

Configuration Manual

MSc Research Project

Programme Name- MSc in Cybersecurity

Forename Surname

Student ID: 23110856

School of Computing

National College of Ireland

Supervisor:Joel Aleburu

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Kunal Sanjaykumar Jadhav

……. ………

Student ID:

23110856

………..……

Programme:

Msc in Cybersecurity

………………………………………………………………

Year:

2023-24

…………………………..

Module:

Msc research project

…….………

Lecturer:

Joel Aleburu

…….………

Submission

Due Date:

12th August 2024

…….………

Project Title:

Configuration Manual

…….………

Word Count:

……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Kunal Jadhav

……

Date:

12th August 2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Forename Surname

Student ID:

1.1 Configuration manual for Traditional Method(SNORT)

1.2

Below is an illustrated procedure and scenario setup for installing and running Snort for the analysis:

Setting Up Snort

1. Installation

▪ Snort can be installed on Ubuntu using the following commands:

sudo apt-get update

sudo apt-get install snort

▪ Follow the prompts to configure the home network during installation.

2. Configuration

▪ Snort configuration is done in the snort.conf file, typically located at directory

/etc/snort/snort.conf.

▪ Set the network variables (e.g., HOME_NET) to match our environment.

▪ Include rule files and enable the rules we want Snort to use for detecting intrusions.

2

3. Rules

▪ Snort rules file is done in the local.rules file, which we created and located at directory

/etc/snort/rules/local.rules.

▪ Snort employs rule sets to identify the certain patterns. Here's an example rule for detecting the

HTTP traffic.:

3

alert tcp any any -> $HOME_NET any (msg:"HTTP Traffic Detected";

sid:1000001;)

4. Running Snort

• Snort has many modes of the operation. To detect, use this given command:

sudo snort -A console -q -c /etc/snort/snort.conf --i enp0s3

• Replace enp0s3 with the correct network interface.

1.2.1.1

1.2.1.2 Examples of Snort Rules and Configurations

1.2.1.3
A basic HTTP traffic detection rule and snort.conf excerpt are below:

snort.conf (snippet)

Network variables

ipvar HOME_NET 192.168.1.0/24

ipvar EXTERNAL_NET any

Include rule files

include $RULE_PATH/local.rules

local.rules

alert tcp any any -> $HOME_NET 80 (msg:"HTTP Traffic Detected";

sid:1000001;)

Example of Running Snort and Generating Alerts

Run the Snort console with the following command:

sudo snort -A console -q -c /etc/snort/snort.conf -i enp0s3

4

This will start the Snort tool in the alert mode, capturing every packets on the enp0s3 netwok interface

and generating the alerts for HTTP traffic as specified in the local.rules.

Traditional IDS: Snort Configuration and Results

Snort Setup

Installation and configuration of Snort on Ubuntu. Editing snort.conf created network variables and added rule

files. The setup is shown below:

Network variables

ipvar HOME_NET 192.168.1.0/24

ipvar EXTERNAL_NET any

Include rule files

include $RULE_PATH/local.rules

The local.rules file contained a custom rule to detect the HTTP traffic:

alert tcp any any -> $HOME_NET 80 (msg:"HTTP Traffic Detected";

sid:1000001;)

Running Snort

Snort was run in the alert mode with the following command:

sudo snort -A console -q -c /etc/snort/snort.conf -i eth0

Detection Results

Snort identified the HTTP traffic and alerted per rule. Our testing found the Snort's tool detection accuracy at

85%.

Snort Configuration for DDoS Detection:

• Snort Rules for DDoS Attacks: Snort was configured with specific rules to detect DDoS attacks. Here are

some examples of Snort rules used for DDoS detection:

▪ SYN Flood Detection:

5

alert tcp any any -> any any (msg:"DDoS SYN Flood Attack"; flags:S;

threshold:type both, track by_src, count 70, seconds 10;

classtype:attempted-dos; sid:1000001; rev:1;)

▪ UDP Flood Detection:

alert udp any any -> any any (msg:"DDoS UDP Flood Attack";

threshold:type both, track by_src, count 50, seconds 10;

classtype:attempted-dos; sid:1000002; rev:1;)

6

1.3

1.4

1.5 Configuration Manual for Machine Learning-Based IDS

Implementation on Linux Networks

1. Setting up the Virtualization Environment

7

Tools Required:

• VirtualBox or VMware (Hypervisor)

• Wireshark and tcpdump (for traffic capture)

• TensorFlow and Scikit-learn (for ML models)

• Snort (for traditional IDS, if needed for comparison)

• Metasploitable (vulnerable VM for testing)

Step-by-Step Instructions:

1. Install VirtualBox/VMware:

o Download and install VirtualBox from the official VirtualBox website.

o Alternatively, install VMware from the VMware website.

2. Create Virtual Machines (VMs):

o Linux Servers: Make several VMs running Ubuntu and Debian to imitate

environments of servers.

o Client Machines: VMs can be configured to act like client machines, generating

normal network traffic.

o Attack Machines: Generate VMs, load them with tools for attacking, and test

several network attacks.

o IDS Host: A dedicated VM will run TensorFlow and Scikit-learn.

3. Configure Network Topology:

o Use VirtualBox/VMware’s networking options to create a network that includes routers, switches,

and a firewall.

o Ensure proper segmentation of the network to simulate real-world scenarios.

4. Deploy Metasploitable:

o Download the Metasploitable VM from Rapid7.

o Import the VM into VirtualBox/VMware; then, ensure it's properly networked in

the virtual environment.

2. Data Processing and Feature Extraction

Step-by-Step Instructions:

1. Data Collection:

o Use the NSL-KDD dataset for network traffic data.

o Downloading the dataset from a trusted source such as Canadian Institute for Cybersecurity.

2. Data Preprocessing:

o Data Cleaning:

▪ Minimize noise and irrelevant data to improve the accuracy of the analysis.

o Normalization:

▪ Scale features to a uniform range for better performance of the model.

3. Feature Extraction:

o Identifying, from network packets, those features which are most significant, such as:

▪ Packet size

▪ Source and destination IP addresses

▪ Protocol types

▪ Flags within the packet

4. Prepare Data for ML Models:

o Encoding:

https://www.virtualbox.org/
https://www.vmware.com/

8

▪ Apply one-hot encoding to convert categorical data (e.g., protocol types) into numerical

representations.

o Partitioning:

▪ Split the dataset into training, validation, and test sets to check model performance.

3. Training and Testing Machine Learning Models

Step-by-Step Instructions:

1. Train TensorFlow Models:

o Neural Networks:

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

Define the model

model = Sequential([

 Dense(64, activation='relu', input_shape=(input_dim,)),

 Dense(64, activation='relu'),

 Dense(1, activation='sigmoid')

])

Compile the model

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

Train the model

model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_split=0.3)

2. Train Scikit-learn Models:

o Random Forest:

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Split the dataset

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

Train the model

clf = RandomForestClassifier(n_estimators=100, random_state=42)

clf.fit(X_train, y_train)

Test the model

y_pred = clf.predict(X_test)

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

3. Validate and Test Models:

o Validation:

▪ Apply cross-validation to ensure the robustness of the model.

o Testing:

▪ Test these models on an independent test dataset with some evaluation metrics such as

accuracy, precision, recall, F1 score, false positive rate, and response time.

4. Performance Evaluation Metrics

9

Step-by-Step Instructions:

1. Calculate Metrics:

o Detection Accuracy:

▪ Proportion of correctly identified intrusions out of total events.

o False Positive Rate:

▪ Proportion of regular network events misidentified as intrusions.

o Response Time:

▪ Time taken by IDS to respond to threats.

2. Additional Metrics:

o Precision, Recall, F1 Score:

▪ Use these metrics to provide a balanced evaluation of IDS performance.

5. Experimental Procedure

Step-by-Step Instructions:

1. Set Up Experiment:

o Deploy the virtual network environment and configure all of its elements.

o Start data collection capturing normal and attack traffic using NSL-KDD dataset.

2. Preprocess Data:

o Cleaning and normalizing the data collected.

o Extract relevant features for model training.

3. Train and Validate Models:

o Train TensorFlow and Scikit-learn models using the pre-processed data.

o Validate models to fine-tune hyperparameters and ensure robustness.

4. Test Models:

o Test the trained models on a separate dataset to evaluate performance.

o Comparison of the performance of traditional Snort IDS against machine learning-based IDS.

5. Analyze Results:

o Agregate and analyze the data obtained from all experiments.

o Comparing traditional and ML-based IDS performance using statistical methods.

The following steps are explicitly illustrated in this manual to set up the machine-learning-based IDS testbed,

train and test machine learning models, and finally evaluate their performance compared with the traditional

approaches of the employed IDS solutions on any Linux-integrated network environment..

10

 Dataset

