

Configuration Manual

MSc Research Project

MSc Cybersecurity

Mariam Uleyele Isedu

Student ID: X22151079

School of Computing

National College of Ireland

Supervisor: Mr Joel Aleburu

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mariam Uleyele Isedu

Student ID:

X22151079

Programme:

MSc in Cybersecurity

Year:

…2023 -2024

Module:

MSc Research Project

Lecturer:

Mr Joel Aleburu

Submission Due

Date:

12-08-2024

Project Title:

…Network Intrusion Detection: A Cooperative Security in the IoT

Ecosystem Using Ensemble ML Algorithm

Word Count:

1988 Page Count: 17

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Mariam Isedu

Date:

11th of August, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Mariam Uleyele Isedu

Student ID: X22151079

1 Introduction

The configuration manual provides a systematic technique for the project titled 'Network

Intrusion Detection: A Cooperative Security in The IoT Ecosystem Using Ensemble ML

Algorithm'. The process encompasses the process workflow, implementation and validation

required for the research. The purpose of this configuration manual is to provide any

individual that encounters this research work with guidance and assistance at each step of the

process including the instructions and tools used, and enabling them to achieve the required

outcomes and results which are presented in a research report.

Project Overview:

The research focuses on malware (botnet) detection in an IoT network environment by

introducing a ‘fog node’ created with machine learning models and in this case with the

utilization of ‘stacking ensemble ML technique’. The proposed model is intended to be a

proactive approach to protect IoT devices and network users from attack intrusion that can

spread in within the network and then lead to a DoS/DDoS attack. In order to accomplish the

objective, our proposed model utilizes the predictive strength of multiple machine learning

models like the Random forest (RF) and Extreme gradient boost (XGBoost). The model

explored a dataset, which was pre-processed and then features were selected using the

SMOTE technique before proceeding to split the dataset into a train and test set for the model

training and performance evaluation (accuracy, recall, precision and F1-score). And finally,

we simulate and validate our model on a simulated-attack dataset generated from a network

simulator.

2 Hardware and Software Requirements
 All processes and methodologies carried out during the course of this research were achieved

by using various hardware and software tools. Hardware and software requirements may vary

based on system type and resources need to implement a chosen model. The requirements

stated in this configuration document matched the research objectives and chosen machine

learning models, hence why it was used.

2.1 Hardware Requirements

 In the course of implementing this research work, below are the basic hardware requirements

that were utilized to achieved the results:

2

 Operating System: Windows 10 Pro

 RAM: 16.0 GB

 Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz

 Storage: 512 GB SSD

 System Type: 64-bit operating system, x64-based processor

 Processor: Intel Core i7

2.2 Software Requirements

In other to ensure the implementation of this research work was carried out to achieve the

required results, some software tools and solutions were leveraged at various stages as

required. The software used to attain our goal and model is subject to change based on recent

research, system capacity and resources available. Some of the basic requirements include:

 Open-source Google Colab Platform

 Microsoft Excel – to view and analyse dataset in CSV format

 Python 3.12 version

 Virtual Machine – Vmware workstation 16 Pro: for simulation purpose

 Ubuntu 24.04 – Linux OS to be installed on the VMware with better terminal usage

 Mininet Network Simulator – for network topology creation, attack simulation and

dataset generation used for model validation.

3 Dataset Description

The dataset utilised in this study was acquired from the 'Kaggle' platform, which is publicly

available for researchers. The 'UNB CIC IoT 2023 dataset' created by Neto et al. (2023) from

the University of Brunswick Centre of Cybersecurity was selected based on its inclusion of

network traffic characteristics from 105 Internet of Things (IoT) devices. These devices were

subjected to seven different forms of cyberattacks, including Denial of Service, Distributed

Denial of Service (DDoS), botnets, and brute-force attacks. The entire dataset contained a

CSV folder which of comprised 169 separate pieces of datasets in multiple excel sheets. Each

excel sheet had the same number of labels (47 columns) but distinct instances. The 'Part

00000' containing 238,688 rows was selected for this research for ease of iteration, faster

processing time, quick balance and analysis, simpler debugging, and classification.

4 Project Implementation on Google Colab Platform

The Implementation phase is one of the very crucial phase of the research, and various phases

were considered in other to ensure a ‘systematic’ approach is followed to enable adjustment

if need be, updates and easy review of phases to ensure they meet the needed requirements to

meet the objective of the research. Phases followed include to first import the necessary

python libraries and dataset into the google colab environment.

4.1 Dataset Pre-Processing

After the python libraries and dataset importation, next is to carry out data pre-processing

which include the data cleaning, checking for null and missing values, dropping duplicate

3

instances, sampling using the SMOTE technique and encoding to change categorical data to

numerical data type for easy computation.

Figure 1: Libraries and Dataset Importation into the Google Colab Environment

Next we carry out standardization on the dataset, drop the label column and then check for

missing and null values, and in the case of the research the dataset used had no null values.

Figure 2: Standardization of the dataset

Now, check for the missing values; using the ‘isnull().sum()’ command

Figure 3: Checking for Missing and null values

4

Next we want to see our label value counts in other to have a good knowledge of the attack-

class counts to ensure we able to choose the right samples for implementation.

Figure 4: Label Value Counts

Figure 4 shows 34 labels that have in-balanced counts and repetition of attack types.

Next we remapped the 34 labels into 8 labels of known attacks as it relates to each attack-

class.

Figure 5: Remapping 34 Labels into 8 Labels

5

After remapping the attack-classes, we decided to choose a sample of 1000 for easy

processing, but the samples were still not balanced. Next we carried out SMOTE for the

balancing and label encoding to convert categorical values into numerical values. See code

segments and results of these actions below:

Figure 6: Picking 1000 samples of each attack class

Figure 7: Dropping Label column

Figure 8: Encoding Labels into numerical values

Below are the results from achieved from Figure 5, 6, 7 and 8 simultaneously: after the below

then we drop the label column.

Figure 9: Remapped attack-class, SMOTE application and Label Encoding application

Check the Skewness

Figure 10: Dataset Skewness

6

4.2 Train_Test Split

The pre-processed dataset is divided using the 80/20 ratio for train and test sub-dataset. And

then we defined our evaluation metrics which include: Accuracy, Recall, Precision and F1-

score

Figure 11: Train_Test Split and Performance Metrics Definition

From Figure 10 above, after carrying out the train and split, our test set became 1600

instances.

4.3 Application of the Machine Learning (ML) Models

After the pre-processing phase, next we carry out ML models application on the dataset. The

models explored in the course of this research include; Random Forest (RF)1, Logistic

Regression (LR), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM)2,

Stacked Model (Experiment 5 = (SVM+XGBoost=>RF)) and our proposed model as a

solution for DDoS attack detection using the Stacking technique3 with minimum resources

and less memory space is Stacked (RF+XGBoost=>RF).

Experiment 1 – Random Forest (RF)

Figure 12: Random Forest Experiment

1 https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
2 https://scikit-learn.org/stable/modules/svm.html
3 https://scikit-learn.org/stable/modules/ensemble.html#stacking

7

From the Figure 12 above, the top 5 features that influence the RF results are IAT,

magnitude, Header_lenght, Rst_count, and Flow_duration.

Figure 13: Confusion Matrix and Accuracy score of RF model

Experiment 2 - Logistic Regression (LR)

Figure 14: Logistic Regression Experiment

Figure 15: Confusion Matrix and Accuracy score of LR model

8

Experiment 3 – Extreme Gradient Boost (XGBoost)

Figure 16: XGBoost Experiment

Figure 17: Confusion Matrix and Accuracy score of XGBoost model

9

Experiment 4 – Support Vector Machine (SVM)

Figure 18: SVM Experiment

Figure 19: Confusion Matrix and Accuracy score of SVM model

Experiment 5 – Stacked (SVM+XGBoost=>RF)

Figure 20: Stacking (SVM+XGBoost=>RF)

10

Figure 21: Confusion Matrix and Accuracy score of Experiment 5 (Stacking

SVM+XGBoost=>RF) model

Our Proposed Model - which is Stacking (RF+XGBoost=>RF)

Figure 22: Our Proposed Model Experiment Stacking (RF+XGBoost=>RF)

Figure 23: Confusion Matrix and Accuracy score of our Proposed Model

11

5 Evaluation

Evaluation of the models was done using the above stated metrics: Accuracy, Recall,

Precision and F1-score across all models and experiments:

Models and Experiments Accuracy Recall Precision F1-Score

Experiment 1- Random Forest (RF) 0.915625 0.916523 0.915867 0.914595

Experiment 2- Logistic Regression (LR) 0.668125 0.697858 0.673208 0.666283

Experiment 3- Extreme Gradient Boost

(XGBoost) 0.933125 0.932762 0.933390 0.932899

Experiment 4- Support Vector Machine

(SVM) 0.7125 0.749363 0.715946 0.707919

Experiment 5:

Stacked (SVM + XGBoost) => RF 0.9325 0.932756 0.932674 0.932397

Proposed Model:

Stacked (RF + XGBoost) => RF 0.933125 0.932861 0.933226 0.932985

Table 1: Performance Comparison of all Models

6 Simulation and Validation

To commence the simulation and validation of our proposed model, we first downloaded and

installed our virtual machine and in this case we used the VMware Workstation 16 Pro as its

freely available on the internet along with its installation guide. Next we install and OS, we

used the Ubuntu 24.04 which is a new version of Linux to ensure our models run on recent

resources and can be scalable. Then we go ahead to download and install our network

simulator (Mininet network simulator) and all necessary libraries.

Note: See links to download and installation guides below;

 https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf

 https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-

workstation-ce5f2d4d0438

 https://mininet.org/overview/

After correctly installing the above and required libraries like Python and Pyshark, next we

create our network topology that contains switch, controller, host, communication link

(TClink).

Figure 24: Python, Mininet and Pyshark Downloads

https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://mininet.org/overview/

12

Next we create our topology using Python scripts, see below

Figure 25: Topology creation and attack simulation

Below is the results and outputs of our topology creation and attack simulation:

Figure 26: Results of Topology creation, attack simulation, Pcap file and conversion to CSV

After simulating an attack and generating the a Pcap file. Next we need to read the pcap file

with 5117 packets captured using Pyshark, and then converted our Pcap file into CSV format

13

in other for to ensure we can easily analyse and pre-process it to fit the features used for

model training.

We have to ensure our Pcap file is organized accordingly to fit the features of the dataset we

used to train our model. So we used a python code to ensure some features are captured, see

below screenshots of the python code used to ensure features matches training dataset:

14

15

Figures 27: the above 6 snapshots (27a, 27b, 27c, 27d, 27e, 27f) show reading of the Pcap

file into CSV format to fit our same features as our training dataset.

Validation:

Next we Import our CSV file into the google colab environment for validation:

Figure 28: Importation of the Validation Dataset generated from the simulated attack

From the Figure 28 above, we can see that the duration is captured in year_day_time. But

our trained dataset has duration in seconds. Next we pre-process our validation dataset to

ensure our model can run well with it.

16

Figure 29: Converting Duration to seconds (29a and 29b).

Next we carry out other pre-processing steps as we did with our training dataset:

Standardization, checking for missing and null values, and dropping the label column so our

model can predict. See below steps:

Figure 30: 30a, 30b and 30c above shows pre-processing of the validation dataset

17

Figure 31: Validation dataset after dropping label column

Next we carry out validation of our model on the ‘labeless_new_data’ to check its

performance and prediction strength.

Recall: our remapped label from the pre-processing of our dataset used to train the models

Figure 32: label encoded into numerical values using label encoder

Figure 33: Our proposed model Prediction on the validation dataset

From Figure 30 above, we can see that based on the label encoding, the attack classes ranged

from Benign = 0, Brute-force = 1, DDoS = 2, DoS = 3, Mirai = 4, Reconnaissance = 5,

Spoofing = 6, and Web = 7.

And from Figure 31, we can see that our proposed model predicted (2 = DDoS and 5 =

Reconnaissance). Hence we can say our proposed model did perform well by detecting signs

of DDoS attack from the network traffic with frequency of 5081 and Reconnaissance

frequency of 15.

18

References

Alghamdi, R., Bellaiche, M., 2022. Evaluation and Selection Models for Ensemble Intrusion

Detection Systems in IoT. IoT 3, 285–314. https://doi.org/10.3390/iot3020017

Gupta, R., 2023. Accuracy, Precision, Recall, F-1 Score, Confusion Matrix, and AUC-ROC.

Medium. URL https://medium.com/@riteshgupta.ai/accuracy-precision-recall-f-1-score-

confusion-matrix-and-auc-roc-1471e9269b7d (accessed 6.3.24).

Mousavi, S.A., Sadeghi, M., Sirjani, M.S., 2023. A Comparative Evaluation of Machine

Learning Algorithms for IDS in IoT network, in: 2023 14th International Conference on

Information and Knowledge Technology (IKT), pp. 168–174.

https://doi.org/10.1109/IKT62039.2023.10433047

Neto, E.C.P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu, R., Ghorbani, A.A., 2023.

CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT

Environment. Sensors 23, 5941. https://doi.org/10.3390/s23135941

Nguyen, H.-T., Ngo, Q.-D., Nguyen, D.-H., Le, V.-H., 2020. PSI-rooted subgraph: A novel

feature for IoT botnet detection using classifier algorithms. ICT Express 6, 128–138.

https://doi.org/10.1016/j.icte.2019.12.001

Singh, A., Prakash, J., Kumar, G., Jain, P., Ambati, L., 2024. Intrusion Detection System: A

Comparative Study of Machine Learning-Based IDS. Journal of Database Management 35,

1–25. https://doi.org/10.4018/JDM.338276

https://doi.org/10.3390/iot3020017
https://doi.org/10.3390/iot3020017
https://doi.org/10.1109/IKT62039.2023.10433047
https://doi.org/10.1109/IKT62039.2023.10433047
https://doi.org/10.3390/s23135941
https://doi.org/10.3390/s23135941
https://doi.org/10.1016/j.icte.2019.12.001
https://doi.org/10.1016/j.icte.2019.12.001

