

Deep Learning-Based Android Malware

Detection with CNN-GRU Model

MSc Research Project

MSc in Cybersecurity

Harisankar Kalathil Salim

Student ID: x23151552

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 Harisankar Kalathil Salim

Student ID:

 x23151552

Programme:

MSc in Cybersecurity

Year:

2023-2024

Module:

MSc Research Project

Supervisor:

Vikas Sahni

Submission Due
Date:

 12-08-2024

Project Title:

Deep Learning-based Android Malware Detection with CNN-GRU
model

Word Count:

 7811 Page Count 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

 12-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Deep Learning-based Android Malware Detection

with CNN-GRU Model

Harisankar Kalathil Salim

x23151552
Abstract

Android malware presents substantial security hazards to mobile users worldwide,
jeopardizing personal, financial, and device data. Given the exponential increase in these

dangers, it is imperative to implement effective detection systems to safeguard

consumers and preserve the integrity of the smartphone ecosystem. Conventional
approaches frequently lack strong security measures because of the ever-changing

characteristics of malicious software. Therefore, advanced techniques based on deep

learning have emerged as promising approaches to enhance detection accuracy and

efficiency, this study developed a sophisticated hybrid detection model using
Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to classify

Android applications as either benign or malicious, thereby contributing to the ongoing

effort against mobile malware threats. The research involved preprocessing the dataset in
four distinct ways, including SMOTE and Chi-square to address imbalance and optimize

feature selection. The result demonstrated that the developed CNN-GRU model achieved

superior performance with the highest accuracy of 99% accuracy surpassing several
existing models

 Keywords: CNN-GRU Model, SMOTE, Chi-square

1 Introduction
The installation of malicious applications can cause major problems for people who use

Android smartphones, the applications that are installed can be used to gather data for

targeting advertising, commit fraud, secretly collect personal information about the user,

retrieve data, such as capturing passwords, harmful activities and enabling malicious

activities (e.g.: - turning a device into parts of botnets) (Tully and Mohanraj,2017).

Android maintains a dominant position in the global smartphone market with a 70.5% share.

Among Android devices, Samsung leads with a market share of 35.30% followed by Xiaomi

at 14.70%, Oppo at 10.00%, vivo at 9.50%, Huawei at 6.30%, RealMe at 4.00%, Motorola at

3.30% and others collectively holding 16.90% 1

By the end of 2025, there will be 3.9 billion Active users spread across 190 countries. This

shows the domination of Android in the Global market2, global mobile spending is projected

to exceed $270 billion. Notably, 32% of users aged 11-20 regularly use mobile apps daily,

and 45% have numerous applications. For the 31-40 age group, 17% use mobile applications

daily, with 38% having a reasonable application. In the 41-50 age range, 16% use

applications daily, with 24% having a limited number of applications. Among those aged 51-

60, 8% use applications regularly with 22% having a smaller selection of applications 3

1 https://www.enterpriseappstoday.com/stats/android-phones-statistics.html

2 https://www.bankmycell.com/blog/how-many-android-users-are-there

3 https://www.enterpriseappstoday.com/stats/mobile-app-industry-statistics.html

https://www.enterpriseappstoday.com/stats/android-phones-statistics.html
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.enterpriseappstoday.com/stats/mobile-app-industry-statistics.html

2

The global mobile application market is valued at USD 206.73 billion in 2022, and is

predicted to grow at a compound Annual Growth Rate (CAGR) of 8.83% from 2022 to 2027

by the end of 2027 revenue generated by the mobile application industry will be US$673.80.

billion. Key growth factors include China and India. Additionally, the evolution of the online

retail sector and rising mobile gaming popularity play a significant to this growth. The

COVID-19 pandemic also increased the downloads of games, social media, and

entertainment applications4

Google Play Store remains the leading app store, over 113 billion apps and games were

downloaded from Google Play store in 2023. Currently, around 2.61 billion apps and games

are available in Google Play store5. Other major app stores include Xiaomi Apps Store,

Galaxy Store, Vivo Appstore, RealMe Store, Huawei AppGallery, Amazon App Store, and

Tencent App Store. Where Huawei AppGallery had over 580 million users by the end of

20226 . While the Amazon App Store had 528,164 apps 80.81% of apps are free and 19.19%

are paid apps7. Tencent App Store has 64,194 apps, all of which are free apps for use. 8

Xiaomi's App has 200 billion downloads all around the world and 564 million Global

monthly active users9. Samsung’s Phone is available in over 180 countries, having hundreds

of millions of active Galaxy Device users who download billions of apps from the Galaxy

store.10

In the Chinese market Appstore Market, Huawei AppGallery having the largest share of

22.03% market share with 284.35 million monthly active users (MAU) and 37.82 million

daily active users (DAU). Tencent Appstore comes next with a 13.72% share having 177.07

million MAU and 40.60 million DAU. Oppo Software store has a monthly active users

around 162,281,900 and daily active user count of 44,236,300 giving it a market share of

12.58%. ,The Xiaomi Market on other hand maintains a market share of 12.14% having

156,671,100 MAU and 56,278,100 DAU. The Vivo App Store holds a market share of

10.27% with 132,491,900 MAU and 24,765,900 DAU.The Samsung App Store holds a

A market share of 4.89% with a Monthly active user (MAU) count of 63,09,100 and

5,562,00 Daily active users respectively, following closely is the 360 Mobile Assistant with a

market share of 4.13% and a Monthly active user (MAU) count of 53,264,800 and 9,89,200

Daily active users (DAU), following up Baidu Mobile Assistant having 3.64% share hold

with 47,406,300 Monthly active users (DAU) and 3,827,600 Daily Active Users (DAU)

lastly Lenovo Le Store with a share of 0.44% with 5,723,700 Monthly Active Users (MAU)

and 355,400 Daily Active Users (DAU)11

Given the widespread usage and market penetration of Android devices and Android apps,

addressing Android malware threats is crucial for ensuring user security and maintaining

4 https://www.enterpriseappstoday.com/stats/mobile-application-revenue-statistics.html

5 https://www.businessofapps.com/data/google-play-statistics/

6 https://www.enterpriseappstoday.com/stats/huawei-statistics.html

7 https://42matters.com/amazon-appstore-statistics-and-trends

8 https://42matters.com/tencent-appstore-statistics-and-trends

9 https://global.developer.mi.com/document?doc=quickStart.aboutGetApps

10 https://developer.samsung.com/galaxy-store/discover-galaxy-store.html

11 https://appinchina.co/market/app-stores/

https://www.enterpriseappstoday.com/stats/mobile-application-revenue-statistics.html
https://www.businessofapps.com/data/google-play-statistics/
https://www.enterpriseappstoday.com/stats/huawei-statistics.html
https://42matters.com/amazon-appstore-statistics-and-trends
https://42matters.com/tencent-appstore-statistics-and-trends
https://global.developer.mi.com/document?doc=quickStart.aboutGetApps
https://developer.samsung.com/galaxy-store/discover-galaxy-store.html
https://appinchina.co/market/app-stores/

3

trust. With such a vast user base and expensive app ecosystem, robust measures to combat

malware are essential for protecting personal data, ensuring safe app downloads, and

sustaining the overall health of the Android Platform Globally.

Research Question 1. Does the performance of the CNN-GRU model built in the study with

the Drebin dataset surpass that of other existing deep learning studies using the same Derbin

dataset in terms of accuracy?

Research Question2. Can employing SMOTE and Chi2 feature selection enhance the

model's performance in detecting Android malware?

Research Question3. Does cross-k validation technique normal training making any

significant impact on the performance of models?

Section 1 of the report comes first; Section 2 reviews the literature with reference to

traditional approaches, hybrid models, and algorithms under discussion. Section 3 includes

the specifics of the approach used for developing the Android malware detection model

suggested in this work. The information related to the design criteria of the system suggested

for the research is found in Section 4 of the report. Section 5 comprises the specifics related

to the application of the Android malware detection technique. Section 6 covers the specifics

related to the outcomes of the research and the evaluation of the performance of the model

developed in this work. Section 7 offers the study's findings as well as potential

improvements the work can get.

2 Related Work
The review of the different literature associated with the detection of Android malware using

machine learning and deep learning methods are presented in this section

2.1 Traditional Android Malware Detection Methods

Growing concerns about dangerous software on Android systems have spurred a lot of study

on malware detection techniques. (Pardhi, Jitendra Kumar Rout and Niranjan Kumar Ray,

2021) Use static code analysis in a signature-based method to find known malware. Their

solution tells users of possible security threats by classifying applications according to the

permissions they want. Including safe browsing and app lockdown, it demonstrates efficiency

with low system resource needs. It depends on a thorough and constantly updated malware

signature database, though, which might be a drawback when new malware types develop.

After that, (Alam et al., 2017) introduce DroidNative, a fresh method aiming at native code to

fill in voids left by tools mostly analysing Java bytecode. With a 93.57% detection rate and

strong resistance to obfuscations, DroidNative uses intermediate language MAIL to detect

malware efficiently using signature generating methods. The complexity and diversity of

native code as well as very high computing needs for real-time detection could restrict the

method even with its great speed.Using feature extraction and classification approaches,

(Apvrille and Apvrille, 2015) presented the SherlockDroid framework shifts emphasis to

spotting unidentified malware. SherlockDroid improves detection accuracy by combining

several algorithms and marketplace crawlers, therefore focussing on fresh dangers.

Comprehensive testing confirms its effectiveness, however depending on proper feature

extraction and the possibility of false positives still present difficulties.

Finally, (Liang et al., 2022) presents a structured approach to behavior-based detection by

means of a formal method using process algebra to describe and evaluate Android application

behaviours. Extending the π-calculus theory, this approach provides theoretical foundation

for precisely characterising app behaviour, hence increasing detection accuracy. Still, it might

4

be challenging to precisely replicate behaviours and guarantee minimal false positive rates.

Although conventional approaches show different degrees of success in malware detection,

they can have restrictions including a reliance on updated signature databases, computational

complexity, and difficulties in modeling app behaviour.

2.2 Existing Machine Learning and Deep Learning Models in Malware

Detection

Existing Android malware detection methods are now applied using ML and DL, therefore

displaying a high degree of accuracy, strength, and relevance. (Kouliaridis and Kambourakis,

2021). examined conventional ML models and discovered Naive Bayes (NB) with 99.8%

detection accuracy to be the best (Gupta et al., 2020). On the Malgenome dataset, Random

Forests (RF) performed best with a TPR of 0.99 and an FPR of 0.014, however their

shortcomings in dynamic behaviour identification were recognised. While (Feng et al., 2021)

created MobiTive, a real-time DL-based malware detection system with 96.75% accuracy,

subject to adversarial assaults, (Almarshad et al., 2023) employed a Siamese neural network

with one-shot learning and achieved 98.9% accuracy. (Alkahtani and Aldhyani 2022)

investigated several ML and DL models; SVM scored 100% on the CICAnd Mal2017 dataset

while LSTM scored 99.40% on the Drebin dataset. With severe gradient boosting,

(Hadiprakoso, Kabetta and Buana, 2020) suggested a hybrid static-dynamic analysis method

attaining 99.36% accuracy. Targeting zero-day assaults using static analysis mixed with ML

and DL models, (Sara and Hossain 2023) obtained a 96% F1 score on the Drebin dataset.

With static APK analysis, trained models Logistic Regression, KNN, and Decision Tree,

attaining 97.8%,98.6% and 97.6% accuracy, (Vanusha D et al., 2024) Combining

Grammatical Evaluation with XGBoost, (Jundi and Hasanen Alyasiri, 2023) obtained up to

99.28% accuracy over many datasets. Reaching 97% accuracy, (Tian et al., 2024) combined

static and dynamic ML analysis for privacy leakage detection. Reaching 98.36% accuracy,

(Kirubavathi G and Nithish S, 2024) presented a dynamic ensemble learning system with

explainable AI. Showing great promise for efficient distributed security systems, (Ullah et al.,

2024) utilised a semantic-based FL approach with transformer-based transfer learning to

achieve 99.38% detection accuracy on CIC-And Mal2017 and 99.14% on CIC MalDroid2020

datasets.

.(Ganesh et al., 2017) demonstrated a CNN model with a 93% accuracy in identifying

malicious apps through permission patterns analysis. Building on this, (Brahami Menaouer et

al., 2023). reported a remarkable 98.50% accuracy by integrating stacked AutoEncoders for

dimensionality reduction with CNNs for classification on the Drebin-2015 dataset.

(Muhammad Aamir et al., 2024) further improved results with the AMDDL model, achieving

an extraordinary 99.92% accuracy, alongside high precision (98.61%), recall (99.16%), and

F1-score (98.88%) on the Drebin dataset. These models' efficacy extends beyond a single

dataset. (Lachtar, Ibdah and Bacha, 2020) evaluated various CNN architectures, including

LeNet, AlexNet, and InceptionV3, attaining a 99.7% detection accuracy with LeNet on a

balanced dataset and addressing performance on imbalanced datasets. (Marwa Ben Jabra et

al., 2023) employed seven pre-trained CNN models and a custom CNN model across Drebin

and Malimg datasets, achieving an average accuracy of 98.26% and a peak accuracy of

100%. They effectively utilized regularization techniques such as L1 and L2 regularization,

dropout, and data augmentation to mitigate overfitting and enhance generalization. Practical

considerations like energy efficiency were also addressed, with LeNet found to be the most

efficient, with a runtime of 342 ms and energy consumption of 1 J for classification.Despite

these advancements, challenges remain. Studies acknowledge potential false positives and the

dynamic nature of malware threats (Ganesh et al., 2017; Brahami Menaouer et al., 2023).

5

(Muhammad Aamir et al., 2024) pointed out issues related to model interpretability and

scalability. Future research directions include exploring different CNN architectures and

combining CNN models with other machine learning techniques to enhance performance

further (Marwa Ben Jabra et al., 2023).Hybrid models have shown superior performance over

traditional and single deep learning approaches.

(Lu et al., 2020) introduced a hybrid deep learning model combining Deep Belief Network

(DBN) and Gated Recurrent Unit (GRU), achieving 97.79% detection accuracy. . (Dong, Shu

and Nie, 2024) presented a hybrid CNN and Deep Neural Network (DNN) model, achieving

96.80% accuracy on the Drebin and Google Play Store datasets by integrating permission

features and API call graphs for comprehensive feature representation. (Xu et al., 2020)

proposed a hybrid CNN and Long Short-Term Memory (LSTM) model for detecting

malicious behaviour in power systems, demonstrating superior accuracy and efficiency. Both

studies highlight the effectiveness of combining CNNs with other deep learning frameworks,

offering substantial benefits for malware detection. These hybrid models leverage the

strengths of individual components to provide a deeper understanding and more

comprehensive feature representation, enhancing detection accuracy, robustness, and

resistance to sophisticated malware attacks. The success of these models in their respective

fields underscores the potential of hybrid architectures for a wide range of applications,

including malware detection, where combining CNNs with models like GRU can enhance

accuracy and efficiency in cybersecurity solutions

2.3 The Critical Role of SMOTE and Chi-square Feature

Using RFECV for optimal feature selection, the research by (Mehedi Hasan Shakil and Md.

Mynul Hasan, 2023) showed an ensemble deep learning strategy combining Bi-LSTM, Bi-

GRU, and 1D CNN, with a startling accuracy of 98.99% on the Drebin dataset. Likewise,

(Liu, Zhang and Long, 2022) presented an enhanced CNN model, BIR-CNN, which

combines Batch Normalisation and Inception-Residual networks, obtaining an accuracy of

0.97 and AUC of 0.99 on the CICAnd Mal2017 dataset, thereby proving the potency of

advanced feature learning approaches. Using Chi-Square feature selection mixed with NLP

approaches, (Areeg Fahad Rasheed, M. Zarkoosh and Sana Sabah Al-Azzowitz, 2023)

concentrated on the IoT ecosystem and achieved an amazing accuracy of 99.93% using SVM

on the IoTPot dataset. Achieving 98.02% accuracy in Android malware detection, (Dhalaria

and Gandotra, 2020) also used Chi-Square feature selection in conjunction with an ensemble

learning technique. In order to maximise Random Forest classifiers, (Habib and Hafsa Binte

Kibria, 2024) used several feature selection strategies like Chi-Square and Mutual

Information alongside sampling techniques like SMote-NC, so obtaining 98.5% accuracy and

stressing explainable AI for model transparency. (Eom et al., 2018) highlighted how well

feature selection enhanced Random Forest's performance on the Malware Genome Project

data. By means of Gain Ratio and ReliefF, (K., Chakravarty and Varma P., 2020) obtained

94.47% accuracy with a smaller feature set. (Ahsan, Gomes and Denton, 2018) showed how

well SMote balanced datasets by mproved efficiency of model detection from 89.87% to

97.17% using oversampling techniques, greatly raising XGBoost phishing detection

accuracy. Using static properties of Windows executables, (Aslam et al., 2020) underlined

how better Random Forest performs in malware categorisation. Finally, (Khoda et al., 2020)

outperformed conventional methods by addressing the unbalanced data problem in mobile

malware detection using a new synthetic oversampling technique. These investigations taken

together highlight the need of Chi-Square feature selection, SMote for data balancing, and

cross-valuation for accuracy increase in building strong and effective malware detection

systems.

 Table 1: summary of the literature

6

Study Methods Dataset Result Limitation

(Pardhi,

Jitendra

Kumar Rout

and Niranjan

Kumar Ray,

2021)

Signature-based approach Norton database(

collection of

malware

signatures)

Implemented a

malware scanner

Limited to

signature-based

detection

(Alam et al.,

2017)

Static analysis using Malware

Analysis Intermediate

Language (MAIL)

5490 Android

applications

(1758 malware)

Detects 93.57% of

malware with a

2.7% false positive

rate

Limited to static

analysis, struggles

with excessive

control flow

obfuscations and

packed malware

Brahmi

Menaouer et

al., (2023)

Stacked AutoEncoders (SAE),

Convolutional Neural

Networks

Drebin-215

dataset

Achieved accuracy

of 98.50%

no feature

selection methods

considered

Lu et al.,

(2020)

Deep Belief Network , Gate

Recurrent Unit

Mixed datasets

from Google

Play, APKpure,

VirusShare,

PRAGuard

The hybrid DBN-

GRU model attained

97.79% accuracy in

detecting Android

malware,

showcasing robust

performance across

varied datasets.

The computational

complexity

associated with

deep learning

methods posed

challenges in

practical

deployment.

(Muhammad

Aamir et al.,

2024)

CNN model Drebin dataset The model achieved

an outstanding

accuracy of 99.92%

critical issues in

interpretability and

scalability of the

model for practical

deployment

(Almarshad et

al., 2023)

Siamese neural network with

one-shot learning

Drebin dataset achieved 98.9%

accuracy

The model it may

still struggle with

completely novel

malware

(Alkahtani

and Aldhyani,

2022

SVM,KNN,LDA,LSTM,CNN-

LSTM models

CICAndMal2017

- Drebin

SVM achieved

100% accuracy with

CICAndMal2017

dataset - LSTM

achieved 99.40%

accuracy with

Drebin dataset

LDA performed

poorly,autoencoder

less effective

compared CNN-

LSTM models

(Hadiprakoso,

Kabetta and

Buana, 2020).

 SVM,K-NN,MLP,Random

Forest,Decision Tree, Naïve

Bayee, GB

Drebin dataset, GB achieved 96% ,

random forest

95.91%.MLP

achieved 96%,Naïve

Bayes achieved

80%, Decision Tree

92%, SVM 94%, K-

NN 80%

Significant

Training time for

SVM. The

accuracy for Naïve

bayes and K-NN

Is not particularly

high

(Sara and

Hossain,

Random Forest ,LR,SVM,

multi model

Drebin dataset Random forest

93%,LR 83%,SVM

Requires extensive

feature extraction

7

2023) opcode+permission+ API

(CNN)

89%, multi model

opcode+permission+

API (CNN) 96%

and combination

performance

depends on feature

selection and

tuning

 (Dong, Shu

and Nie,

2024)

CNN-DNN model Drebin dataset

5560 malware

samples and

benign samples

5560 from

google play store

and other app

stores

Achieved accuracy

96.80%

10-cross-fold

validation chosen

and Requires more

training time

(Vanusha D

et al., 2024)

 Decision Tree, Logistic

Regression, KNN

Drebin dataset Decision Tree

Achieved accuracy

97.6%, Logistic

regression achieved

97.8 and KNN

achieved 98.6

Even with the use

of GridSearchCV

hyperparameter

tuning. Might still

overfit the training

data

(Eom et al.,

2018).

Pre- and post-feature selection

procedures

API data Almost 100%

accuracy in

detection

High

computational cost

due to extensive

feature selection

(Ahsan,

Gomes and

Denton,

2018)

Oversampling methods dataset from UCI

Machine

Learning

Repository

Improved efficiency

of model detection

from 89.87% to

97.17% using

oversampling

techniques

Overfitting

potential due to

oversampling

3 Research Methodology

Given the Current Scenario, the Usage of Android mobile phones is increasing rapidly .broad

criteria of people using Android phones not just teenagers but also older adults and those who

are less technologically savvy. As a result, they may unknowingly install applications without

understanding the potential dangers Compared with IOS Android remains more affordable in

the market which makes Android users more prone to malware attacks.

This situation shows the need for advancement in Android malware detection. One method

that has been used effectively for the detection of malicious smartphone applications is

machine learning (Chowdhury et al.., 2023). With the rapid increase in Android malware, it is

crucial to continuously update research on machine learning for malware detection.

Additionally, new machine-learning techniques should be explored to enhance the detection

of Android malware. Focusing on static features of mobile applications allow us to identify

malicious apps before they are run or installed. This paved the idea to develop a deep

learning hybrid model using the Android malware detection AI model

3.1 Selection of Dataset
Two main criteria dominated the process of choosing a dataset: the availability of trustworthy

data on malicious Android application static features and the inclusion of static features from

Android applications. First under consideration were a number of datasets, including the

8

Android Malware Genome Project and the AndroZoo collection. These datasets also included

dynamic elements, which did not fit the particular criteria of the research, though. In the end,

the Drebin dataset was chosen since it is well-known and emphasises only static features,

which is perfect for Android malware detection. Peer-reviewed research have made great use

of the Drebin dataset, therefore guaranteeing its relevance and dependability. Furthermore,

employing this dataset enables performance comparison with other studies, thereby opening

the path for the creation of a unique Hybrid deep model for Android detection grounded on

this dataset.

 3.2 Model Selection
Examining the current research on model selection for Android malware detection shows that

many recent studies especially those involving deep learning hybrid models those including

CNNs are aiming higher on the Drebin dataset (Muhammad Aamir et al., 2024). CNN models

are adept at spotting trends in feature sets that is, particular combinations of permission that

can point to fraudulent activity, including access to contacts, SMS, and the internet. Though

the Drebin dataset is not naturally time-series data, the sequence and connections between

stationary features nonetheless provide important information. In this sense, GRU models are

useful since they can learn these dependencies and help the model to realize how the presence

or absence of some features, when paired with others, can indicate malware. For example, a

GRU can evaluate the sequence of events if permissions or API calls follow a certain order,

which might be absolutely vital for spotting malware trends. Combining CNN and GRU

helps a hybrid model to maximize the advantages of both methods: While GRUs capture the

sequence and dependencies inside these features, which is crucial for efficient malware

identification, CNNs are skilled in extracting significant local patterns and interactions

between static features.

 3.3 Considering feature selection and data balancing
It was found that during preprocessing imbalances between malicious and non malicious

samples were found in the dataset. SMOTE, an oversampling method creating synthetic

samples for the minority class, was introduced experimentally to solve this problem even if

the imbalance was not significant.

Apart from SMOTE, for feature selection Chi-square algorithms were considered. With 215

features in the dataset, the Chi-square method helps to find the most pertinent features having

a statistically significant correlation with the target variable. This method not only lowers the

dimensionality of the data but also improves the capacity of the model to concentrate on the

most important indicators of malicious behavior.

3.4 Experimental Analysis of Model Performance
Four different approaches of preprocessing the Drebin dataset produced four independent

datasets for study. The first dataset was preprocessed which involved removing any null

values and undesired columns were deleted. Using feature selection where 60 features were

chosen from the initial 215 for the second dataset While (Brahmi Menaouer et al. 2023)

obtained 98.5% without feature selection, previous research include (Almarshad et al. (2023)

selected 40 features with an accuracy of 98.9%. Experiments involving 60 features were

carried out to investigate this more. To solve class imbalance, the third dataset was handled

with both feature selection and SMOTE. The fourth dataset underwent Smote alone during

preprocessing.

Training on these four datasets and comparing their performance will help to find the ideal

performing model. This approach aims to assess the performance of the AI model and the

influence of every preprocessing step feature selection, SMOTE, or a mix of both. Each of

9

the four datasets was trained using a CNN-GRU model both with a normal training of dataset

and with k-fold cross-validation, therefore guaranteeing a strong comparability. By means of

this study, can ascertain whether training the CNN-GRU model on various preprocessed

datasets results in any appreciable performance variations.

.

3.5 Evaluation and Comparison
The performance of the four models was evaluated based on several metrics, including F1-

score, accuracy, precision, recall, as well as testing and training time. Additionally, the

accuracy of the four models was compared between those trained using the standard method

and those trained with k-fold cross-validation. Finally, the optimal model was selected, and

its performance was compared to existing models.

4 Design Specification

4.1 CNN-GRU model Architecture

This model uses CNN's feature extraction strengths as well as GRUs for sequence learning.

CNNs are good at spotting unique patterns, like odd combinations of permissions or frequent

API calls pointing to malware. Conversely, GRUs excel in catching temporal dependencies

which are essential for comprehending the flow of events normal for malware. The model can

identify suspicious patterns of API requests, for example, accessing sensitive data and then

network communication. Particularly on datasets such as Drebin, this combined approach of

CNN and GRU model can be a useful tool for malware detection since its capacity to manage

high-dimensional data and learn complex feature interactions improves its detection

accuracy, so reducing false positives and negatives. The arrangement of this model made use

of the following libraries. Pandas for data manipulation; scikit-learn for model selection and

preprocessing; pickle for serialisation; tensorflow and keras for deep learning model

building; matplotlib and seaborn for data visualization and numpy for numerical calculations.

Conv1D layers of the model are meant to progressively extract and refine sequential data

characteristics. To capture first patterns, the first Conv1D layer employs 256 filters with a 3-

pixel kernel size ReLU activation. Maintaining a kernel size of 3, the second Conv1D layer

decreases the number of filters to 128 and keeps processing the features via ReLU activation,

hence enabling more complicated representations. Focussing on higher-level features and

maintaining the kernel size and ReLU activation, the third Conv1D layer further downsplays

the filters to 64. At last, the fourth Conv1D layer with 32 filters, a kernel size of 3, and ReLU

activation polishes the feature maps even more, so guaranteeing the model catches the most

abstract and high-level patterns required for the next layers to operate effective

categorisation. Following every Conv1D layer, batch normalisation is used to stabilise and

speed up training; dropout at a rate of 0.3 helps to prevent overfitting. Following the second,

third, and fourth Conv1D layers to lower dimensionality, Max Pooling 1D with a 2 pool size

then capture temporal dependencies with two GRU layers; the first GRU layer has 128 units

and return sequences enabled; the second GRU layer has 64 units. Dropout and recurrent

dropout set to 0.3 are used both at GRU layers. ReLu activation and dropout abound in the

dense layer; the final output dense layer comprises one unit with sigmoid activation for

binary classification. The Adam optimiser, binary cross-entropy loss function, and accuracy

measure build the model to assess performa

10

5 Implementation

This research study focuses on detecting Android malware using a CNN-GRU model. The

Drebin dataset was utilized, and eight experimental studies were conducted. The dataset

underwent four distinct preprocessing approaches: the first included data processing with

SMOTE, the second combined feature selection with SMOTE, the third involved only feature

selection, and the fourth applied basic preprocessing. During the preprocessing stage, label

encoding and feature selection processes were saved. These four newly preprocessed datasets

were then trained using the CNN-GRU model, both with k-fold cross-validation and with a

train-test split, resulting in a total of eight experiments. The performance of the models was

subsequently evaluated, and the models were saved for integration into the GUI application

 Figure 1: Workflow of CNN-GRU-Based Android Malware Detection

5.1 Dataset

The Drebin dataset 12 is an extensive collection specifically created to support research in

Android malware detection. The dataset comprises 129,013 Android applications, out of

which 5,560 have been classified as malware samples belonging to 179 distinct malware

families crawled from August 2010 to October 2012. Each application in the dataset is

represented by a feature vector encompassing several key attributes (Arp et al., 2014):

12 https://www.kaggle.com/datasets/likhithadurusoju/drebindataset

https://www.kaggle.com/datasets/likhithadurusoju/drebindataset

11

 Hardware Components: This includes access to hardware features like the camera

and GPS, which can be indicators of malicious intent.

 Requested Permissions: Permissions listed in the manifest file, often signal

potentially harmful behavior

 App Components: The types and names of components such as activities, services,

content providers, and broadcast receivers, which may help identify malware.

Filtered Intents: Intents used for inter-component communication, often exploited by

malware for actions like Boot completed.

 Restricted API Calls: Critical API calls that require specific permissions, which may

reveal malicious activities.

 Used Permissions: Permissions utilized by the application, providing an overview of

its behavior.

 Suspicious API Calls: Calls accessing sensitive data, network operations, SMS,

external commands, and employing obfuscation techniques.

 Network Addresses: IP addresses, hostnames, and URLs used for malicious network

connections.

5.2 Dataset Preprocessing

Four alternative approaches of preprocessing the dataset helped to produce separate pre-

processed datasets. Pre-processed Dataset 3 loaded necessary libraries including pandas,

SelectKBest, chi2, LabelEncoder, and SMOTE. Drebin.csv was the source of the dataset; the

last row was deleted and null value columns were noted. The target variable "class" was

evaluated for class imbalance; columns with the "?" character were found; the pointless

"TelephonyManager.getSimCountryIso" column was deleted. LabelEncoder encoded the

"class" column; features (X) and the target variable (y) were split; SelectKBest with a chi-

squared statistic chose the top 60 features. Oversampling the minority class using SMOTE

helped to balance the dataset, producing a balanced dataset preserved as

"Drebin_balanced_dataset".Though without using SMOTE, the approach for Pre-processed

Dataset 2 was same to Pre-processed Dataset 3. Importing fundamental libraries including

pandas, SelectKBest, chi2, and LabelEncoder, the same preprocessing techniques were

followed. The dataset stayed unbalanced, nonetheless, and was saved as

"Drebin_unbalanced1_dataset." Pre-processed Dataset 1 loaded necessary libraries like

pandas and LabelEncoder. The dataset was read; the last row was deleted; null value columns

were noted; and columns with the '?' character were found. The "class" field was encoded

with LabelEncoder while the "TelephonyManager.getSimCountryIso" column was deleted.

The cleaned dataset was stored as "Drebin_cleaned_dataset," after separating features (X) and

the target variable (y). Pre-processed Dataset 4 loaded necessary libraries including pandas,

LabelEncoder, and SMOTE. Following the same procedures as in Dataset 3, SMOTE was

used to oversampling the minority class so balancing the dataset. This produced a cleaned-up

and balanced dataset saved under "Drebin_cleaned_balanced_dataset".

5.3 Feature Selection

In the context of a dataset, feature selection is the act of choosing, from the initial collection

of features, a subset of pertinent features (Bahassine et al., 2020).. Reducing overfitting,

raising accuracy, and accelerating training time will help to enhance the machine learning

model's performance. In order to improve model performance by keeping the most pertinent

features and therefore lowering the dimensionality of the dataset, feature selection was

12

applied in this work. This procedure consists on choosing the top attributes most likely to

influence the target variable. In this study, the Chi-squared approach is applied in feature

selection. The features start off apart from the target variable. The Chi-squared test is then

used to assess the relevance of every feature in respect to the target variable. Selected are the

top sixty features according to their Chi-squared values. After that, the chosen characteristics

together with their p-values and scores are assembled into a DataFrame for examination. This

guarantees that, by excluding unnecessary or less significant data, only the most powerful

elements are used for training the model, therefore enhancing its accuracy and efficiency.

Dealing with related features is one difficulty using feature selection. Highly correlated

features might cause redundancy—that is, where the chosen features offer overlapping

information. This may affect model performance and lower the efficiency of the feature

choosing process. Establishing the ideal feature count for this research is difficult.

5.4 Data Balancing

Data balancing is the adjusting of the class distribution in a dataset to mitigate biases caused

by unequal class frequencies, enhancing model performance in handling minority and

majority class predictions(Ahsan, Gomes, and Denton, 2018). Data balancing is used in this

study to address class imbalances between malware and benign samples, which can bias the

model towards the majority class and reduce its accuracy. To implement data balancing, the

Synthetic Minority Over-sampling Technique (SMOTE) is used. SMOTE generates synthetic

samples for the minority class (malware) to create a balanced dataset. This is achieved by

fitting the SMOTE algorithm The Synthetic Minority Over-sampling Technique (SMOTE) is

a method used to solve class imbalance in datasets. It generates synthetic samples for the

minority class depending on its present cases (Elreedy, Atiya, and Kamalov, 2023). This

method generates new synthetic instances resembling the current minority class samples but

not exact replicas, therefore helping to equalize the class distribution. By offering more

representative samples for the minority class, SMOTE helps models educated on imbalanced

datasets perform betterto the selected features and the target variable, resulting in a dataset

with an equal distribution of classes. The balanced dataset is then saved for further analysis,

ensuring the model receives balanced input data during training, which improves its ability to

accurately detect malware. Dimensionality issues occurred during development .

5.5 Training

The Four dataset is trained using the CNN-GRU model with two different methods k-cross-

validation and normal performance evaluation.

 K-Fold cross-validation

K-fold Cross-validation divides the dataset into 5 parts called (“fold) for each 5 fold, the

model is trained using 4 of the folds and tested on the remaining 1 fold. This process is

repeated 5 times. For each fold ,the model is saved if it performs the best on validation data.

After completing all the folds it reports the average accuracy and loss, This makes K-fold

Cross-Validation particularly valuable in making the reported F1 score, Precision, and recall

reflective of the model's true performance. But the drawback is amount of resources and

training time is significant

5.6 Performance Evaluation

A total four experiments which trained with cross-k validation and train-split method will be

evaluated by measuring the performance metrics accuracy, precision, recall, and f1 score. The

results from each experiment will be compared to determine which one performs the best.

Also, the performance of the best model is compared to the existing mode

13

5.7 GUI application

the GUI application for the Android malware detection system lets users to enter APK file

features with unambiguous buttons for operations like loading features and executing

predictions. Text boxes provide openness by displaying preprocessing actions, underlining

particular traits, and showing prediction results. The graphical user interface leads consumers

through the process and offers instantaneous comments on whether an APK qualifies as

benign or malicious

6 Evaluation
A total of 4 experiments were conducted. The four experiments were trained using k-fold

cross-validation and normal training Experiment 1 utilized pre-processed dataset 1

Experiment 2 used pre-processed dataset 2 used following Experiment 3 employed pre-

processed dataset 3 , and finally experiment 4 utilized pre-processed dataset 4 used

6.1 Experiment 1: Pre-processed Dataset 1 Including Cross-validation

Accuracy

The training time taken by the model was 4110.6 seconds, and the testing time was 1.38

seconds. The accuracy per fold was as follows:

 Table 2: accuracy per fold

 Fold Loss Testing Accuracy

Fold 1 0.070 98.41%

Fold 2 0.121 97.31%

Fold 3 0.115 97.51%

Fold 4 0.085 97.93%

Fold 5 0.079 98.06%

 Table 3: Average scores for all Folds

Average Testing Accuracy 97.84%

Average Loss 0.094

Final Accuracy: 98.48% loss: 0.08

 Table 4: Classification Report

 Precision Recall F1-score Support

0 0.97 0.96 0.97 342

1 0.99 0.99 0.99 1108

Accuracy 0.98 1450

Macro avg 0.98 0.98 0.98 1450

Weighted avg 0.98 0.98 0.98 1450

6.2 Experiment 2: Pre-processed dataset (with feature selection, K-Fold

Cross-Validation)

The training time taken by the model was 1252.53 seconds, and the testing time was 0.95

seconds.

 Table 5: Accuracy per fold

Fold Loss Accuracy

Fold 1 0.12 96.82%

14

Fold 2 0.17 95.72%

Fold 3 0.19 95.72%

Fold 4 0.14 96.89%

Fold 5 0.15 96.68%

 Table 6: Average scores for all Folds

Average Testing Accuracy 96.37%

Average Loss 0.157

Final Testing Accuracy: 96.82% loss: 0.11

 Table 7: Classification Report

 Precision Recall F1-score Support

0 0.94 0.93 0.93 342

1 0.98 0.98 0.98 1108

Accuracy 0.97 1450

Macro avg 0.96 0.95 0.96 1450

Weighted avg 0.97 0.97 0.97 1450

6.3 Experiment 3: Pre-processed dataset with feature selection and

SMOTE applied, with K-Fold Cross-Validation

The training time taken by the model was 1483.04 seconds, and the testing time was 1.21

seconds.

 Table 8: Accuracy per folds

Fold Loss Testing Accuracy

Fold 1 0.10 97.07%

Fold 2 0.14 96.67%

Fold 3 0.10 97.52%

Fold 4 0.10 97.12%

Fold 5 0.09 97.39%

 Table 9: Average scores for all Folds

Average Testing Accuracy 97.15%

Average Loss 0.110

Final Testing accuracy: - 97.53% loss 0.09%

 Table 10: Classification Report

 Precision Recall F1-score Support

0 0.98 0.97 0.98 1136

1 0.97 0.98 0.97 1088

Accuracy 0.98 2224

Macro avg 0.98 0.98 0.98 2224

Weighted avg 0.98 0.98 0.98 2224

15

6.4 Experiment 4: Pre-processed dataset with SMOTE applied, K-Fold

Cross-Validation

The training time taken by the model was 4582.42 seconds, and the testing time was 1.96

seconds.

 Table 11:accuracy per fold

Fold Loss Testing Accuracy

Fold 1 0.06 98.33%

Fold 2 0.07 98.33%

Fold 3 0.04 98.87%

Fold 4 0.03 98.92%

Fold 5 0.07 98.56%

 Table 12: Average scores for all Folds

Average Testing Accuracy 98.60%

Average Loss 0.06

Final accuracy: 98.83% loss:0.04

 Table 13: Classification Report

 Precision Recall F1-score Support

0 0.99 0.99 0.99 1136

1 0.99 0.99 0.99 1088

Accuracy 0.99 2224

Macro avg 0.99 0.99 0.99 2224

Weighted avg 0.99 0.99 0.99 2224

6.5 The four experiments were evaluated using both k-fold cross-

validation and normal validation for comparison

 Table 14: experiment comparison

 k-cross-

validation

Testing

Accuracy

Standard

Testing

Accuracy

Training

time (k-

cross-

validation

accuracy)

Testing

time (k-

cross-

validation

accuracy

Testing

time

(standard

accuracy)

Training

time

(standard

accuracy)

`Experiment1 98.48% 98.62% 4110.63

sec

1.38sec 1.71 sec 4383.9 sec

experiment2 96.82% 96.83% 1252.53

sec

0.95 sec 1.17 sec 1283.0 sec

Experiment3 97.53% 97.57% 1483.04

sec

1.21 sec 1.10 sec 1377.1 sec

Experiment4 98.83% 98.52% 4582.4 sec 1.96 sec 1.92 sec 4509.9 sec

16

6.6 Comparison of Existing models with the proposed best model

 Table 15: Model comparison

Study Model Accuracy

(Hadiprakoso, Kabetta and

Buana, 2020).
GB 96%

 Naïve Bayes 80%

 Decision Tree 92%

 SVM 94%

 80%

(Brahmi Menaouer et al., 2023) Stacked AutoEncoders

(SAE), Convolutional

Neural Networks

98.50%

(Dong, Shu and Nie, 2024) CNN-DNN model 96.80%

(Vanusha D et al., 2024) Logistic regression 97.8%

Proposed best model CNN-GRU 98.83%

6.7 Discussion

Feature selection and impact on Accuracy

Experiment 2 and experiment 2 without k-cross validation shows a small decrease in

accuracy but improved testing time. In experiment 3 and experiment 3 with normal

validation the combination of feature selection and smote observed a balance in accuracy and

testing time improvement

Impact of Smote

Experiments using SMOTE (experiment 3, experiment 4, experiment 3 with normal

validation, and experiment 4 with normal validation)

Improved Accuracy: Experiments using SMOTE shows higher accuracy with experiment 4

achieving the highest.

Increase Training and Testing: SMOTE increases training and testing times due to the larger,

more complex datasets. Experiment 4 which applied SMOTE without feature selection, had

the highest training time

Impact of k-cross-validation and normal validation

Both k-fold cross-validation and normal validation results got comparable accuracy with

minor differences. experiment 1’s accuracy difference between k-fold and train-test is 0.14%

in favour of the train-test split. In experiment 4 the k-fold cross-validation showed a slight

advantage (0.3) over standard triaining

The training time is generally slightly higher compared to the normal validation, but the

testing time is relatively similar.

Impact of SMOTE on Imbalanced vs Balanced Datasets.

Experiment 3 and Experiment 4 both used SMOTE to balance the datasets. This resulted in

high precision, recall, and f1-scores for both classes, indicating that the model was able to

correctly identify instances from both the minority and majority classes more effectively

Experiment 4 (balanced dataset with SMOTE) achieved the highest testing accuracy) with

the lowest loss of 0.04 demonstrating that the model trained on the balanced dataset with

SMOTE had the most reliable predictions with the least error. However, When implementing

the trained model in a Python Gui, the chosen model was experiment 3 trained with the train-

split method. This choice is due to its balanced accuracy and lower testing time, which is

crucial for real-time detection systems.

17

7 Conclusion and Future Work
As the increase of Android-based smart devices and applications are mostly targetable by

malware attacks. The hybrid CNN-GRU model developed has successfully outperformed

numerous existing models, and also conducted detailed experiment runs, to find the about the

overall optimal model exploring the different combinations of data balancing and feature

selection algorithms,. The best results obtained were obtained by experiment 4 having an

accuracy 99%, precision of 99%, recall of 99%, and f1 score of 99% respectively

While the Drebin dataset is well-known for its use in Android malware detection, the dataset

is relatively old consisting data collected during 2010 to 2012, latest datasets like

CICMalDroid 2020, CCCS-CIC-AndMal-2020 , should be considered for further research.

Moreover, combining these datasets for training with the CNN-GRU model could provide

valuable insights. Additionally, exploring an ensemble model approach that integrates the

CNN-GRU model with other models like Random Forests and XGBoost could be a

promising direction for future work.

References
Tully, S. and Mohanraj, Y., 2017. 'Mobile security,' in Elsevier eBooks, pp. 5–55. Available

at: https://doi.org/10.1016/b978-0-12-804629-6.00002-x [Accessed 4 July 2024].

Chowdhury, M.N.-U.-R., Islam, T., Zaman, F., Hasan, M.M., Ahmed, F., & Rahman, M.A.

(2023). Android malware detection using machine learning: A review. TechRxiv.

https://doi.org/10.36227/techrxiv.22580881.v1

Jafari, S. and Byun, Y.-C., 2023. A CNN-GRU Approach to the Accurate Prediction of

Batteries’ Remaining Useful Life from Charging Profiles. Computers, 12(11), pp.219–219.

doi:https://doi.org/10.3390/computers12110219.

Pardhi, P.R., Rout, J.K. and Ray, N.K., 2021. Implementation of a malware scanner using

signature-based approach for Android applications. OCIT 2021: Proceedings of the

International Conference on Optical and Computational Image Processing Technologies.

DOI: https://doi.org/10.1109/ocit53463.2021.00015.

Alam, S., Qu, Z., Riley, R., Chen, Y. and Rastogi, V. (2017). DroidNative: Automating and

optimizing detection of Android native code malware variants. Computers & Security,

[online] 65, pp.230–246. doi:https://doi.org/10.1016/j.cose.2016.11.011.

Jafari, S. and Byun, Y.-C. (2023). A CNN-GRU Approach to the Accurate Prediction of

Batteries’ Remaining Useful Life from Charging Profiles. Computers, 12(11), pp.219–219.

doi:https://doi.org/10.3390/computers12110219.

Apvrille, L. and Apvrille, A. (2015). Identifying Unknown Android Malware with Feature

Extractions and Classification Techniques. [online] IEEE Xplore.

doi:https://doi.org/10.1109/Trustcom.2015.373.

Liang, D., Shen, L., Chen, Z., Ma, C. and Feng, J. (2022). A Formal Method for Description

and Decision of Android Apps Behavior Based on Process Algebra. IEEE Access, 10,

pp.108668–108683. doi:https://doi.org/10.1109/access.2022.3210386.

Kouliaridis, V., & Kambourakis, G. (2021). A comprehensive survey on machine learning

techniques for Android malware detection. Information, 12(5), 185.

https://doi.org/10.3390/info12050185

 Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D.S., Park, Y., & Jeon, H. (2017). CNN-

based Android malware detection. In 2017 International Conference on Software Security

and Assurance (ICSSA) (pp. 58-63). IEEE. https://doi.org/10.1109/icssa.2017.18

https://doi.org/10.1016/b978-0-12-804629-6.00002-x
https://doi.org/10.36227/techrxiv.22580881.v1
https://doi.org/10.3390/computers12110219
https://doi.org/10.1109/ocit53463.2021.00015
https://doi.org/10.3390/info12050185
https://doi.org/10.1109/icssa.2017.18

18

Gupta, A., Maurya, S., Kapil, D., Mehra, N., & Negi, H. (2020). Android malware detection

using machine learning. International Journal of Recent Technology and Engineering,

8(2S12), 65-70. https://doi.org/10.35940/ijrte.b1011.0982s1219

Brahami, M., Menaouer, I., & Nada, M. (2023). Android malware detection approach using

stacked autoencoder and convolutional neural networks. International Journal of Intelligent

Information Technologies, 19(1), 1-22. https://doi.org/10.4018/ijiit.329956

Lu, T., Du, Y., Ouyang, L., Chen, Q., & Wang, X. (2020). Android malware detection based

on a hybrid deep learning model. Security and Communication Networks, 2020, 1-11.

https://doi.org/10.1155/2020/8863617

Muhammad, A., Iqbal, M.W., Nosheen, M., Ashraf, M.U., Shaf, A., Almarhabi, K.A.,

Alghamdi, A.M. and Bahaddad, A.A., 2024. AMDDLmodel: Android smartphones malware

detection using deep learning model. PLOS ONE, 19(1), pp.e0296722. doi:

https://doi.org/10.1371/journal.pone.0296722.

Almarshad, F.A., Zakariah, M., Ghada Abdalaziz Gashgari, Eman Abdullah Aldakheel and

Abdullah (2023). Detection of Android Malware Using Machine Learning and Siamese Shot

Learning Technique for Security. IEEE Access, 11, pp.127697–127714.

doi:https://doi.org/10.1109/access.2023.3331739.

Feng, R., Chen, S., Xie, X., Meng, G., Lin, S.-W. and Liu, Y. (2021). A Performance-

Sensitive Malware Detection System Using Deep Learning on Mobile Devices. IEEE

Transactions on Information Forensics and Security, 16, pp.1563–1578.

doi:https://doi.org/10.1109/tifs.2020.3025436.

Alkahtani, H. and Aldhyani, T.H.H. (2022). Artificial Intelligence Algorithms for Malware

Detection in Android-Operated Mobile Devices. Sensors, 22(6), p.2268.

doi:https://doi.org/10.3390/s22062268.

Hadiprakoso, R.B., Kabetta, H. and Buana, I.K.S. (2020). Hybrid-Based Malware Analysis

for Effective and Efficiency Android Malware Detection. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICIMCIS51567.2020.9354315.

Sara, J.J. and Hossain, S. (2023). Static Analysis Based Malware Detection for Zero-Day

Attacks in Android Applications. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICICT4SD59951.2023.10303336.

Dong, S., Shu, L. and Nie, S. (2024). Android Malware Detection Method Based on CNN

and DNN Bybrid Mechanism. IEEE transactions on industrial informatics, pp.1–10.

doi:https://doi.org/10.1109/tii.2024.3363016.

Vanusha D, Singh, S., Abhijeet Kumar Jha and Delsi Robinsha S (2024). SecuDroid :

Android Malware Detection using ML classifier on Static Features.

doi:https://doi.org/10.1109/icnwc60771.2024.10537417.

Jundi, Z.Z. and Hasanen Alyasiri (2023). Android Malware Detection Based on Grammatical

Evaluation Algorithm and XGBoost. doi:https://doi.org/10.1109/aiccit57614.2023.10217965.

Tian, Y., Dai, X., Li, Z., Guo, H., Mao, X. and Li, Y. (2024). Research on Personal Privacy

Security Detection Techniques for Android Applications.

doi:https://doi.org/10.1109/icetis61828.2024.10593754.

Kirubavathi G and Nithish S (2024). Dynamic Ensemble Learning Framework Enhanced

with XAI To Detect Android Malware.

doi:https://doi.org/10.1109/iscs61804.2024.10581314.

Ullah, F., mostarda, L., Diletta Cacciagrano, Chen, C.-M. and Kumari, S. (2024). Semantic-

based Federated Defense for Distributed Malicious Attacks. IEEE Consumer Electronics

Magazine, pp.1–9. doi:https://doi.org/10.1109/mce.2024.3431792.

https://doi.org/10.35940/ijrte.b1011.0982s1219
https://doi.org/10.4018/ijiit.329956
https://doi.org/10.1155/2020/8863617
https://doi.org/10.1371/journal.pone.0296722

19

Habib, M. and Hafsa Binte Kibria (2024). Feature Selection-Based Machine Learning

Approaches for Detecting Android Malware with Explainable AI.

doi:https://doi.org/10.1109/icaeee62219.2024.10561751.

Eom, T., Kim, H., An, S., Jong Sou Park and Dong Seong Kim (2018). Android Malware

Detection Using Feature Selections and Random Forest.

doi:https://doi.org/10.1109/icssa45270.2018.00023.

K., S.J., Chakravarty, S. and Varma P., R.K. (2020). Feature Selection and Evaluation of

Permission-based Android Malware Detection. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICOEI48184.2020.9142929.

Ahsan, M., Gomes, R. and Denton, A. (2018). SMOTE Implementation on Phishing Data to

Enhance Cybersecurity. [online] IEEE Xplore.

doi:https://doi.org/10.1109/EIT.2018.8500086.

Aslam, W., Muhammad Moazam Fraz, Rizvi, S.K. and Saleem, S. (2020). Cross-validation

of machine learning algorithms for malware detection using static features of Windows

portable executables: A Comparative Study. 2020 IEEE 17th International Conference on

Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET).

doi:https://doi.org/10.1109/honet50430.2020.9322809.

Khoda, M.E., Joarder Kamruzzaman, Gondal, I., Imam, T. and Rahman, A. (2020). Mobile

Malware Detection with Imbalanced Data using a Novel Synthetic Oversampling Strategy

and Deep Learning. doi:https://doi.org/10.1109/wimob50308.2020.9253433.

Dhalaria, M. and Gandotra, E. (2020). Android Malware Detection using Chi-Square Feature

Selection and Ensemble Learning Method. [online] IEEE Xplore.

doi:https://doi.org/10.1109/PDGC50313.2020.9315818.

Areeg Fahad Rasheed, M. Zarkoosh and Sana Sabah Al-Azzawi (2023). The Impact of

Feature Selection on Malware Classification Using Chi-Square and Machine Learning.

doi:https://doi.org/10.1109/iccce58854.2023.10246084.

Liu, T., Zhang, H. and Long, H. (2022). Malicious Software Detection Based on Improved

Convolution Neural Network. 2022 2nd International Conference on Frontiers of

Electronics, Information and Computation Technologies (ICFEICT).

doi:https://doi.org/10.1109/icfeict57213.2022.00065.

Bahassine, S., Madani, A., Al-Sarem, M. and Kissi, M. (2020). Feature selection using an

improved Chi-square for Arabic text classification. Journal of King Saud University -

Computer and Information Sciences, 32(2), pp.225–231.

doi:https://doi.org/10.1016/j.jksuci.2018.05.010.

Lachtar, N., Ibdah, D. and Bacha, A. (2020). Towards Mobile Malware Detection Through

Convolutional Neural Networks. IEEE Embedded Systems Letters, pp.1–1.

doi:https://doi.org/10.1109/les.2020.3035875.Jaiswal, R. and Singh, B. (2022). A Hybrid

Convolutional Recurrent (CNN-GRU) Model for Stock Price Prediction. [online] IEEE

Xplore. doi:https://doi.org/10.1109/CSNT54456.2022.9787651.

Bhargavi Suvarnam and Viswanadha Sarma Ch (2019). Combination of CNN-GRU Model to

Recognize Characters of a License Plate number without Segmentation. International

Conference on Advanced Computing. doi:https://doi.org/10.1109/icaccs.2019.8728509.

Mehedi Hasan Shakil and Md. Mynul Hasan (2023). Empowering Android Malware

Detection: A Deep Learning Ensemble with Optimal Features.

doi:https://doi.org/10.1109/iccit60459.2023.10441465.

Xu, A., Chen, L., Kuang, X., Huahui Lv, Yang, H., Jiang, Y. and Li, B. (2020). A Hybrid

Deep Learning Model for Malicious Behavior Detection.

doi:https://doi.org/10.1109/bigdatasecurity-hpsc-ids49724.2020.00021.

20

Lachtar, N., Ibdah, D. and Bacha, A. (2020). Towards Mobile Malware Detection Through

Convolutional Neural Networks. IEEE Embedded Systems Letters, pp.1–1.

doi:https://doi.org/10.1109/les.2020.3035875.

Marwa Ben Jabra, Cheikhrouhou, O., Nesrine Atitallah, Anouar Ben Amor and Habib

Hamam (2023). Malware Detection Using Deep Learning and CNN Models.

doi:https://doi.org/10.1109/cw58918.2023.00073.

Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H. and Rieck, K. (2014). Drebin: Effective

and Explainable Detection of Android Malware in Your Pocket. Proceedings 2014 Network

and Distributed System Security Symposium. [online]

doi:https://doi.org/10.14722/ndss.2014.23247.

Dey, S.K., Uddin, K.M.M., Babu, H.Md.H., Rahman, Md.M., Howlader, A. and Uddin,

K.M.A. (2022). Chi2-MI: A hybrid feature selection based machine learning approach in

diagnosis of chronic kidney disease. Intelligent Systems with Applications, 16, p.200144.

doi:https://doi.org/10.1016/j.iswa.2022.200144.

Elreedy, D., Atiya, A.F. and Kamalov, F. (2023). A theoretical distribution analysis of

synthetic minority oversampling technique (SMOTE) for imbalanced learning. Machine

Learning. doi:https://doi.org/10.1007/s10994-022-06296-4.

	1 Introduction
	2 Related Work
	2.1 Traditional Android Malware Detection Methods
	2.2 Existing Machine Learning and Deep Learning Models in Malware Detection
	2.3 The Critical Role of SMOTE and Chi-square Feature

	3 Research Methodology
	4 Design Specification
	5 Implementation
	5.7 GUI application

	6 Evaluation
	6.1 Experiment 1: Pre-processed Dataset 1 Including Cross-validation Accuracy
	6.2 Experiment 2: Pre-processed dataset (with feature selection, K-Fold Cross-Validation)
	6.3 Experiment 3: Pre-processed dataset with feature selection and SMOTE applied, with K-Fold Cross-Validation
	6.4 Experiment 4: Pre-processed dataset with SMOTE applied, K-Fold Cross-Validation
	6.5 The four experiments were evaluated using both k-fold cross-validation and normal validation for comparison
	6.6 Comparison of Existing models with the proposed best model
	6.7 Discussion

	7 Conclusion and Future Work
	References

