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Abstract 
 

Efficient cache management is vital in contemporary computer systems to optimize 

performance by minimizing latency and maximizing efficiency. Cache partitioning is a 

method that distributes cache resources across many processes or threads to guarantee 

equitable and effective consumption while reducing cache congestion. The goal of this 

project is to create a new cache partitioning method that utilizes artificial intelligence (AI) to 

improve cache use. This will result in higher hit rates and lower access latency. The 

suggested approach observes cache behavior and implements partitioning exclusively when 

abnormal or significant cache patterns are identified, therefore reducing RAM usage and 

releasing capacity. The system selectively intervenes by utilizing machine learning models to 

identify detrimental cache behaviors, resulting in improved speed and security. Out of the 

different models assessed, XGboost, Random Forest and DNN had the greatest performance, 

obtaining a 93% accuracy across all evaluation criteria. The paper further examines existing 

research on cache partitioning, vulnerability identification, and the use of artificial 

intelligence in the field of cybersecurity. The results emphasize the capability of this method 

to enhance the efficiency and safety of a system in intricate, multi-threaded settings. 

Keywords: Cache Partitioning, Machine Learning based systems, Suspicious Detection, 

RAM storage 

 

 1: Introduction 
In modern computing systems, caching plays a critical role in enhancing performance by 

keeping commonly accessed data closer to the cpu, thereby reducing latency and improving 

efficiency. However, as applications and workloads become more complex and diverse, 

managing cache resources effectively becomes a significant challenge. This is where cache 

partitioning comes into play (Qiu, J., Hua, Z., Liu, L., Cao, M. and Chen, D., 2022). 

 
Figure 1: Cache Definition and Explanation (Source: KeyCDN) 
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1.1 Motivation 

Cache partitioning as illustrated in Fig 1, is a strategic method used to distribute cache 

resources among different processes to guarantee fair and efficient utilization. Dividing the 

cache into several segments or partitions will reduce the cache contention and interference. 

This approach will ensure that all applications or processes receive a particular amount of 

cache, this method will improve the overall system functionality and reliability and prevent 

situations where the needs of one workload adversely affect those of other workloads. 

 (Wang, Z. and O'Boyle, M.F., 2010). 

 
Figure 2: An example of replicated Cache (Source: Alachisoft) 

 

The concept of cache partitioning is extremely important in occasions involving several 

multi-core processors and multi-threaded environments, as shared cache can result in an 

overload. Effective cache usage, fewer cache misses, and improved cache performance are all 

made feasible by optimal cache partitioning also encourages cache performance predictability 

(Alsaade, F.W. and Al-Adhaileh, M.H., 2023). Furthermore, it can assist in fulfilling quality 

of service requirements for a wide range of applications running simultaneously on the same 

machine. 

1.2 Aim of the Research 

The goal of this project is to create a cache partitioning scheme using machine learning. This 

scheme will optimize cache usage by dynamically categorizing and handling data requests. 

The goal is to enhance system performance by increasing cache hit rates and decreasing 

access latencies. In this the system that is proposed uses the machine learning models to learn 

the harmful cache and, in such scenarios, deploy the machine learning aided-cache 

partitioning which partitions the cache and helps in mitigating the vulnerability (Liu, W., 

Cui, J., Li, T., Liu, J. and Yang, L.T., 2022). 

1.3 Research Objective 

This introduction to cache partitioning will explore the principles behind cache partitioning, 

its benefits, and the various techniques used to implement it. By understanding and applying 

cache partitioning strategies, system designers and engineers can optimize cache performance 

and enhance the overall efficiency of computing systems. Recent trends towards the 

development of machine learning-aided cache partitioning have largely influenced cyber 

security. A caching strategy (Sun, H., Sun, C., Tong, H., Yue, Y. and Qin, X., 2024) is 

implemented using a random forest classifier to classify I/O requests into three categories: 

critical, intermediate, and non-critical. Cache, when implemented in an SSD emulator, 

surpasses other caching schemes such as LRU, CFLRU, LCR, NCache, ML_WP, and 

Cache_ANN in terms of reaction time, write amplification, erase count, and hit ratio. Its 

performance is just slightly different from the OPT strategy. 
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1.4 Research Questions 

RQ: How can a machine learning-based cache partitioning technique enhance cache hit rates 

and system performance in dynamic and diversified workload conditions compared to 

standard caching solutions? 

Solution: The concept for this is to develop the complex system that involves multiple 

machine learning models, cache partitioning techniques, and training processes into a 

vulnerability-based deployment or cache partitioning so that the computation, as well as the 

storage space, is minimized. Hence in this, are not only getting the suspicious rates to 

decrease but also optimizing the solution. 

1.5 Thesis Structure 

The following chapter will discuss the different research done towards AI advancement in the 

detection of malicious cache in a system. The methodology chapter will discuss different 

machine learning and cache partitioning methods. The chapter on implementation will 

discuss the proposed system setup and the process of implementation as the name suggests. 

The chapter on results and analysis will discuss and analyze the results that are found. 

 

 2. Literature Review 

2.1 Advancements in cache partitioning 

 (Wang et al. 2024) developed an ε-LAP, an innovative cache partitioning technique for 

Content Delivery Networks(CDNs). This is developed to maximize the cache performance, 

including complex workloads and traffic. Based on average hit numbers ε-LAP uses shadow 

caches, for each partition. This enables effective storage capacity transfers between partitions 

when scaling is needed. Without compromising the performance this threshold parameter, ε, 

minimizes the unnecessary partition by resizing into 96.8%. 

 

(Park et al., 2020) To address the issues of cache pollution in shared last-level caches(LLC) 

in multi-core systems, propose a cache partitioning methodology termed as page reusability-

based cache partitioning(PRCP). By reducing the cache contamination through dynamic 

cache partitioning based on page reusability, PRCP maximizes cache efficiency. Highly 

reused and lowly-reused pages the authors will categorize pages based on how frequently 

they are scanned via page table. By using the page coloring technique for allocating different 

regions for unique cache the PRCP algorithm prevents data with weak temporal locality and 

strong temporal locality.  

 

This research suggested that (Wang et al., 2023) developed KRR, a probabilistic stack 

approach that precisely mimics the random sampling-based LRU methodology used in in-

memory key-value caches such as Redis. Knowledge representation and Reasoning may 

accept the objects of both fixed and variable sizes. Moreover, to reduce the time in run 

introduced a highly effective method for updating the stack. kRedis was introduced as a 

memory partitioning strategy. This will automatically adjust the memory sampling size based 

on reference locality and latency. The evaluation results showed the fact that it reduces 

average access latency by 50.2% and increases throughput by 262.8%.  

 

(Holtryd et al., 2023) present SCALE, to prevent timing side channel-based attacks in 

dynamically partitioned last-level caches, which is a cache allocation approach. SCALE 

includes random components into cache allocation decisions by creating noise, preventing 

attackers from recognizing predictable placement changes, and extracting critical 
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information. The approach (Holtryd et al., 2023) employs differential privacy to provide 

quantitative and information-theoretic guarantees of security. Their evaluations show that 

SCALE not simply improves confidentiality but also outperforms current secured cache 

methods in terms of speed on a 16-core tiled chip multi-processor with multi-programmed 

programs. 

2.2 AI-based vulnerability detection 

(Lin et al., 2023) provide VulEye, a new vulnerability detection method for PHP applications 

that use a Graph Neural Network. VulEye generates the Programme Dependence Graph 

(PDG) for the PHP source code, partitions the PDG into sub-graphs called Sub-Dependence 

Graphs (SDGs) by isolating critical functions, then utilises these SDGs as inputs to train a 

Graph Neural Network model. The model consists of three stack units: a Graph 

Convolutional Network (GCN) layer, a Top-k pooling layer, and an attention layer. These are 

followed by a Multilayer Perceptron (MLP) and a softmax classifier, which are used to 

forecast whether the Sustainable Development Goal (SDG) is susceptible. The assessment of 

the PHP vulnerability test suite in the Software Assurance Reference Dataset reveals that 

VulEye attains a macro-average F1 score of 99% in binary classification and 95% in multi-

class classification. 

 

In this study, (Purba et al., 2023) run a series of tests to assess the effectiveness of four 

renowned Large Language Models (LLMs) in identifying software vulnerabilities. They 

utilize two widely recognized public datasets for this purpose. Their findings demonstrate a 

notable disparity in performance between these LLMs and widely used static analysis 

techniques, principally attributable to the LLMs' elevated rates of false positives. LLMs 

exhibit significant potential in detecting minor patterns frequently linked to software 

vulnerabilities. This indicates a favorable direction for progress by combining LLMs with 

other program analysis approaches to improve the detection of software vulnerabilities. 

 

(Alzahrani and Alenazi, 2023) introduce an advanced, state-of-the-art intrusion detection 

system (IDS) that operates in real-time and is specifically tailored for software-defined 

networking (SDN). Two datasets were generated utilizing Mininet and the Ryu controller. 

These datasets included typical traffic as well as other forms of attacks, such as Fin flood, 

UDP flood, ICMP flood, OS probe scan, port probe scan, TCP bandwidth flood, and TCP syn 

flood. The datasets were utilized for training various supervised binary classification machine 

learning algorithms, such as the k-nearest neighbor, AdaBoost, decision tree (DT), random 

forest, naive Bayes, multilayer perceptron, support vector machine, and XGBoost.  

 2.3 AI and Software techniques in advancements of Hacking detection and Cache 

Partitioning 

In research, Zhang et al. (2024) study the usefulness of different prompt designs in using the 

ChatGPT to identify software vulnerabilities. The authors utilized the capabilities of 

ChatGPT as well as improved studies by increasing fundamental impulses and adding 

organizational and logical data in addition to them. The effectiveness of these prompt-

enhanced techniques in Comprehensive testing verifies the vulnerability detection 

performance of ChatGPT conducted on two vulnerability datasets. 

Dhanya et al. (2023) ) Investigate the effectiveness of various strategies for detecting 

network attacks that employ machine learning and deep learning models. They particularly 

concentrate on the UNSW-NB15 dataset. The authors evaluate traditional machine learning 

approaches such as Decision Trees, Random Forest, AdaBoost, and XGBoost, as well as a K-

Nearest Neighbour classifier and a deep learning model composed of two dense layers with 
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ReLU activation and a third layer with Sigmoid activation. The models are trained and tested 

using a dataset that includes 49 distinct attributes from nine different types of attacks. The 

major goal is to obtain high levels of accuracy in identifying network breaches. 

  

Wang et al. (2023)In this detailed research, they look at the privacy and security challenges 

associated with mobile-edge computing (MEC) from an AI perspective. In this study, they 

create a robust foundation for MEC service platforms by merging SDN and NFV, as seen in 

the ETSI MEC standard design. In this post, we'll explore at some of the new privacy and 

security concerns surrounding MEC, as well as how artificial intelligence (AI) solutions such 

as adaptive security measures and anomaly detection can help. Their findings pave the way 

for further studies that could employ AI to improve MEC deployment security and reduce 

dangers, which would be fantastic for the Internet of Things and other low-latency 

applications. 

 

Stutz et al. (2024) look into the complexities of cyber-physical systems (CPS) and the 

evolving risks posed by cyber threats. The authors notice that CPS are becoming more 

complex and self-sufficient as a result of many security weaknesses such as information 

channels, hardware fraud, and virtual machine intrusion. To overcome these flaws, the 

authors suggest a CPS-AI system that employs AI to improve CT models and security 

measures. The paper also discusses the limitations of traditional intrusion prevention security 

systems (IPSSs) in dealing with CPS vulnerabilities and proposes advanced techniques for 

detecting and mitigating CTs, such as nonlinear surveillance systems based on neural 

networks (NNs) and variable structure control (VSC). 

 

This study underlines the need for Both the offensive and defensive uses of machine learning 

in cybersecurity explored by Shang (2024). The research delves into the ways in which 

machine learning enables cyberattacks, such as the creation of smart botnets, spear phishing, 

and the introduction of covert malware. The article goes on to say that machine learning is 

useful for cyber defense, especially when it comes to finding and stopping these cyber 

dangers. By analyzing malware, assessing network vulnerabilities, and predicting future 

threats, it highlights the importance of artificial intelligence in improving digital safety. 

Additionally, in light of the difficulties brought about by the ever-changing nature of 

cybercrime in this age of fast digital transformation, the study investigates potential 

countermeasures to cyber threats that target machine learning models. 

 

In this 2023 study, (Ding et al., 2023) developed a new defense strategy dubbed the Machine-

learning-based Attack Detection Scheme (MADS) to safeguard Continuous-Variable 

Quantum Key Distribution (CVQKD) systems from quantum hacking attempts. The method 

uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to remove 

noise and identify outliers in attack-related feature vectors. Following that, Multiclass 

Support Vector Machines (MCSVMs) are used to categorize and predict the processed data, 

allowing for quick decisions on the creation of final secret keys. The simulation results show 

that MADS is successful in detecting and lowering quantum hacking risks, therefore boosting 

the security of CVQKD systems by correcting inflated secret key rates without relying on 

pre-established defense strategies. 

2.4 Cloud and Network Framework 

(Qiu et al., 2022) offer a method called Classification-and allocation for dividing the last 

level cache in the environments. This method tries to overcome conflicts caused by 

distributing resources by offering a lightweight solution. The technique uses a support vector 
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machine(SVM) to divide programs into three different classes based on their performance 

change characteristics(PCC). Moreover, it deploys a Bayesian optimizer to effectively 

contribute LLC resources. C&A optimizes cache consumption by making sure that programs 

with similar PCC use the same section of the LLC. This method is used for testing various 

workloads and outperforms the state-of-the-art Kpart method in terms of total system 

performance and fairness by 7.45% and 22.50 % respectively. Additionally, it reduce 

allocation inefficiencies by 20.60%. 

 

For OpenStack cloud infrastructures (Krishnan, P., Jain, K., Aldweesh, A., Prabu, P. and 

Buyya, R., 2023) that use software-defined networking (SDN), the authors present 

OpenStackDP, an all-inclusive security framework. To improve network management and 

security, this framework uses a mix of SDN, NFV, and ML/AI techniques. Integrating 

intelligent anomaly detection sensors and lightweight monitoring capabilities into the data 

plane is at the heart of OpenStackDP. Virtual machines and cloud-based applications are 

constantly watched by these sensors. An analytics engine that uses machine learning and 

artificial intelligence to spot abnormalities or possible dangers runs on network co-processors 

or hardware in the switches and examines the streaming data in real-time. Quick decisions 

and defensive measures, like deploying virtual network functions (VNFs), can be taken in 

response to risks based on this analysis, preventing them from affecting tenant compute nodes 

or long-term data stores. By achieving rapid threat detection and response, the framework 

hopes to greatly enhance security posture, leading to better QoS and quicker recovery from 

cyber-attacks. 

 

An edge-cloud collaboration-based communication attack detection framework for Cyber-

Physical Systems (CPS) is proposed by Chen, C., Li, Y., Wang, Q., Yang, X., Wang, X., 

and Yang, L.T. , 2023 to address the growing communication security concerns in CPS 

networks. To better detect security breaches and manage the high computational complexity 

and vast data created by IoT devices, this framework uses deep learning technologies in 

conjunction with cloud and edge computing. The goal is to improve hardware resource 

parallelism and satisfy the processing needs of large-scale hierarchical CPS attack detection 

in real-time. Experiments in simulation conducted by the authors proved that the suggested 

framework worked as intended, proving that it might increase cloud collaboration and the 

intelligence of physical devices. Both the safety and efficiency of CPS communication 

networks are enhanced by this method. 

 

The authors of the paper suggest a strongly Boosted Neural Network as a means of detecting 

cyberattacks that involve multiple stages (Dalal, Manoharan, Lilhore, Seth, Mohammed 

Alsekait, Simaiya, Hamdi, and Raahemifar, K., 2023). Finding novel, complicated threats, 

such as zero-day attacks and multi-step assaults, is a problem that their method attempts to 

solve. After testing their Extremely Boosted Neural Network against other machine learning 

methods, the authors concluded that it performed the best. The Quest Model achieved a 

prediction accuracy of 94.09% for multi-stage cyber-attacks, the Bayesian Network 97.29%, 

and the Neural Network 99.09%. With the help of the Multi-Step Cyber-Attack Dataset 

(MSCAD), the suggested model achieved a remarkable 99.72% accuracy rate. These findings 

demonstrate that the Extremely Boosted Neural Network has great promise for handling 

cyber assaults in communication settings where they occur in real-time. 

(Zhao et al., 2023) propose a Content-Adaptive Cache Partitioning (CACP) technique for 

mobile edge networks. The objective and motto is to reduce the cost of obtaining different 

content as due to the growing popularity of mobile video services. The authors propose a 

two-tier caching scheme aiming at addressing cache redundancy and user mobility; this 
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assumes caching at the 5G base station gNB and caching at device to device (D2D caching). 

gNBs utilize a public and private cache partitioning mechanism to improve the availability of 

local cache. Also, different kinds of technological devices such as mobile devices have a 

custom cache partitioning technique that is both static and dynamic and can be programmed 

to fit various mobility patterns. However, simulations show that CACP always offers low 

costs for content access and a high number of successful hits; unfortunately, it does result in 

rather high power consumption by its users. 

2.5 Summary 

The literature study examines current progress in cache partitioning, AI-driven vulnerability 

identification, and cybersecurity. Significant research includes ε-LAP for the dynamic 

resizing of caches, PRCP for the reduction of cache pollution, and KRR for enhancing the 

efficiency of key-value caches. The incorporation of machine learning in security is 

exemplified by AI approaches such as VulEye for PHP vulnerability identification, as well as 

improved intrusion detection systems for SDN and CPS. The essay also goes over novel 

approaches like SCALE for reducing side-channel attacks, AI-enhanced MEC privacy 

solutions, and hybrid models for identifying cyber-attacks. These findings emphasize the 

critical role of AI in increasing cache performance and strengthening cybersecurity. 

 

2.6 Focused Research Domain  

The study presents an innovative AI-driven cache partitioning method that increases cache 

utilization by interfering only when suspicious or significant cache patterns are identified. 

Unlike traditional systems that function continuously this approach decreases RAM 

utilization and frees storage, hence enhancing the efficiency of the system. The system 

employs machine learning models to identify harmful cache behaviors and strategically uses 

cache partitioning to enhance both performance and security. This method not only boosts 

cache hit rates but also successfully addresses cybersecurity challenges, making it a unique 

addition to the discipline of cache management and AI-driven cybersecurity. 

 

3. Research Methodology 
 

During the model creation phase, assess many machine learning classifiers, such as Logistic 

Regression, Decision Trees, Random Forests, and Support Vector Machines. When 

employing deep learning methods, utilize neural networks such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) (Grossberg, S., 2013) to 

effectively capture intricate patterns within the data. The chosen models are further trained 

using the pre-processed dataset, employing cross-validation techniques to ensure reliable 

performance across various data subsets. Hyperparameter tuning is carried out to enhance the 

efficiency of a model by utilizing Grid Search or Random Search to identify the optimal 

configuration. 

3.1 Dataset Overview 

Web applications attack datasets for machine learning are somewhat scarce. Despite the 

expectation of abundant collections of parsed legitimate and anomalous traffic from http logs, 

such datasets are not readily available (Vartouni, A.M., Kashi, S.S. and Teshnehlab, M., 

2018). It is believed that the majority of individuals and organizations who gather this 

information choose to keep it confidential to use it for their search engines and profit from 

selling a product. 
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Figure 3: An example of the tuple from the original dataset for CSIC anomalous traffic 

(Source: CSIC) 

This dataset consists of 60,000+ records and consists of features such as Method, User-

Agent, Pragma, Cache-Control, Accept, Accept-encoding, Accept-charset language, host, 

cookie, content-type, connection, length, content, classification, and URL. A benefit of this 

data is the inclusion of both GET requests with query data and POST requests with request 

data. Nevertheless, there are some drawbacks associated with this data. The CSIC dataset is 

only derived from a controlled laboratory setting, resulting in identical HOST information 

across all instances.  

 
Figure 4: The counts of the different values in the output feature. 

The above figure shows that there are approximately 35000 normal cache information and 

25000 anomalous caches. 

3.2 Data Exploration and Pre-Processing 
 

Data exploration is the preliminary stage of data analysis, involving a thorough examination 

of a dataset to get an understanding of its contents. It is like conducting detective work on 

data, revealing its attributes, trends, and potential issues. Data exploration is an essential 

component of data analysis as it enables the discovery of valuable insights that are concealed 

within the data. Most common URLs: 

 

1. URL: http://localhost:8080/tienda1/publico/anadir.jsp HTTP/1.1 - Count: 2441 

2. URL: http://localhost:8080/tienda1/publico/autenticar.jsp HTTP/1.1 - Count: 2422 

3. URL: http://localhost:8080/tienda1/publico/registro.jsp HTTP/1.1 - Count: 2417 

4. URL: http://localhost:8080/tienda1/miembros/editar.jsp HTTP/1.1 - Count: 2412 

5. URL: http://localhost:8080/tienda1/publico/pagar.jsp HTTP/1.1 - Count: 2379 

6. URL: http://localhost:8080/tienda1/publico/caracteristicas.jsp HTTP/1.1 - Count: 2003 

7. URL: http://localhost:8080/tienda1/publico/vaciar.jsp HTTP/1.1 - Count: 1965 

8. URL: http://localhost:8080/tienda1/publico/entrar.jsp HTTP/1.1 - Count: 1938 

http://localhost:8080/tienda1/publico/anadir.jsp
http://localhost:8080/tienda1/publico/autenticar.jsp
http://localhost:8080/tienda1/publico/registro.jsp
http://localhost:8080/tienda1/miembros/editar.jsp
http://localhost:8080/tienda1/publico/pagar.jsp
http://localhost:8080/tienda1/publico/caracteristicas.jsp
http://localhost:8080/tienda1/publico/vaciar.jsp
http://localhost:8080/tienda1/publico/entrar.jsp
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9. URL: http://localhost:8080/tienda1/index.jsp HTTP/1.1 - Count: 1000 

10. URL: http://localhost:8080/tienda1/miembros/salir.jsp HTTP/1.1 - Count: 1000 

 

 

Patterns & Trends: Do repeating themes or links exist across various data points? 

 

Anomalies: Are there any data points that deviate from the anticipated range, maybe 

suggesting mistakes or outliers? 

 

Analyzing URLs includes the following things, 

1. Count characters: Check the unusual number of dots, slashes, or hyphens in URLs to spot 

anything suspicious. 

2. Examine structure: Based on how many folders or embedded links a URL has, and if 

parts are encoded (like 20% for spaces) which might hide URLs' true purpose. 

3. Measure length: Look at how long and how many numbers the URL has.  

4. Spot Risky Patterns: Search for certain words that might show potential fake or harmful 

websites, and check if the URL is shortened, which could hide its real destination. 

 

After this, the cookies are removed from each of the samples such that the feature does not 

discriminate or correlate. 

 

 
Figure 5: Histogram of different features 

The above figures are trying to understand the distribution of two class values, Normal and  

 

 

 
Figure 6: Outliers in the two methods 

 In the above figure, the points that are outside the box are the outliers which can either be 

removed or corrected. 

http://localhost:8080/tienda1/index.jsp
http://localhost:8080/tienda1/miembros/salir.jsp
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3.3 Modelling 

In the model development phase, evaluate various machine learning classifiers, including 

Logistic Regression, Decision Trees, Random Forests, and Support Vector Machines. For 

deep learning approaches, consider neural networks like Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) to capture complex patterns in the data. The 

selected models are then trained using the pre-processed dataset, with cross-validation 

techniques employed to ensure robust performance across different data subsets. To optimize 

model performance, hyperparameters are tuned, and the optimal configuration is found using 

Grid search or Random search. Model evaluation is the process of examining the 

performance of trained models using metrics such as Accuracy, precision, Recall, F1 score, 

and the receiver Operating Characteristics(ROC) curve. These parameters provide 

information about the model's ability to appropriately categorise normal and malicious 

requests. Validation is performed on a separate test set to assess how well the model works in 

real-world circumstances. Additional testing verifies that the model is robust against a variety 

of web threats. 

3.3.1 Sampling 

Hold-out (Schorfheide, F. and Wolpin, K.I., 2012) refers to the process of dividing a 

dataset into two separate sets, namely the 'train' set and the 'test' set. The training set is the 

data on which the model is trained, whereas the test set is employed to evaluate the model's 

performance on new and unknown data. When employing the hold-out approach, it is 

customary to allocate 80% of the data for training purposes and save the remaining 20% for 

testing. 

 

Cross-validation (Berrar, D., 2019), often known as 'k-fold cross-validation', involves 

randomly dividing the dataset into 'k' groups. One group is designated as the test set, while 

the remaining groups are utilized as the training set. The model is trained using the training 

set and evaluated using the test set. Then the process is continued until each distinct group 

has been utilized as the test set. For instance, in the case of 5-fold cross-validation, the dataset 

is divided into 5 distinct groups. The model is then trained and tested 5 times independently, 

ensuring that each group has an opportunity to serve as the test set. 

3.3.2 Random Forest 

The Random Forest algorithm (Rigatti, S.J., 2017) is a reliable method for tree-based 

learning in the area of Machine Learning. The system develops a large number of Decision 

Trees in the training phase. Every tree is built by selecting from a portion of the dataset to 

evaluate a random selection of characteristics in each division. The application of 

randomization in this scenario generates variation among each tree, limiting the danger of 

excessive fitting and improving the overall accuracy of predictions. 
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Figure 5: Random Forest flow diagram (Source: GeeksforGeeks) 

3.3.3 K-Nearest Neighbors 

KNN (Peterson, L.E., 2009) is an important classification approach in the field of machine 

learning. It belongs to the category of supervised learning and is commonly used in pattern 

recognition, data mining, and intrusion detection. It is particularly useful in real-world 

scenarios since it is random, which means it does not make any presumptions about the 

distribution of data. Given a set of previous data, commonly referred to as training data, we 

have coordinates that are sorted into groups based on a given property. 

3.3.4 Decision Tree 

Decision Trees (DTs) (De Ville, B., 2013) are an irregular supervised learning approach that 

might be employed for both regression and classification. The goal is to build a model that 

can predict the value of a target variable using fundamental decisions derived from the data's 

properties. A tree can be thought of as a representation that approximates a function by 

splitting the space of inputs into areas and allocating values that remain to each. 

 

3.3.5 Gradient boosting (Chen, T. and Guestrin, C., 2016) is a machine learning ensemble 

technique that methodically integrates the predicted outcomes of multiple weak learners, 

typically decision trees. The goal is to improve overall forecast performance by optimising 

model weights based on errors from previous iterations. This technique steadily 

minimizes mistakes in prediction and increases the model's performance. 

 

 
Figure 7: The example showing how the errors are propagated in the structure of the serial 

tree and how the weights are formularized to minimize them towards getting the actual results 

(Source: TowardsDatascience) 

3.3.7 Support Vector Machines 

A support vector machine (SVM) (Wang, H. and Hu, D., 2005) is a machine learning 

approach that solves challenging problems in outlier identification, regression, and 

classification using supervised learning models. It does this by employing predefined classes, 
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labels, or outputs to carry out efficient data transformations that draw boundaries between 

data points. The SVM approach's main goal is to locate a hyperplane that successfully divides 

data points from various classes. 

  

 
Figure 9: An example of maximizing the gain margin using the support vectors in SVM 

(Source: Analytics Vidhya) 

3.3.8 Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) (Ketkar, N. and Ketkar, N., 2017) is a modified version 

of the Gradient Descent method that was designed particularly to improve machine learning 

models. It overcomes classic Gradient Descent methods' processing inefficiencies when 

working with huge datasets in machine learning applications. Stochastic Gradient Descent 

(SGD) use a single randomised training sample or a few samples for each iteration, rather 

than a complete data set. 

 
Figure 9: (a) The path taken by Batch Gradient Descent (b) A path taken by Stochastic 

Gradient Descent (Source: Geeks for Geeks). 

3.3.9 Deep Neural Network 

A deep neural network (DNN) (Kelleher, J.D., 2019) is an artificial neural network that has 

numerous layers between the input and output. Neural networks are classified into various 

categories, although they all share fundamental characteristics such as neurones, synapses, 

weights, biases, and functions. These components combine to simulate human brain activity 

and can be trained in the same way as any other machine learning method. 

3.3.10 Cache Partitioning 

Cache partitioning is a method used to enhance the predictability of the behavior of the 

instruction cache (I-cache) (Qiu, J., Hua, Z., Liu, L., Cao, M. and Chen, D., 2022). Every 

job inside a system is allocated to a distinct cache partition. Tasks in this system can only 
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remove cache lines that are located in the partition they are assigned to. Therefore, the cache 

is no longer affected by context shifts, allowing numerous processes to run simultaneously 

without interference. This enables the use of static Worst-Case Execution Time (WCET) 

assessments for each job in the system in isolation. The total Worst-Case Execution Time 

(WCET) of a multi-task system that uses partitioned caches is determined by adding the 

WCETs of each job with a certain partition size, together with the additional time necessary 

for scheduling, including the overhead for context changes. 

3.3.11 Evaluation Matrix 

 

3.3.12 Deployment Method 

In this project, will try to formulate a streamlit application in which the solution is deployed 

locally. When the streamlit application is run using the command, 

Streamlit run <<code_name.py>>, a local host is opened showcasing the working of the 

solution. The response system (A fully deployable code using the trained machine learning 

model) helps in understanding the suspicions and then deciding on when to call the block 

containing the cache partitioning. This solution is an integration of artificial intelligence and 

cache partitioning to optimize the computation as well as the service requirements. 

 

4: Design Specification 
 

This project plans to make a machine learning-infused solution for cache partitioning to 

mitigate the vulnerabilities that arise due to the cache. A cache for example is as below, 

 
Figure 11: An example of the cache, the cache stores the data temporarily 

To mitigate any vulnerabilities that might arise due to cache, we introduce two important 

steps, 

a. Stage 1: Understand the probability of vulnerability arising due to cache by training a 

machine learning model and then deploying a trained model locally 

b. Stage 2: Make a cache partitioning using python and call it when there is a suspicion 

seen.  
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Once stage 1 is trained and deployed, it is executed along with the cache partition. In this, a 

streamlit-based response system is created and deployed. The machine learning model that 

can be deployed can be lightweight like boosting models. Once the app is executed it can be 

viewed in your browser, which will open automatically. 

  Local URL: http://localhost:8501 

  Network URL: http://192.168.0.147:85 

  

5. Implementation 
5.1 Machine Learning Framework for identifying the suspicious cache 

 
Figure 12: An intelligent Cache partitioning framework with the use of machine learning 

trained on the cache history 

Algorithm Flow 

Step 1: Data Collection – After thorough research, it was found that the CSIC dataset for this 

research. In real-time, the locally stored cache is the data that will be fed into the software.  

a. Extraction of the features from the cache 

b. Imputing if required 

Step 2: Data Pre-Processing – Identifying the important pre-processing steps for the points 

where there are outliers or missing values. The common imputation techniques used are as 

below, 

a. Outliers: Using the Box Plot, the extreme values are imputed from the datasets 

b. Missing Values: The missing values are imputed with, 

a. Continuous Values: Imputed with the mean or median 

b. Categorical Values: Imputed with mode 

Step 3: Data Sampling – In this research, a strategy for using both the holdout as well as the 

k-fold cross-validation techniques. In the case of training the model, we have used the 

holdout method with 80% training and 20% testing. While fixing the hyper-parameters,  

using k=5 folds for a better understanding of the hyperparameters 

Step 4: Modelling – In this, used the following data science life cycle to have a detailed 

understanding of the final flow of the process, 

http://192.168.0.147:85/
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Figure 13: Data Science Life Cycle 

Step 5: Evaluation –   Different metrics like F1-Score, Accuracy, Recall, Precision, etc. to 

evaluate the best model and then deploy the same in the real-time cache partitioning 

environment. 

Step 6: Deployment – The following is the scenario for the deployment. As seen in the flow 

diagram, we can find that, 

a. Once the ML stage detects a suspicious cache, the cache partitioning is called 

b. The output is shown as depicted in the next section 

5.2 Python-based Cache Partitioning 

class CacheLine: 

    def __init__(self): 

        self.tag = -1 

        self.valid = False 

 

class CacheSet: 

    def __init__(self, associativity): 

        self.lines = [CacheLine() for _ in range(associativity)] 

 

class Cache: 

    def __init__(self, cache_size, associativity): 

        self.NUM_SETS = cache_size // associativity 

        self.sets = [CacheSet(associativity) for _ in range(self.NUM_SETS)] 

        self.partition_map = {}  # Map process ID to partition (way range) 

        self.associativity = associativity 

 

    def assign_partition(self, process_id, start_way, end_way): 

        if start_way >= 0 and end_way < self.associativity and start_way <= end_way: 

            self.partition_map[process_id] = (start_way, end_way) 

        else: 

            raise ValueError('Invalid partition range') 

 

    def access(self, process_id, address): 

        set_index = (address // self.associativity) % self.NUM_SETS 

        tag = address // (self.NUM_SETS * self.associativity) 

        if process_id not in self.partition_map: 

            raise ValueError('Partition not assigned for process') 

 

        start_way, end_way = self.partition_map[process_id] 

 

        # Search for the tag in the assigned partition 

        for way in range(start_way, end_way + 1): 
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            if self.sets[set_index].lines[way].valid and self.sets[set_index].lines[way].tag == tag: 

                print(f"Cache hit in set {set_index}, way {way}") 

                return True 

 

        # Cache miss, replace a line in the assigned partition 

        for way in range(start_way, end_way + 1): 

            if not self.sets[set_index].lines[way].valid: 

                self.sets[set_index].lines[way].tag = tag 

                self.sets[set_index].lines[way].valid = True 

                print(f"Cache miss, allocated in set {set_index}, way {way}") 

                return False 

 

        # If all lines in the partition are valid, replace the first one (simple replacement policy) 

        self.sets[set_index].lines[start_way].tag = tag 

        print(f"Cache miss, replaced in set {set_index}, way {start_way}") 

        return False 

 

# Example usage 

cache_size = 16  # Total cache lines 

associativity = 4  # Number of ways 

cache = Cache(cache_size, associativity) 

 

# Assign partitions to processes 

cache.assign_partition(1, 0, 1)  # Process 1 gets ways 0-1 

cache.assign_partition(2, 2, 3)  # Process 2 gets ways 2-3 

 

# Simulate cache accesses 

cache.access(1, 0)  # Process 1 accesses address 0 

cache.access(2, 4)  # Process 2 accesses address 4 

cache.access(1, 8)  # Process 1 accesses address 8 

cache.access(2, 12)  # Process 2 accesses address 12 

cache.access(1, 0)  # Process 1 accesses address 0 again (should be a hit) 

 

Code Snippet 1: Cache partitioning 

Explanation 

a. The CacheLine class represents one single line in the cache which has a tag and a 

valid flag. The tag helps in identifying the data stored in the cache line while the valid 

indicates whether the cache line contains a valid data (true) or not (false) 

b. The CacheSet class represents a set in a set-associative cache. This contains multiple 

CacheLine instances which determines by the cache’s associativity. The associativity 

defines rge number of ways in each set 

c. The Cache class represents the entire cache structure where the cache_size is the total 

number of cache lines. The associativity is the number of lines per set. NUM_SETS is 

the number calculated by dividing the total cache. 

d. Assign_partition assigns a ran of ways to a specific process. This ensures the partition 

range is valis and updates partition_map. 

e. Access simulates the cache access by a process which checks if the process has an 

assigned partition or not. It searches for a tag within the assigned partition. If found its  

cache hi if not found then the invalid line allocates a new data. 
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f. The output that is shown is as below way, 

Cache miss, allocated in set 0, way 0: This indicates that the first access by Process 1 to 

address 0 resulted in a cache miss. A new cache line was allocated in set 0, way 0. 

Cache miss, allocated in set 1, way 2: This indicates that the second access by Process 2 to 

address 4 resulted in a cache miss. A new cache line was allocated in set 1, way 2. 

Cache miss, allocated in set 2, way 0: This indicates that the third access by Process 1 to 

address 8 resulted in a cache miss. A new cache line was allocated in set 2, way 0. 

Cache miss, allocated in set 3, way 2: This indicates that the fourth access by Process 2 to 

address 12 resulted in a cache miss. A new cache line was allocated in set 3, way 2. 

Cache hit in set 0, way 0: This indicates that the fifth access by Process 1 to address 0 

resulted in a cache hit. The requested data was found in set 0, way 0. 

 

6. Evaluation 

6.1 Stage 1: Machine Learning based vulnerability detection in the local cache 

Table 1: Classification Report 

Models Accuracy Precision Recall F1 Score 

Random Forest 93% 92% 92% 92% 

KNN 92% 92% 92% 92% 

Decision Tree 92% 92% 92% 92% 

XGBM 92% 92% 92% 92% 

Neural Network 89% 90% 89% 89% 

SVC(Linear) 75% 75% 74% 74% 

SGD 76% 76% 76% 76% 

DNN 93% 92% 92% 92% 

 

The table provides a comparative comparison of several machine learning models, including 

Random Forest, KNN, Decision Tree, XGBM, Neural Network, SVC (Linear), SGD, and 

DNN. The analysis focuses on their performance measures, namely accuracy, precision, 

recall, and F1 score. According to the data, Random Forest and DNN are the most successful 

models, attaining the highest scores in all criteria at 93%. These models are deemed to be the 

most dependable and efficient for the provided dataset. KNN, Decision Tree, and XGBM had 

impressive scores of 92% in all assessed parameters, demonstrating their robust performance 

and possible applicability to comparable problems.  

 



18 
 

 

 

 

 
Figure 14: Confusion matrices for all the models. (a) Random Forest (b) k-NN (c) Decision 

Trees (d) XGBoost (e) Multi Perceptron (f) SVC (g) SGD (h) DNN 

 

The Neural Network demonstrates a respectable level of performance with an accuracy of 

89%, but, it falls short of the highest-performing models. At the bottom end of the 

performance spectrum, SVC (Linear) and SGD models demonstrate noticeably less efficacy, 

with their scores consistently around 75-76% for all criteria. This suggests that these models 

are generally ill-suited for the given dataset. To summarize, Random Forest and DNN exhibit 

the highest level of proficiency among the models, while KNN, Decision Tree, and XGBM 

also display strong performance. The Neural Network is effective, while SVC (Linear) and 

SGD are less suited for this specific examination. From the above confusion matrix, we can 

find that random forest has predicted correctly the suspicious caches. The ranking of the 

models can be checked in the following, 

 

Rank 1: top 3-Models Majority voter - MAE: 0.0734 - Error: 7.34% 

Rank 2: Random Forest - MAE: 0.0737 - Error: 7.37% 

Rank 3: top 5-Models Majority voter - MAE: 0.0747 - Error: 7.47% 

Rank 4: Gradient Boosting - MAE: 0.0782 - Error: 7.82% 
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Rank 5: Deep Neural Network - MAE: 0.0797 - Error: 7.97% 

Rank 6: Decision Tree - MAE: 0.0813 - Error: 8.13% 

Rank 7: K-Nearest Neighbors - MAE: 0.0847 - Error: 8.47% 

Rank 8: Multi-Layer Perceptron - MAE: 0.1006 - Error: 10.06% 

Rank 9: Stochastic Gradient Descent - MAE: 0.2369 - Error: 23.69% 

Rank 10:  Support Vector Machine - MAE: 0.2533 - Error: 25.33% 

 

 
Figure 15: Majority Voters – Ensemble model confusion matrix 

 

6.2 Stage 2 Cache Partitioning 

Case Study 1: AI-based cache partitioning using Suspicious Cache 

 
Figure 16: Cache Partitioning in real-time using a response Front-end 

In this have used a streamlit frontend for the deployment of the solution. When the ML 

algorithm detects the suspicious Cache, then the solution will be deployed else the solution is 

devoid of the deployment. As can be seen when the suspicious data is chosen, the probability 

rate is 84% which is more than the threshold of 64%. i.e. if the probability is more than the 

threshold it is suspicious, else not. In case of suspiciousness, we can see at the right bottom 

the partition code is executed and the partition has happened.  On the top right side, the 

details of the suspicious are shown. We can find the important features based on the gradient 

boosting model. In the middle section, we can change the cache address to see if the partition 

is hit or not. 
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6.4 Case Study 2: AI-based cache partitioning using Normal or Non – Suspicious 

Cache 

 
Figure 17: Cache Partitioning in real-time using a response Front end with normal Cache 

The highlighted part shows that the probability is found to be 35% which is less than the 

threshold set that is 64% for it being categorized into the Normal class. The table on the right-

hand side discusses the content of the data. While the right-side bottom says that no partition 

has happened. 

 

 7: Conclusion and Future Work 
Finally, different machine learning models exhibit different patterns of performance as 

measured by F1 score, recall, accuracy, and precision. The consistency of Random Forest and 

DNN in reaching 93% across all assessment criteria highlights their efficiency and 

dependability for the dataset in issue, positioning them as the top performers. With a 

combined score of 92% across all parameters, KNN, Decision Tree, and XGBoost follow 

closely behind, all suggesting strong performance appropriate for comparable jobs. Neural 

Network shows efficacy with an accuracy rate of 89%. On the other hand, SGD and SVC 

(Linear) do less well, scoring between 75% and 76%, which indicates that they aren't very 

well-suited to the needs of the dataset. 

By breaking out the models' prediction strengths and shortcomings, the confusion matrices 

provide a more nuanced picture of their performance. When a balance between accuracy and 

precision recall is of the utmost importance, XGBoost, Random Forest, and DNN are the best 

options because to their constant and thorough performance. Due to their relatively lower 

performance, methods such as SVC (Linear) and SGD may not be the best choice for jobs 

that prioritize computational efficiency or linear separability. This research highlights the 

significance of using machine learning models that are customized to unique dataset 

properties and job needs to maximize the accuracy of predictions. Also while coming to the 

picture of deploying the best model, it should be light with less computation requirement and 

space, and in these scenarios, XgBoost qualifies. 

 

The machine learning models tested over the last few months have yielded insightful 

information. While the evaluation conducted thus far is based on sample data, these models 

must be applied to real-world datasets to be more effective and to increase the solution's 

generalisability. We will be able to evaluate this response system's effectiveness in real-time 

scenarios—especially when real vulnerabilities are found—by integrating it with other 

software. Furthermore, investigating and implementing additional algorithms and large 

language models (LLMs) may enhance the system's resilience and functionality. 
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