ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name- MSc in Cybersecurity

Forename Surname
Student ID: 23110856

School of Computing
National College of Ireland

Supervisor:Joel Aleburu

‘——
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Kunal Sanjaykumar Jadhav

[\ =T 1.2 L=

Student ID: 23110856

Programme: Msc in Cybersecurity Year: 2023-24
Module: Msc research project

Lecturer: Joel Aleburu

Submission

Due Date: 12t August 2024

Project Title: Configuration Manual

Word Count: ..o Page Count: ..o,

Collegeof
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Kunal Jadhav
Date: 12t August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project |
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Forename Surname
Student ID:

1.1 Configuration manual for Traditional Method(SNORT)
1.2

Below is an illustrated procedure and scenario setup for installing and running Snort for the analysis:

Setting Up Snort

1. Installation
= Snort can be installed on Ubuntu using the following commands:

sudo apt-get update

sudo apt-get install snort

$ sudo apt-get install snort

[sudo] password for kunal:
Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

snort is already the newest version (2.9.15.1-6build1l).

0® upgraded, 0 newly installed, © to remove and 21 not upgraded.

= Follow the prompts to configure the home network during installation.
2. Configuration
= Snort configuration is done in the snort. conf file, typically located at directory
/etc/snort/snort.conf.
= Set the network variables (e.g., HOME_NET) to match our environment.

= Include rule files and enable the rules we want Snort to use for detecting intrusions.

m kunal@kunal-VirtualBox: ~ Q = = a X

GNU nano 6.2 etc/snort/snort.conf

ipvar EXTERNAL_NET any

DNS_SERVERS S$HOME_NET

SMTP_SERVERS S$HOME_NET

HTTP_SERVERS SHOME_NET

SQL_SERVERS SHOME_NET

TELNET_SERVERS SHOME_NET

SSH_SERVERS S$HOME_NET

FTP_SERVERS S$HOME_NET

SIP_SERVERS S$HOME_NET

portvar HTTP_PORTS [80,81,311,383,591,593,901,1220,1414,1741,1830,2301,2381,2809,3037,3128,3702,4343,4848,5250,6988,7000,7001,7144

d¢ Help QY Write out QY Where Is a Ccut @l Execute ¢ Location &V Undo Set Mark
4 Exit @il Read File @A\ Replace &Y Paste @8 Justify Wil Go To Line [B4 Redo Copy

3. Rules
= Snort rules file is done in the local. rules file, which we created and located at directory

/etc/snort/rules/local.rules.

M kunal@kunal-VirtualBox:

GNU nano 6.2 etc/snort/rules/local

icmp any any -> SHOME_NET any (msg:”ICMP Ping Detected”;itype:8; sid:10001; rev:1;)

tcp any any -> SHOME_NET any (msg:"DDoS SYN Flood Attack"; flags:S; threshold:type both, track by src, count 70, seconds 10; classtypl
icmp any any -> SHOME_NET any (msg:”ICMP Packet”; classtype:icmp-event; sid:477; rev:1;)

tcp any any -> SHOME_NET any (msg:"HTTP Traffic Detected";sid:1000001;)

udp any any -> SHOME_NET any (msg:"DDoS UDP Flood Attack"; threshold:type both, track by _src, count 50, seconds 10; classtype:attemptl

[Read 11 lines
ad Help Q¢ write out QY Where Is ay cut @l Execute Q¢ Location BV Undo M- AR IET 3 To Bracket
W Exit il Read File @\ Replace aY Paste a8 Justify Wil Go To Line B3 Redo M - 6 eI here Was

= Snort employs rule sets to identify the certain patterns. Here's an example rule for detecting the
HTTP traffic.:

alert tcp any any -> $HOME NET any (msg:"HTTP Traffic Detected";
sid:1000001;)

E

Running Snort

Snort has many modes of the operation. To detect, use this given command:

sudo snort -A console -q -c /etc/snort/snort.conf --i enp0s3

2 $ sudo snort -A console -q -c /etc/snort/snort.conf -i
08/11-23:29:35.188470 [**] [1:10001:1] “ICMP Ping Detected” [**] [Priority: 0] {ICMP} 10.0.2.
08/11-23:29:36.179370 [**] [1:10001: ”ICMP Ping Detected” [**] [Priority: 0] {ICMP} 10.0.2.
08/11-23:29:37.173208 [**] [1:10001: ”ICMP Ping Detected” [**] [Priority: @] {ICMP} 10.

08/11-23:29:38.160147 [**] [1:10001:1] ”ICMP Ping Detected” [**] [Priority: 0] {ICMP} 16.0.2.
08/11-23:29:39.158540 [**] [1:10001:1] “ICMP Ping Detected” [**] [Priority: 0] {ICMP} 10.0.2.
AXAC*** Caught Int-Signal

e Replace enp0s3 with the correct network interface.

1.2.1.1
1.2.1.2 Examples of Snort Rules and Configurations

1.2.1.3
A basic HTTP traffic detection rule and snort.conf excerpt are below:

snort. conf (snippet)

Network variables
ipvar HOME NET 192.168.1.0/24
ipvar EXTERNAL NET any

Include rule files

include $RULE_PATH/local.rules
local.rules

alert tcp any any -> $HOME NET 80 (msg:"HTTP Traffic Detected";
sid:1000001;)

Example of Running Snort and Generating Alerts

Run the Snort console with the following command:

sudo snort -A console -q -c /etc/snort/snort.conf -i enp0s3

This will start the Snort tool in the alert mode, capturing every packets on the enp0s3 netwok interface

and generating the alerts for HTTP traffic as specified in the local. rules.

Traditional IDS: Snort Configuration and Results

Snort Setup

Installation and configuration of Snort on Ubuntu. Editing snort.conf created network variables and added rule

files. The setup is shown below:

Network variables
ipvar HOME NET 192.168.1.0/24
ipvar EXTERNAL NET any

Include rule files

include $RULE_PATH/local.rules
The local. rules file contained a custom rule to detect the HTTP traffic:

alert tcp any any -> $HOME NET 80 (msg:"HTTP Traffic Detected";
sid:1000001;)

Running Snort

Snort was run in the alert mode with the following command:

sudo snort -A console -q -c /etc/snort/snort.conf -i ethO
Detection Results

Snort identified the HTTP traffic and alerted per rule. Our testing found the Snort's tool detection accuracy at
85%.

Snort Configuration for DDoS Detection:

e Snort Rules for DDoS Attacks: Snort was configured with specific rules to detect DDoS attacks. Here are
some examples of Snort rules used for DDoS detection:

= SYN Flood Detection:

alert tcp any any -> any any (msg:'"DDoS SYN Flood Attack"; flags:S;
threshold:type both, track by src, count 70, seconds 10;
classtype:attempted-dos; sid:1000001; rev:1;)

UDP Flood Detection:

alert udp any any -> any any (msg:"DDoS UDP Flood Attack";
threshold:type both, track by src, count 50, seconds 10;
classtype:attempted-dos; sid:1000002; rev:1;)

kunal@kunal-VirtualBox: /var/log/snort

197756 02:27
8647 15:24
2034 23:20 alert.fast
35666 12:25
38040 10:08
35503 10:07
100313 02:54
195508 02:27
56071 15:24
4788 23:20 .log
1440 10:36 .log.1723109693
3963 10:39 .log.1723109926
741 10:42 .log.1723110108
1750 10:48 .1log.1723110471
2478 11:16 .log.1723112151
2188738 23:21 .log.1723112361
2608751 12:25
2340244 8 10:08
sudo tail snort.alert

3 $ sudo tail snort.alert.
.549329 : “ICMP Ping Detected” iori {1CMP}
.551958 H ”ICMP Ping Detected” ilority: {1CMP}
.544451 : ”ICMP Ping Detected” iori {1cMP}
.532666 : ”ICMP Ping Detected” iori {1CMP}
.530554 g ”ICMP Ping Detected” {IcMP}
.526672 . : ”ICMP Ping Detected” [Priority: {1CMP}
.515933 : ”ICMP Ping Detected” [Priorit {1CcMP}
.509112 3 “”ICMP Ping Detected” [Priorit {1ICMP}
.512981 : ”ICMP Ping Detected” [Priority: {1CMP}
.508038 :] ”ICMP Ping Detected” [Priority: {1CMP}

N
<]
<]
[cN-N-NoNoNoNoNoNoNol
[ol-N-N- o Nl NN N

ROUVLO®NO UL WN

Activities () Terminal Aug 11 23:27

kunal@kunal-VirtualBox: /var/log/snort

Rule application order: pass->drop->sdrop->reject->alert->log

Verifying Preprocessor Configurations!

WARNING: flowbits key 'smb.tree.create.llsrpc' is set but not ever checked.
WARNING: flowbits key 'ms_sql_seen_dns' is checked but not ever set.

33 out of 1024 flowbits in use.

[Port Based Pattern Matching Memory]

+- [Aho-Corasick Summary]

| Storage Format : Full-Q
| Finite Automaton : DFA

| Alphabet Size : 256 Chars
| Sizeof State : Variable (1,2,4 bytes)
| Instances 2215

| 1 byte states : 204

| 2 byte states : 11

| 4 byte states : 0

| Characters : 64755
| States : 31951
| Transitions : 863868
| State Density

| Patterns
| Match States
| Memory (MB)
| Patterns
| Match Lists
| DFA
| 1 byte states
| 2 byte states
| 4 byte states

[Number of patterns truncated to 20 byte

pcap DAQ configured to passive.

Acquiring network traffic from "enp@s3".

Reload thread starting...

Reload thread started, thread 0x71fcb7bdf646 (17313)
Decoding Ethernet

--== Initialization Complete

Activities () Terminal Aug 11 23:25

s 1 kunal@kunal-VirtualBox: /var/log/snort

4061 Snort rules read
3386 detection rules
0 decoder rules
0 preprocessor rules
3386 Option Chains linked into 934 Chain Headers
B i

[Rule Port Counts]
udp icmp
18
126
49

--[detection-filter-config]

[detection-filter-rules]

[rate-filter-confi
1048576 bytes
[rate-filter-rules]-

[event-filter-config]
1048576 bytes
[event-filter-global]

gen-id=1 g type=Threshold tracking=dst count=5]
gen-id=1 type=Threshold tracking=dst count=10 seconds=60
gen-id=1 type=Both tracking=dst count=20
gen-id=1 i type=Threshold tracking=src count=5
gen-id=1 ig-1i type=Limit tracking=src count=1
gen-id=1 sig-1d=1000002 type=Both tracking=src count=50

1.5 Configuration Manual for Machine Learning-Based IDS
Implementation on Linux Networks

1. Setting up the Virtualization Environment

Tools Required:

VirtualBox or VMware (Hypervisor)

Wireshark and tcpdump (for traffic capture)
TensorFlow and Scikit-learn (for ML models)

Snort (for traditional IDS, if needed for comparison)
Metasploitable (vulnerable VM for testing)

Step-by-Step Instructions:

1.

Install VirtualBox/VMware:

o Download and install VirtualBox from the official VirtualBox website.
o Alternatively, install VMware from the VMware website.

Create Virtual Machines (VMs):

o Linux Servers: Make several VMs running Ubuntu and Debian to imitate
environments of servers.

o Client Machines: VMs can be configured to act like client machines, generating
normal network traffic.

o Attack Machines: Generate VMs, load them with tools for attacking, and test
several network attacks.

o IDS Host: A dedicated VM will run TensorFlow and Scikit-learn.

Configure Network Topology:

o Use VirtualBox/VMware’s networking options to create a network that includes routers, switches,
and a firewall.

o Ensure proper segmentation of the network to simulate real-world scenarios.

Deploy Metasploitable:

o Download the Metasploitable VM from Rapid?7.
o Import the VM into VirtualBox/VVMware; then, ensure it's properly networked in
the virtual environment.

2. Data Processing and Feature Extraction

Step-by-Step Instructions:

1.

Data Collection:
o Use the NSL-KDD dataset for network traffic data.
o Downloading the dataset from a trusted source such as Canadian Institute for Cybersecurity.
Data Preprocessing:
o Data Cleaning:
= Minimize noise and irrelevant data to improve the accuracy of the analysis.
o Normalization:
= Scale features to a uniform range for better performance of the model.
Feature Extraction:
o ldentifying, from network packets, those features which are most significant, such as:
= Packet size
= Source and destination IP addresses
= Protocol types
» Flags within the packet
Prepare Data for ML Models:
o Encoding:

https://www.virtualbox.org/
https://www.vmware.com/

= Apply one-hot encoding to convert categorical data (e.g., protocol types) into numerical
representations.
o Partitioning:
= Split the dataset into training, validation, and test sets to check model performance.

3. Training and Testing Machine Learning Models
Step-by-Step Instructions:

1. Train TensorFlow Models:
o Neural Networks:

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

Define the model

model = Sequential ([
Dense (64, activation='relu', input shape=(input dim,)),
Dense (64, activation='relu'),
Dense (1, activation='sigmoid')

1)

Compile the model
model.compile (optimizer="'adam', loss='binary crossentropy’,
metrics=["'accuracy'])

Train the model
model.fit (X train, y train, epochs=10, batch size=32,
validation split=0.3)

2. Train Scikit-learn Models:
o Random Forest:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score

Split the dataset
X train, X test, y train, y test = train test split (X, vy,
test size=0.3, random state=42)

Train the model
clf = RandomForestClassifier(n estimators=100, random state=42)
clf.fit(X train, y train)

Test the model
y_pred = clf.predict (X test)
print (f"Accuracy: {accuracy score(y test, y pred)}")

3. Validate and Test Models:
o Validation:
= Apply cross-validation to ensure the robustness of the model.
o Testing:
= Test these models on an independent test dataset with some evaluation metrics such as
accuracy, precision, recall, F1 score, false positive rate, and response time.

4. Performance Evaluation Metrics

Step-by-Step Instructions:

1. Calculate Metrics:
o Detection Accuracy:
= Proportion of correctly identified intrusions out of total events.
o False Positive Rate:
= Proportion of regular network events misidentified as intrusions.
o Response Time:
= Time taken by IDS to respond to threats.
2. Additional Metrics:
o Precision, Recall, F1 Score:
= Use these metrics to provide a balanced evaluation of IDS performance.

5. Experimental Procedure
Step-by-Step Instructions:

1. Set Up Experiment:

o Deploy the virtual network environment and configure all of its elements.

o Start data collection capturing normal and attack traffic using NSL-KDD dataset.
2. Preprocess Data:

o Cleaning and normalizing the data collected.

o Extract relevant features for model training.
3. Train and Validate Models:

o Train TensorFlow and Scikit-learn models using the pre-processed data.

o Validate models to fine-tune hyperparameters and ensure robustness.
4. Test Models:

o Test the trained models on a separate dataset to evaluate performance.

o Comparison of the performance of traditional Snort IDS against machine learning-based IDS.
5. Analyze Results:

o Agregate and analyze the data obtained from all experiments.

o Comparing traditional and ML-based IDS performance using statistical methods.

The following steps are explicitly illustrated in this manual to set up the machine-learning-based 1DS testbed,
train and test machine learning models, and finally evaluate their performance compared with the traditional
approaches of the employed IDS solutions on any Linux-integrated network environment..

() Terminal Aug 11 23:45

kunal@kunal-VirtualBox: ~/Desktop/thesis

1 2 3
tcp http SF 8. 11 0
tcp http SF < 09.65 .0
tcp http SF ... 0.03 0.0

(] (]
0 0

$ python3 ML.py
cee 35 36 E) 41
normal.
normal.
normal.
normal.
normal.

tcp http SF .03
tcp http SF .02

[5 rows x 42 columns]
Detection Accuracy: 99.98%
Confusion Matrix:
[[29181 11]
[24 118991]]
Classification Report:
precision recall f1-score Supp

.00 .00 . 29192
1.00 1.00 . 119015

accuracy 148207
macro avg - 5 148207
weighted avg . 2 148207

e

top / thesis : Q =

0D Recent

* Starred kddcup. ML.py results_
data_10_ analysis.txt
(ai Home percent_...
=] Documents
¥ Downloads
J1 Music
&) Pictures
Dataset

10

