
Configuration Manual for CSIC web application attacks

classifier

Instructions for setting up and implementing a classifier for web application assaults are

provided in this manual. The classifier assists in identifying possible security risks by utilizing

a machine learning model to distinguish between legitimate and suspect web traffic.

1. Requirements

Software requirements Data Files Hardware requirements

Python

Pandas

Streamlit

Anaconda

Normal_class.csv file

Suspicious_class.csv

Ram: 16 GB

Processor: Intel i5

OS: Windows 11

2 Code execution

Figure1.This code imports libraries and modules for various tasks:

- Data Handling: `numpy`, `pandas` for numerical operations and data manipulation.

- Visualization: `seaborn`, `matplotlib.pyplot` for plotting.

- Text Processing: `re` for regular expressions.

- Math Operations: `math` for mathematical functions.

- Explainability: `eli5`, `PartialDependenceDisplay` for model interpretability.

- Machine Learning: `sklearn` and `xgboost` for preprocessing, classifiers, metrics, and model

evaluation.

- Deep Learning: `tensorflow` for building neural networks.

The code imports libraries for data processing, visualization, and machine learning, including

various classifiers, deep learning with TensorFlow, and tools for model explainability such as

ELI5 and Partial Dependence Displays.

Figure2.This code loads a CSV file located at `'/content/drive/MyDrive/csic_database.csv'`

into a pandas DataFrame called `csic_data` and prints 'Done!' once the operation is complete.

Figure3.The code calculates and prints the number of samples and features in the `csic_data`

dataset using its shape attribute. `n_samples` represents the total number of rows, and

`n_features` represents the total number of columns.

Figure4.This code computes and prints the count of missing values for each feature in the

`csic_data` DataFrame. It shows the number of missing values for all features.

Figure5.This code calculates the percentage of missing data in the `csic_data` DataFrame. It

finds the total number of cells, sums up the missing values, computes the percentage, and prints

it.

Feature Engineering:

Figure6.This code iterates through each feature in `csic_data` and prints the number of unique

values for each feature. If a feature doesn't exist, it prints a corresponding message.

Figure7.This code renames specific columns in the DataFrame `X` for clarity, adjusts the

feature names, and then selects only the specified columns from `X`. It finally prints the

resulting DataFrame.

Figure8.This code identifies and prints the names of categorical variables (features with data

type 'object') in the DataFrame `X`. It checks each feature's data type and lists those that are

categorical.

Figure9.This code handles missing values in the `content_length` column by:

1. Converting `content_length` to strings.

2. Extracting numeric values from the strings using regex.

3. Converting the extracted values back to numeric format, replacing any non-numeric entries

with `NaN`.

4. Filling these `NaN` values with `0`.

It then prints the cleaned `content_length` column.

Figure10.This code filters the `X` DataFrame to show the `content_length` values only for

rows where the `Method` column is 'GET'. It then prints these filtered values.

URL Preprocessing:

Figure11.This code counts the occurrences of each unique URL in the `URL` column,

extracts the top 10 most frequent URLs, and prints them along with their counts.

Figure13.These functions extract and compute various features from URLs:

- `count_dot(url)`: Counts dots (`.`) in the URL.

- `no_of_dir(url)`: Counts directory separators (`/`) in the URL path.

- `no_of_embed(url)`: Counts embedded URL separators (`//`) in the URL path.

- `shortening_service(url)`: Checks if the URL uses a known shortening service.

- `count_http(url)`: Counts occurrences of 'http' in the URL.

- `count_per(url)`: Counts percentage signs (`%`) in the URL.

- `count_ques(url)`: Counts question marks (`?`) in the URL.

- `count_hyphen(url)`: Counts hyphens (`-`) in the URL.

- `count_equal(url)`: Counts equal signs (`=`) in the URL.

- `url_length(url)`: Returns the length of the URL.

- `hostname_length(url)`: Returns the length of the hostname part of the URL.

- `suspicious_words(url)`: Scores the URL based on the presence of suspicious words and

patterns.

- `digit_count(url)`: Counts digits in the URL.

- `letter_count(url)`: Counts letters in the URL.

- `count_special_characters(url)`: Counts special characters in the URL.

- `number_of_parameters(url)`: Counts the number of parameters in the URL query string.

- `number_of_fragments(url)`: Counts the number of fragments in the URL.

- `is_encoded(url)`: Checks if the URL contains URL encoding.

- `unusual_character_ratio(url)`: Calculates the ratio of unusual characters in the URL

Figure14.This code applies various URL feature extraction functions to the `URL` column in

the DataFrame `X` and creates new columns for each extracted feature:

- Dot count, directory slashes, embedded slashes: Adds columns for counts of dots, slashes,

and embedded slashes.

- Shortening service, HTTP count, percent signs, etc.: Adds columns for URL shortening

service presence, HTTP occurrences, percent signs, and other URL-specific metrics.

- Hostname length, suspicious words score, digit/letter count: Adds columns for hostname

length, suspicious words score, and counts of digits and letters.

- URL length, query parameters, fragments, encoding, special characters, unusual character

ratio: Adds columns for URL length, number of parameters and fragments, encoding check,

special characters count, and unusual character ratio.

Figure15.This code counts and prints the number of unique values in the `cookie` column of

the DataFrame `X`.

Figure16.This code performs the following:

1. Processes `Accept`: Converts values to strings, extracts numeric values, and fills non-

numeric entries with `1`.

2. Encodes categorical features: Uses `LabelEncoder` to convert the `Method`, `host`, and

`Accept` columns into numeric representations.

3. Counts unique encoded values: Prints the number of unique values for the encoded columns

(`Method_enc`, `host_enc`, and `Accept_enc`).

Figure17.This code applies a set of functions to the `content` column in the DataFrame `X`

using the `apply_to_content` function:

1. Handles missing values: Returns `0` if the content is `NaN`.

2. Applies functions: For non-missing content, it applies various functions to extract features,

such as dot count, directory slashes, and encoded content.

It calculates and adds these features to new columns in `X`. Note that the

`unusual_character_ratio_content` line is commented out.

Figure18.This code does the following:

1. Defines features: Lists the features to be plotted.

2. Creates a DataFrame: Extracts these features from `X` into `selected_features_df`.

3. Counts unique values: Prints the number of unique values for each feature in

`selected_features_df`. If a feature does not exist, it prints a corresponding message.

Figure19.This code selects and prints specific columns from the DataFrame `X`, defined in

the `labels` list. It shows the values of these columns for each row in `X`.

Final labels of the dataframe before classification.

Figure20.This code initializes a `RandomForestClassifier` with a fixed random state for

reproducibility, fits the model to training data (`x_tr` and `y_tr`), and prints status messages

before and after the fitting process.

Figure21.This code initializes a `KNeighborsClassifier` with 9 neighbors, fits the model to the

training data (`x_tr` and `y_tr`), and then makes predictions on the test data (`x_ts`).

Figure22.This code initializes a `DecisionTreeClassifier` with a fixed random state, fits the

model to the training data (`x_tr` and `y_tr`), and prints status messages before and after the

fitting process.

Figure23.This code initializes an `MLPClassifier` with a neural network architecture of two

hidden layers (each with 50 neurons), ReLU activation, a small regularization parameter

(`alpha`), adaptive learning rate, and a maximum of 500 iterations. It then fits the model to

the training data (`x_tr` and `y_tr`) and prints 'Done!' upon completion.

Figure24.This code initializes a `LinearSVC` model with a maximum of 300 iterations, a

regularization parameter `C` of 0.1, an L2 penalty, and a fixed random state. It then fits the

model to the training data (`x_tr` and `y_tr`) and prints status messages before and after the

fitting process.

Figure25.This code trains an `SGDClassifier` with specified hyperparameters and evaluates

its performance using the test data (`x_ts` and `y_ts`):

1. Fits the model: Trains the Best Model with the training data.

2. Makes predictions: Predicts labels for the test data.

3. Evaluates performance:

 - MAE: Mean Absolute Error.

 - Accuracy: Overall accuracy.

 - Precision: Weighted precision score.

 - Recall: Weighted recall score.

 - F1: Weighted F1 score.

 - ROC AUC: ROC Area Under the Curve score.

 - Test Error: Proportion of misclassified instances.

The results are printed for each metric.

3 Steps to Run and Execute the Codes
 Setting Up the Environment for Streamlit Platform

• Install required Python libraries

Run the code to install essential libraries.

Pip install streamlit

• Prepare the Data files

 Prepared the normal_class.csv and suspicious_class.csv are placed in the directory.

• Load the Trained model

The trained model is saved as ‘trained_model.pk1’ is accessible.

Update and run the code

References

 OWASP (2020). OWASP Web Security Testing Guide. [online] owasp.org. Available at:
https://owasp.org/www-project-web-security-testing-guide/.

Cloudflare (n.d.). What Is Web Application Security? | Web Security | Cloudflare
UK. Cloudflare. [online] Available at: https://www.cloudflare.com/en-
gb/learning/security/what-is-web-application-security/.

 GitHub. (2020). zaproxy/zaproxy. [online] Available at:
https://github.com/zaproxy/zaproxy.

 Hasan, M.M. (2024). A Guide to Common Web Application Security Vulnerabilities and
Mitigation. [online] WebDevStory. Available at: https://www.webdevstory.com/web-
application-security-vulnerabilities/.

