncoder while the "TelephonyManager.getSimCountryIso" column was deleted. 

The cleaned dataset was stored as "Drebin_cleaned_dataset," after separating features (X) and 

the target variable (y). Pre-processed Dataset 4 loaded necessary libraries including pandas, 

LabelEncoder, and SMOTE. Following the same procedures as in Dataset 3, SMOTE was 

used to oversampling the minority class so balancing the dataset. This produced a cleaned-up 

and balanced dataset saved under "Drebin_cleaned_balanced_dataset".  

 
 

 

5.3  Feature Selection 

In the context of a dataset, feature selection is the act of choosing, from the initial collection 

of features, a subset of pertinent features (Bahassine et al., 2020).. Reducing overfitting, 

raising accuracy, and accelerating training time will help to enhance the machine learning 

model's performance. In order to improve model performance by keeping the most pertinent 

features and therefore lowering the dimensionality of the dataset, feature selection was 
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applied in this work. This procedure consists on choosing the top attributes most likely to 

influence the target variable. In this study, the Chi-squared approach is applied in feature 

selection. The features start off apart from the target variable. The Chi-squared test is then 

used to assess the relevance of every feature in respect to the target variable. Selected are the 

top sixty features according to their Chi-squared values. After that, the chosen characteristics 

together with their p-values and scores are assembled into a DataFrame for examination. This 

guarantees that, by excluding unnecessary or less significant data, only the most powerful 

elements are used for training the model, therefore enhancing its accuracy and efficiency. 

Dealing with related features is one difficulty using feature selection. Highly correlated 

features might cause redundancy—that is, where the chosen features offer overlapping 

information. This may affect model performance and lower the efficiency of the feature 

choosing process. Establishing the ideal feature count for this research is difficult. 

 

5.4  Data Balancing 

Data balancing is the adjusting of the class distribution in a dataset to mitigate biases caused 

by unequal class frequencies, enhancing model performance in handling minority and 

majority class predictions(Ahsan, Gomes, and Denton, 2018). Data balancing is used in this 

study to address class imbalances between malware and benign samples, which can bias the 

model towards the majority class and reduce its accuracy. To implement data balancing, the 

Synthetic Minority Over-sampling Technique (SMOTE) is used. SMOTE generates synthetic 

samples for the minority class (malware) to create a balanced dataset. This is achieved by 

fitting the SMOTE algorithm The Synthetic Minority Over-sampling Technique (SMOTE)  is 

a method used to solve class imbalance in datasets. It generates synthetic samples for the 

minority class depending on its present cases (Elreedy, Atiya, and Kamalov, 2023). This 

method generates new synthetic instances resembling the current minority class samples but 

not exact replicas, therefore helping to equalize the class distribution. By offering more 

representative samples for the minority class, SMOTE helps models educated on imbalanced 

datasets perform betterto the selected features and the target variable, resulting in a dataset 

with an equal distribution of classes. The balanced dataset is then saved for further analysis, 

ensuring the model receives balanced input data during training, which improves its ability to 

accurately detect malware. Dimensionality issues occurred during development . 

 

5.5  Training 

The Four dataset is trained using the CNN-GRU model with two different methods k-cross-

validation and normal performance evaluation.   

 K-Fold cross-validation 

K-fold Cross-validation divides the dataset into 5 parts called ( “fold)  for each 5 fold, the 

model is trained using 4 of the folds and tested on the remaining 1 fold. This process is 

repeated 5 times. For each fold  ,the model is saved if it performs the best on validation data.  

After completing all the folds it reports the average accuracy and loss, This makes K-fold 

Cross-Validation particularly valuable in making the reported F1 score, Precision, and recall 

reflective of the model's true performance. But the drawback is amount of resources and 

training time is significant                                            

 

5.6  Performance Evaluation 

A total four experiments which trained with cross-k validation and train-split method will be 

evaluated by measuring the performance metrics accuracy, precision, recall, and f1 score. The 

results from each experiment will be compared to determine which one performs the best. 

Also, the performance of the best model is compared to the existing mode 
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5.7 GUI application 

the GUI application for the Android malware detection system lets users to enter APK file 

features with unambiguous buttons for operations like loading features and executing 

predictions. Text boxes provide openness by displaying preprocessing actions, underlining 

particular traits, and showing prediction results. The graphical user interface leads consumers 

through the process and offers instantaneous comments on whether an APK qualifies as 

benign or malicious 

 

6 Evaluation 
A total of 4 experiments were conducted. The four experiments were trained using k-fold 

cross-validation and normal training Experiment 1 utilized  pre-processed dataset 1 

Experiment 2 used pre-processed dataset 2 used following Experiment 3 employed pre-

processed dataset 3 , and finally experiment 4  utilized pre-processed dataset 4 used 

 

6.1 Experiment 1: Pre-processed Dataset 1  Including Cross-validation 

Accuracy 

The training time taken by the model was 4110.6 seconds, and the testing time was 1.38 

seconds. The accuracy per fold was as follows: 

                                                          Table 2: accuracy per fold 

   Fold   Loss Testing Accuracy 

Fold 1 0.070 98.41% 

Fold 2 0.121 97.31% 

Fold 3 0.115 97.51% 

Fold 4 0.085 97.93% 

Fold 5 0.079 98.06% 

 

                                                         Table 3:  Average scores for all Folds 

Average Testing Accuracy  97.84% 

Average Loss 0.094 

 

Final Accuracy: 98.48% loss: 0.08 

                                                          Table 4: Classification Report 

 Precision Recall F1-score Support 

0 0.97 0.96 0.97 342 

1 0.99 0.99 0.99 1108 

Accuracy   0.98 1450 

Macro      avg  0.98 0.98 0.98 1450 

Weighted avg 0.98 0.98 0.98 1450 
 

6.2 Experiment 2: Pre-processed dataset (with feature selection, K-Fold 

Cross-Validation) 

The training time taken by the model was 1252.53 seconds, and the testing time was 0.95 

seconds. 

                                                      Table 5: Accuracy per fold 

Fold Loss         Accuracy 

Fold 1 0.12 96.82% 
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Fold 2 0.17 95.72% 

Fold 3 0.19 95.72% 

Fold 4 0.14 96.89% 

Fold 5 0.15 96.68% 

                                               

                                                      Table 6: Average scores for all Folds 

Average Testing Accuracy  96.37% 

Average Loss 0.157 

 

Final Testing Accuracy: 96.82% loss: 0.11 

 

                                                           Table 7: Classification Report 

 Precision Recall F1-score Support 

0 0.94 0.93 0.93 342 

1 0.98 0.98 0.98 1108 

Accuracy   0.97 1450 

Macro      avg  0.96 0.95 0.96 1450 

Weighted avg 0.97 0.97 0.97 1450 

 

6.3 Experiment 3: Pre-processed dataset with feature selection and 

SMOTE applied,  with K-Fold Cross-Validation 

The training time taken by the model was 1483.04 seconds, and the testing time was 1.21 

seconds.                     

                                                  Table 8: Accuracy per folds 

Fold Loss  Testing Accuracy 

Fold 1 0.10 97.07% 

Fold 2 0.14 96.67% 

Fold 3 0.10 97.52% 

Fold 4 0.10 97.12% 

Fold 5 0.09 97.39% 

 

                                                    Table 9: Average scores for all Folds 

Average Testing Accuracy  97.15% 

Average Loss 0.110 

 

Final Testing accuracy: - 97.53% loss 0.09% 

                                                           Table 10: Classification Report 

 Precision Recall F1-score Support 

0 0.98 0.97 0.98 1136 

1 0.97 0.98 0.97 1088 

Accuracy   0.98 2224 

Macro      avg  0.98 0.98 0.98 2224 

Weighted avg 0.98 0.98 0.98 2224 
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6.4 Experiment 4: Pre-processed dataset with SMOTE applied, K-Fold 

Cross-Validation 

The training time taken by the model was 4582.42 seconds, and the testing time was 1.96 

seconds.  

                                                        Table 11:accuracy per fold 

Fold Loss Testing Accuracy 

Fold 1 0.06 98.33% 

Fold 2 0.07 98.33% 

Fold 3 0.04 98.87% 

Fold 4 0.03 98.92% 

Fold 5 0.07 98.56% 

 

                                                    Table 12: Average scores for all Folds 

Average Testing Accuracy  98.60% 

Average Loss 0.06 

Final accuracy: 98.83%  loss:0.04 

                                                      Table 13: Classification Report 

 Precision Recall F1-score Support 

0 0.99 0.99 0.99 1136 

1 0.99 0.99 0.99 1088 

Accuracy   0.99 2224 

Macro      avg  0.99 0.99 0.99 2224 

Weighted avg 0.99 0.99 0.99 2224 

 

6.5 The four experiments were evaluated using both k-fold cross-

validation   and normal validation for comparison 

                                                                Table 14: experiment comparison 

 k-cross-

validation 

Testing 

Accuracy 

Standard 

Testing 

Accuracy  

Training 

time (k-

cross-

validation 

accuracy)  

Testing 

time (k-

cross-

validation 

accuracy 

Testing 

time 

(standard 

accuracy) 

Training 

time 

(standard 

accuracy) 

`Experiment1 98.48% 98.62% 4110.63 

sec 

1.38sec 1.71 sec 4383.9 sec 

experiment2 96.82% 96.83% 1252.53 

sec 

0.95 sec 1.17 sec 1283.0 sec 

Experiment3 97.53% 97.57% 1483.04 

sec 

1.21 sec 1.10 sec 1377.1 sec 

Experiment4 98.83%   98.52% 4582.4 sec 1.96 sec 1.92 sec 4509.9 sec 
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6.6 Comparison of Existing models with the proposed best model  

                                                                 Table 15: Model comparison 

Study Model Accuracy 

(Hadiprakoso, Kabetta and 

Buana, 2020). 
GB  96% 

 Naïve Bayes 80% 

 Decision Tree 92% 

 SVM 94% 

  80% 

(Brahmi Menaouer et al., 2023) Stacked AutoEncoders 

(SAE), Convolutional 

Neural Networks 

98.50% 

(Dong, Shu and Nie, 2024) CNN-DNN model   96.80% 

(Vanusha D et al., 2024)  Logistic regression  97.8% 

Proposed best model CNN-GRU 98.83% 
 

6.7 Discussion 

Feature selection and impact on Accuracy  

Experiment 2 and experiment 2 without k-cross validation shows a small decrease in 

accuracy but improved testing time. In experiment 3 and   experiment 3 with normal 

validation  the combination of feature selection and smote observed a balance in accuracy and 

testing time improvement 

Impact of Smote 

Experiments using SMOTE (experiment 3, experiment 4, experiment 3 with normal 

validation, and experiment 4 with normal validation) 

Improved Accuracy: Experiments using SMOTE  shows higher accuracy with experiment 4 

achieving the highest. 

Increase Training and Testing: SMOTE increases training and testing times due to the larger, 

more complex datasets. Experiment 4 which applied SMOTE without feature selection, had 

the highest training time 

Impact of  k-cross-validation and  normal validation  

Both k-fold cross-validation and normal validation results got comparable accuracy with 

minor differences. experiment 1’s accuracy difference between k-fold and train-test is 0.14% 

in favour of the train-test split.  In experiment 4 the k-fold cross-validation showed a slight 

advantage (0.3) over  standard triaining 

The training time is generally slightly higher compared to the normal validation, but the 

testing time is relatively similar.   

Impact of SMOTE on Imbalanced vs Balanced Datasets. 

Experiment 3 and Experiment 4 both used SMOTE to balance the datasets. This resulted in 

high precision, recall, and f1-scores for both classes, indicating that the model was able to 

correctly identify instances from both the minority and majority classes more effectively 

Experiment  4 (balanced dataset with SMOTE ) achieved the highest testing accuracy) with 

the lowest loss of 0.04 demonstrating that the model trained on the balanced dataset with 

SMOTE had the most reliable predictions with the least error. However, When implementing 

the trained model in a Python Gui, the chosen model was experiment 3 trained with the train-

split method. This choice is due to its balanced accuracy and lower testing time, which is 

crucial for real-time detection systems. 
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7 Conclusion and Future Work 
As the increase of Android-based smart devices and applications are mostly targetable by 

malware attacks. The hybrid CNN-GRU model developed has successfully outperformed 

numerous existing models, and also conducted detailed experiment runs, to find the about the 

overall optimal model exploring the different combinations of data balancing and feature 

selection algorithms,. The best results obtained were obtained by experiment 4 having an 

accuracy 99%, precision of 99%, recall of 99%, and f1 score of 99% respectively 

While the Drebin dataset is well-known for its use in Android malware detection, the dataset 

is relatively old consisting data collected during 2010 to 2012, latest datasets like 

CICMalDroid 2020, CCCS-CIC-AndMal-2020 , should be considered for further research. 

Moreover, combining these datasets for training with the CNN-GRU model could provide 

valuable insights. Additionally, exploring an ensemble model approach that integrates the 

CNN-GRU model with other models like Random Forests and XGBoost could be a 

promising direction for future work. 
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