
 
 

 
 
 
 
 
 
 
 
 
 

 

Configuration Manual 
 
 
 
 

 

MSc Research Project 
 

MSc in Cybersecurity 
 
 

 

Ketki Shekhar Jakatdar 
 

Student ID: x22152229 
 
 
 

School of Computing 
 

National College of Ireland 
 
 
 
 
 
 
 
 
 
 
 

Supervisor: Prof. Vikas Sahni 



 

 
National College of Ireland 

 

MSc Project Submission Sheet 

 

School of Computing 

 

Student 

Name: 

 

……Ketki Shekhar Jakatdar…………………………………………………………………… 

 

Student ID: 

 

……x22152229…………………………………………………………………………………..…… 

 

Programme: 

 

……MSc in Cybersecurity…………………………… 

 

Year: 

 

2023-2024 

 

Module: 

 

…MSc Research Practicum Part 2……………………………………….……… 

 

Lecturer: 

 

…Prof. Vikas Sahni……………………………………………………………….……… 

Submission 

Due Date: 

 

…12/08/2024……………………………………………………………………………….……… 

 

Project Title: 

 

Leveraging X.509 Certificates and OAuth for optimized use of DIDs 

and VCs in Constrained IoT Devices………………………………………………… 

Word Count: 

 

……2273…………………………… Page Count: ……32……………….…….……… 

 

I hereby certify that the information contained in this (my submission) is information 

pertaining to research I conducted for this project.  All information other than my own 

contribution will be fully referenced and listed in the relevant bibliography section at the 

rear of the project. 

ALL internet material must be referenced in the bibliography section.  Students are 

required to use the Referencing Standard specified in the report template.  To use other 

author's written or electronic work is illegal (plagiarism) and may result in disciplinary 

action. 

 

Signature: 

 

…Ketki Shekhar Jakatdar……………………………………………………………… 

 

Date: 

 

…12/08/2024……………………………………………………………………………………………… 

 

 

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 

 

Attach a completed copy of this sheet to each project (including multiple 

copies) 

□ 

Attach a Moodle submission receipt of the online project 

submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, both 

for your own reference and in case a project is lost or mislaid.  It is not 

sufficient to keep a copy on computer.   

□ 

 

 

Assignments that are submitted to the Programme Coordinator Office must be placed 

into the assignment box located outside the office. 

 

Office Use Only 

Signature:  

Date:  

Penalty Applied (if applicable):  



1 
 

 

 

Configuration Manual 
 

Ketki Shekhar Jakatdar 

X22152229  
 

 

1 Introduction 
 

This document provides detailed specifications and guidelines for the tools, software, and 

hardware used in the implementation of the research project. The research aimed to innovate 

a secure and efficient solution that leverages Decentralized Identifiers (DID) and Verifiable 

Credentials (VC) along with ACE-OAuth and X509 certificates, to authenticate and authorize 

users trying to access constrained IoT devices. The purpose of this manual is to enable others 

to accurately recreate the project by providing all necessary links, commands, and step-by-

step instructions along with screenshots. All the necessary URLs to READme pages or to 

download the tools, are added as footnotes in the document. 

 

2 System Configuration 
 

Here, detailed specifications of the system used for the implementation is given. Table 1 

outlines the hardware and Operating System (OS) configuration, while Table 2 lists the 

software tools and their respective versions installed on the system. 

Table 1: Hardware and OS specification 

Specification Details 

Processor Intel Core i5-1335US 

RAM 8GB 

Storage 512GB SSD 

Operating System (OS) Microsoft Windows 11 Home 

Table 2: Tools and their versions installed 

Tool Version 

Python 3.12.5 

PHP 8.3.9  

Composer 2.7.7 

Apache 2.4.62 (Win64) 

Docker Desktop 26.1.4 

VS Code 1.92.0 x64 

Git 2.45.2.windows.1 

MySQL Workbench 8.0.38 (64 bits) community 

Postman v11.7.0 

Burp Suite v2024.5.5 

Wireshark 4.2.6 

OpenSSL 3.3.1 4 

Node.js v20.16.0 

Express/NPM 10.8.1 

TypeScript 5.5.4 

MySQL Workbench 8.0.38 



2 
 

 

3 Installation and Setup 

3.1 Hyperledger Aries-Cloudagent-Python 
 

• First, download and install Python 3.12.5 from HERE1. 

• Download and install Git 2.45.2 Standalone Installer for Windows from HERE2. 

• Download and install Docker Desktop from HERE3. Upon successful installation, the 

app will open home screen like below: 

 

 
 

• To run the Hyperledger Aries-Cloudagent-Python project on docker, we need a VON 

network which is basically a Hyperledger Indy public ledger sandbox. Follow the 

“Building and Starting” steps from HERE4. 

 
 
1 https://www.python.org/downloads/ 
2 https://git-scm.com/download/win 
3 https://www.docker.com/products/docker-desktop/ 
4 https://github.com/bcgov/von-network/blob/main/docs/UsingVONNetwork.md#building-

and-starting 

https://www.python.org/downloads/
https://git-scm.com/download/win
https://www.docker.com/products/docker-desktop/
https://github.com/bcgov/von-network/blob/main/docs/UsingVONNetwork.md#building-and-starting
https://github.com/bcgov/von-network/blob/main/docs/UsingVONNetwork.md#building-and-starting


3 
 

 

 
 

• Once build is successful, the network container can be seen on Docker Desktop like 

below: 

 

 
 

• Once the ledger runs with this command 

 

./manage build 
 
you can check the ledger at – http://localhost:9000 



4 
 

 

 
 

• After public ledger is up and running, open a git bash terminal and git clone the 

Hyperledger Aries-Cloudagent-Python repo with below commands – 

 

git clone https://github.com/hyperledger/aries-cloudagent-python 
cd aries-cloudagent-python/demo 

 
• Open another git bash terminal and change to this demo folder. Run the Faber agent 

with command –  

 

  ./run_demo faber 
 

 
 

• Open a 3rd git bash terminal and change to this demo folder. Run the Alice agent with 

command –  



5 
 

 

 

  ./run_demo alice 
 

 
 

• Once both agents are running, their admin consoles are accessible on browser at - 

http://localhost:8021/ (Faber) and http://localhost:8031/ (Alice) respectively.  

 

 
 



6 
 

 

 
 

• Since we are using the demo scripts, Faber has already registered its public DID on 

the ledger, created a schema and a credential definition and registered them on the 

ledger. 
 

 
 

• First get Faber’s public DID from endpoint –  



7 
 

 

 

GET /wallet/did/public 
 

 
 

• The schema can be retrieved from below endpoints –  
 

GET /schemas/created 
 

 
 

• Note this schema id and paste it in endpoint below endpoint to get the schema:  

 

GET /schemas/{schema_id} 
 



8 
 

 

 
 

• Similarly get credentials definition: 
 
GET /credential-definitions/created 
 

 
 
GET /credential-definitions/{cred_def_id} 
 



9 
 

 

 
 

 

3.2 ACE-OAuth server 

 

• Download and install Composer v2.7.7 from HERE5. 

• The standard OAuth server is available HERE6. To modify this standard server into 

ACE-OAuth server, we first need to setup Apache because we need to enable Server 

Name Indication (SNI) and it cannot be done on built-in PHP server which comes 

with the standard OAuth server. Unzip the given artifact, extract the “httpd-2.4.62-

240718-win64-VS17” directory and place it at location “C:/” location.  

• All the necessary changes in the files httpd.conf, httpd-vhosts.conf, httpd-ssl.conf 

along with SSL certificates and SNI configuration, is present in this directory.  

• Download and Install Visual Studio Code IDE 1.92.0 x64 from HERE7. 

• Clone the standard OAuth server using below commands: 

 

mkdir oauth2-server-1 
cd oauth2-server-1 
git clone https://github.com/bshaffer/oauth2-server-php.git -b main 

 

• From the extracted artifact, copy and paste the files from “oauth2-server-1” folder to 

below locations in the newly created directory.  

 

 

 

 

 

 
 
5 https://getcomposer.org/download/  
6 https://github.com/bshaffer/oauth2-server-php  
7 https://code.visualstudio.com/docs/setup/windows  

https://getcomposer.org/download/
https://github.com/bshaffer/oauth2-server-php
https://code.visualstudio.com/docs/setup/windows


10 
 

 

File name Relative path location 

server.php ..\oauth2-server-1\oauth2-server-php\ 

token.php ..\oauth2-server-1\oauth2-server-php\ 

Config.php ..\oauth2-server-1\oauth2-server-php\src\OAuth2\ 

DIDGrant.php ..\oauth2-server-1\oauth2-server-php\src\OAuth2\GrantType\ 

 

• Download and install MySQL Workbench 8.0.38 from HERE8. 

• Open MySQL Workbench app and create a new schema “my_oauth2_db_1”. Select 

the schema and paste the commands available from HERE9 under the “Define your 

Schema” section and hit Run. 

 

 
 

• Run the following command to create an OAuth test client: 

 

INSERT INTO oauth_clients (client_id, client_secret, redirect_uri) 
VALUES ("testclient", "testpass", "http://fake/"); 
 

 
 
8 https://dev.mysql.com/downloads/windows/installer/  
9 https://bshaffer.github.io/oauth2-server-php-docs/cookbook/  

https://dev.mysql.com/downloads/windows/installer/
https://bshaffer.github.io/oauth2-server-php-docs/cookbook/


11 
 

 

 

3.3 OpenSSL 
 

• Download and install OpenSSL v3.3.1 from HERE10. 

• After finishing the installation, add the path of bin folder in PATH environment 

variable and System variable. 

 

 
 

3.4 Resource Server (Printer) 
 

• Download Node.js and NPM installer from HERE11. 

• Initialize a new Node.js project with below command. This will create a 

“package.json” file with default values. Next install express. 

 

 
 
10 https://slproweb.com/products/Win32OpenSSL.html  
11 https://nodejs.org/en/download/prebuilt-installer  

https://slproweb.com/products/Win32OpenSSL.html
https://nodejs.org/en/download/prebuilt-installer


12 
 

 

npm init -y 
npm install express typescript ts-node-dev @types/node 
@types/express 
 

 

 
 

• Install necessary packages for json handling 

 

npm install express ejs body-parser jsonwebtoken 
npm install –save-dev @types/jsonwebtoken 
 

 

 
 

• Move the “index.ts” and “tsconfig.json” files from the “Resource Server” directory 

from the artifact provided, into your current directory. The folder structure should 

look something like this: 
 



13 
 

 

 
 

• Install typescript globally 

 

npm install -g typescript 
 

 
 

3.5 Postman (client), Wireshark, Burp Suite 

 

• Download and install Postman v11.7.0 from HERE12. Create & login with a test 

account. 

• Download and install Wireshark 4.2.6 version from HERE13. Launch the app. 

• Download and install Burp Suite v2024.5.5 from HERE14. Open the app with 

temporary project and click Start. 

 

 

4 Implementation 

4.1 Issue DID & VC to Alice from Faber 

 

• Get Faber’s connection id – 

 

GET /connections 

 

 
 
12 https://www.postman.com/downloads/  
13 https://www.wireshark.org/download.html  
14 https://portswigger.net/burp/releases/professional-community-2024-5-5  

https://www.postman.com/downloads/
https://www.wireshark.org/download.html
https://portswigger.net/burp/releases/professional-community-2024-5-5


14 
 

 

 
 

• Issue Credential (DID & VC). From Faber agent modify the JSON file like below: 

(Get the attributes from HERE15) 

 
POST /issue-credential-2.0/send 

 

 
 

 
15 https://aca-py.org/latest/demo/AriesOpenAPIDemo/#faber-issuing-the-credential 

https://aca-py.org/latest/demo/AriesOpenAPIDemo/#faber-issuing-the-credential


15 
 

 

 

 
 

• Move to Alice’s agent in gitbash. Alice agent’s scource code automatically handles 

the credential issuance request. It first receives the credential offer, responds to it with 

a request to Faber, Faber receives the request and finally offer the credentials. 

 

 
 

• Now, Alice needs to save the credentials in her wallet. On Alice Swagger UI get 

‘cred_ex_id’ from the endpoint –  

 

GET /issue-credential-2.0/records 
 



16 
 

 

 
 

POST /issue-credential-2.0/records/{cred_ex_id}/store 
 
As Alice’s credentials were already store in wallet received error. Otherwise, no error. 

 
 
To confirm the credentials were stored –  

 



17 
 

 

GET /credentials 
 

 
 

• Go to Faber agent’s terminal. It received confirmation that the credentials were 

received and accepted.  

 

 
 

 

4.2 Generate proof embedded X509 certificates 
 

All the files created in this step are provided in the artifact under “Certificates” folder. Below 

steps were executed to create all these files. 

4.2.1 X509 certificate with custom extensions for Alice 
 

1. Set Up Certificate Authority (CA) 

 

• Generate CA private key 

 

 
 

• Create CA cert 

 



18 
 

 

 
 

2. Generate Alice's Certificate 

 

• Generate Alice’s key 

 

 
 

• Create “csr.cnf” like below. Ensure the CN=localhost. Other values can be different. 

 

 
 

• Generate CSR.  

 



19 
 

 

 
 

3. Create a Custom Configuration File for Extensions 

 

• Create “ext.cnf” like below: 

 

 
 

• Sign Alice’s cert with CA & “csr.cnf” and include extensions from “ext.cnf”’s 

“v3_req” section 

 

 
 

• Create “alice.pfx” file by combining “alice.key” and “alice.crt”. Postman accepts .pfx 

file. 

 

 
 

• Below are all the files created for Alice: 

 



20 
 

 

 

4.2.2 SSL certificates for Authorization Server 
 

4. Create self-signed certificate and key for Authorization Server (AS) 

 

These certificates don’t have custom extensions. 

 

Create private key for CA. Create Root Certificate for the CA. 

 

 
 

• Create “MyServer.key” and “MyServer.crt” self-signed certificates for the AS signed 

by above Root certificate. 

 



21 
 

 

 
 

 
 

• Below is the list of certificates created for the AS 

 

 
 

4.3 Launch the ACE-OAuth server 
 

• To start Apache server, open Command Prompt as an administrator. Navigate to 

“C:\httpd-2.4.62-240718-win64-VS17\Apache24\bin” & run below command – 

 

To start the server → httpd.exe -k start 
To stop the server → httpd.exe -k stop 

To restart the server → httpd.exe -k restart 
 



22 
 

 

 
 

• You can access the server on browser at – https://localhost:443. You’ll get a 

warning about the certificate because it is a self-signed certificate.  

 

 
 

4.4 Launch the Resource Server (Printer) 

 

• Open another gitbash terminal or Command Prompt and change to the directory of the 

Resource Server. Compile “index.ts” into “index.js” and launch the Resource Server 

and access it at – http://localhost:3000. 
 

tsc 
node dist/index.js 
 

 
 

 
 

4.5 Configure Postman requests 
 

• Launch Postman app → Navigate to Settings → Go to the Certificates Tab → Select 

the Certificates tab on the left sidebar → Add a Client Certificate → Click Add 

Certificate → Configure the Certificate like below: 

 

Host: localhost. 

CRT file: Choose the “alice.pfx, alice.crt, alice.key” files you created. 

Passphrase: Enter the passphrase if you set one during the export (if not, 

leave it blank) 

 

Now, when you send the request, POSTMAN will automatically use the client 

certificate associated with the host and port combination you've specified. 



23 
 

 

 

 
 

• Create a new POST request to send to the AS. Endpoint is – 

“https://localhost:token.php”. Modify the body of the request as below: 

 

 
 

• Hit Send. Below is the response which contains the Proof of Possession (PoP) token. 

 

 



24 
 

 

 

• Create another POST HTTP request to send to the RS. Endpoint is – 

“http://localhost:3000/validate”. Copy the entire response json from AS and paste it 

in the body of this request. Hit Send. 

 

 
 

5 Security Testing 

5.1 PoP token signature verification 
 

• Open jwt.io16 in browser. Select “RSA256” in the Algorithm dropdown. 

• Copy only the encoded “pop_token” from the response received from the AS and 

paste it in the “Encoded” column on jwt.io. It will automatically decode the token and 

the decoded body and header of the token are visible in the “Decoded” column on the 

right side. 

 

 

 
 
16 https://jwt.io/  

https://jwt.io/


25 
 

 

 
 

• However, we see “Invalid Signature” at the bottom. 

 

 
 



26 
 

 

• To resolve this, copy the contents of “MyServer.crt”, which is the public key of AS. 

Paste it in the “Verify Signature” window. It will automatically validate the signature 

of the token and you get “Signature Verified” message. 

 

 
 

5.2 Replay Attacks 
 

• The goal is to ensure that intercepted PoP tokens cannot be reused by an attacker.  

• From Postman send the request with PoP token to RS. For the first time, if the token 

is valid, you’ll get “Access granted” as response. 

• Click on send again from Postman to send the request to RS with the same token. 

• For the second time, you’ll get “Token alredy used” error. Thus, a token can already 

be used only once avoiding replay attacks.  

 



27 
 

 

 
 

5.3 Expired Token 
 

• Send an expired token to the RS in the body of the POST request. RS will verify when 

the token expires and send a response saying “The PoP token is expired”. 

 

 
 

5.4 Data Tampering 
 

• Burp Suite will be used as a interceptor proxy between Postman and AS or RS to 

inspect and modify HTTP requests. 

• Configure Postman to use Burp Suite as proxy like below: 

 



28 
 

 

 
 

• In Burp Suite go to Proxy tab and turn Interceptor on. 

• Send a request with valid PoP token from Postman to the RS. As soon as you hit send 

in Postman, the request will be intercepted and visible in Burp Suite. 

• Select the “pop_token” and modify it (delete or add extra letters) in the “Decoded 

from:” window on the right side of the screen and click “Apply changes”. Hit 

Forward. 

• You’ll get “Access Denied: Invalid Token Verification” as response in Postman. 

 

 
 



29 
 

 

 
 

 

 

6 Performance Testing 

6.1 Round Trip Time (RTT) 
 

RTT, specific to the TLS handshake, is calculated by measuring the time between the “Client 

Hello” and “Server Hello” calls. 

 

• Open Wireshark and double click on “Adapter for loopback traffic capture”. Because 

Wireshark captures localhost traffic aka loopback traffic here. 

 

 
 

• In the filter bar at the top, type below command to filter traffic over HTTPS (port 

443) and press Enter. 

 

tcp.port == 443 

 



30 
 

 

 
 

• Send the POST request from Postman to the AS to get the PoP access token. This 

request will be captured by Wireshark. 

• Go back to Wireshark and click the red "Stop" button to stop capturing traffic. 

Identify your HTTP request. 

 

 
 

• Note down the timestamp for “Client Hello” and “Server Hello” calls. Calculate the 

RTT like below: 

 

 

RTT = Server Hello Timestamp - Client Hello Timestamp 

RTT = 0.005631 - 0.002143 = 0.003488 seconds 
RTT = 3.488 milliseconds 

 
 

• Thus, RTT for the presented solution is 3.488ms. 

• Additionally, you can generate the RTT graph in Wireshark. Right click on “Client 

Hello” → Follow → TCP Steam → Click on Statistics tab → TCP Steam graphs → 

Round Trip Time. 



31 
 

 

 
 

 

 

7 Common Errors 

7.1 Apache SSL certificate error 
 

• Ensure that the location to the “MyServer.crt” and “MyServer.key” in “httpd-ssl.cnf” 

file for apache is correct. 

 

SSLCertificateKeyFile "${SRVROOT}/conf/server.key" 
SSLCertificateFile "${SRVROOT}/conf/server.crt" 

7.2 Invalid Signature even after adding MyServer.crt 
 

• Ensure to copy the entire contents of “MyServer.crt”, including “BEGIN 

CERTIFICATE” and “END CERTIFICATE”. 

 

7.3 Client denied by server configuration error 
 

• If you see below error in “errors.log” file then, check your CN name while certificate 

CSR generation. “CN=localhost” to run this setup. 

 

 
 

 


