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1 Introduction 
 

The configuration manual provides a systematic technique for the project titled 'Network 

Intrusion Detection: A Cooperative Security in The IoT Ecosystem Using Ensemble ML 

Algorithm'. The process encompasses the process workflow, implementation and validation 

required for the research. The purpose of this configuration manual is to provide any 

individual that encounters this research work with guidance and assistance at each step of the 

process including the instructions and tools used, and enabling them to achieve the required 

outcomes and results which are presented in a research report. 

 

Project Overview:  

The research focuses on malware (botnet) detection in an IoT network environment by 

introducing a ‘fog node’ created with machine learning models and in this case with the 

utilization of ‘stacking ensemble ML technique’. The proposed model is intended to be a 

proactive approach to protect IoT devices and network users from attack intrusion that can 

spread in within the network and then lead to a DoS/DDoS attack. In order to accomplish the 

objective, our proposed model utilizes the predictive strength of multiple machine learning 

models like the Random forest (RF) and Extreme gradient boost (XGBoost). The model 

explored a dataset, which was pre-processed and then features were selected using the 

SMOTE technique before proceeding to split the dataset into a train and test set for the model 

training and performance evaluation (accuracy, recall, precision and F1-score). And finally, 

we simulate and validate our model on a simulated-attack dataset generated from a network 

simulator. 

 

 

2 Hardware and Software Requirements 
 All processes and methodologies carried out during the course of this research were achieved 

by using various hardware and software tools. Hardware and software requirements may vary 

based on system type and resources need to implement a chosen model. The requirements 

stated in this configuration document matched the research objectives and chosen machine 

learning models, hence why it was used. 

2.1 Hardware Requirements 

 In the course of implementing this research work, below are the basic hardware requirements 

that were utilized to achieved the results:  
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 Operating System: Windows 10 Pro 

 RAM: 16.0 GB 

 Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz   2.11 GHz 

 Storage: 512 GB SSD 

 System Type: 64-bit operating system, x64-based processor 

 Processor: Intel Core i7 

2.2 Software Requirements 

In other to ensure the implementation of this research work was carried out to achieve the 

required results, some software tools and solutions were leveraged at various stages as 

required. The software used to attain our goal and model is subject to change based on recent 

research, system capacity and resources available. Some of the basic requirements include: 

 Open-source Google Colab Platform 

 Microsoft Excel – to view and analyse dataset in CSV format 

 Python 3.12 version 

 Virtual Machine – Vmware workstation 16 Pro: for simulation purpose  

 Ubuntu 24.04 – Linux OS to be installed on the VMware with better terminal usage 

 Mininet Network Simulator – for network topology creation, attack simulation and 

dataset generation used for model validation. 

 

3 Dataset Description  
 

The dataset utilised in this study was acquired from the 'Kaggle' platform, which is publicly 

available for researchers. The 'UNB CIC IoT 2023 dataset' created by Neto et al. (2023) from 

the University of Brunswick Centre of Cybersecurity was selected based on its inclusion of 

network traffic characteristics from 105 Internet of Things (IoT) devices. These devices were 

subjected to seven different forms of cyberattacks, including Denial of Service, Distributed 

Denial of Service (DDoS), botnets, and brute-force attacks. The entire dataset contained a 

CSV folder which of comprised 169 separate pieces of datasets in multiple excel sheets. Each 

excel sheet had the same number of labels (47 columns) but distinct instances. The 'Part 

00000' containing 238,688 rows was selected for this research for ease of iteration, faster 

processing time, quick balance and analysis, simpler debugging, and classification. 

 

4 Project Implementation on Google Colab Platform 
  

The Implementation phase is one of the very crucial phase of the research, and various phases 

were considered in other to ensure a ‘systematic’ approach is followed to enable adjustment 

if need be, updates and easy review of phases to ensure they meet the needed requirements to 

meet the objective of the research. Phases followed include to first import the necessary 

python libraries and dataset into the google colab environment.  

4.1 Dataset Pre-Processing  

After the python libraries and dataset importation, next is to carry out data pre-processing 

which include the data cleaning, checking for null and missing values, dropping duplicate 
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instances, sampling using the SMOTE technique and encoding to change categorical data to 

numerical data type for easy computation. 

 
Figure 1: Libraries and Dataset Importation into the Google Colab Environment 

 

Next we carry out standardization on the dataset, drop the label column and then check for 

missing and null values, and in the case of the research the dataset used had no null values. 

 

 
Figure 2: Standardization of the dataset 

 

Now, check for the missing values; using the ‘isnull().sum()’ command 

 

 
Figure 3: Checking for Missing and null values 
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Next we want to see our label value counts in other to have a good knowledge of the attack-

class counts to ensure we able to choose the right samples for implementation. 

 
Figure 4: Label Value Counts 

 

Figure 4 shows 34 labels that have in-balanced counts and repetition of attack types. 

 

Next we remapped the 34 labels into 8 labels of known attacks as it relates to each attack-

class.  

 

 
Figure 5: Remapping 34 Labels into 8 Labels 
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After remapping the attack-classes, we decided to choose a sample of 1000 for easy 

processing, but the samples were still not balanced. Next we carried out SMOTE for the 

balancing and label encoding to convert categorical values into numerical values. See code 

segments and results of these actions below:  

 

 
Figure 6: Picking 1000 samples of each attack class 

 

 
Figure 7: Dropping Label column  

 

 
Figure 8: Encoding Labels into numerical values 

 

Below are the results from achieved from Figure 5, 6, 7 and 8 simultaneously: after the below 

then we drop the label column. 

  
Figure 9: Remapped attack-class, SMOTE application and Label Encoding application 

 

Check the Skewness 

 
Figure 10: Dataset Skewness 
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4.2 Train_Test Split 

The pre-processed dataset is divided using the 80/20 ratio for train and test sub-dataset. And 

then we defined our evaluation metrics which include: Accuracy, Recall, Precision and F1-

score 

 
Figure 11: Train_Test Split and Performance Metrics Definition 

 

From Figure 10 above, after carrying out the train and split, our test set became 1600 

instances.  

4.3 Application of the Machine Learning (ML) Models 

After the pre-processing phase, next we carry out ML models application on the dataset. The 

models explored in the course of this research include; Random Forest (RF)1, Logistic 

Regression (LR), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM)2, 

Stacked Model (Experiment 5 = (SVM+XGBoost=>RF)) and our proposed model as a 

solution for DDoS attack detection using the Stacking technique3 with minimum resources 

and less memory space is Stacked (RF+XGBoost=>RF). 

 

Experiment 1 – Random Forest (RF) 

 
Figure 12: Random Forest Experiment 

 
                                                                 
 
1 https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting 
2 https://scikit-learn.org/stable/modules/svm.html 
3 https://scikit-learn.org/stable/modules/ensemble.html#stacking 
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From the Figure 12 above, the top 5 features that influence the RF results are IAT, 

magnitude, Header_lenght, Rst_count, and Flow_duration. 

 

 
Figure 13: Confusion Matrix and Accuracy score of RF model  

 

Experiment 2 -  Logistic Regression (LR) 

 
Figure 14: Logistic Regression Experiment 

 

 
Figure 15: Confusion Matrix and Accuracy score of LR model 
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Experiment 3 – Extreme Gradient Boost (XGBoost) 

 
Figure 16: XGBoost Experiment 

 

 
Figure 17: Confusion Matrix and Accuracy score of XGBoost model 
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Experiment 4 – Support Vector Machine (SVM) 

 
Figure 18: SVM Experiment 

 

 
Figure 19: Confusion Matrix and Accuracy score of SVM model 

 

Experiment 5 – Stacked (SVM+XGBoost=>RF) 

 
Figure 20: Stacking (SVM+XGBoost=>RF) 
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Figure 21: Confusion Matrix and Accuracy score of Experiment 5 (Stacking 

SVM+XGBoost=>RF) model 

 

Our Proposed Model - which is Stacking (RF+XGBoost=>RF) 

 
Figure 22: Our Proposed Model Experiment Stacking (RF+XGBoost=>RF) 

 

 
Figure 23: Confusion Matrix and Accuracy score of our Proposed Model  
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5 Evaluation  
 

Evaluation of the models was done using the above stated metrics: Accuracy, Recall, 

Precision and F1-score across all models and experiments:  

Models and Experiments Accuracy Recall  Precision F1-Score 

Experiment 1- Random Forest (RF) 0.915625 0.916523 0.915867 0.914595 

Experiment 2- Logistic Regression (LR)  0.668125 0.697858 0.673208 0.666283 

Experiment 3- Extreme Gradient Boost 

(XGBoost) 0.933125 0.932762 0.933390 0.932899 

Experiment 4- Support Vector Machine 

(SVM)  0.7125 0.749363 0.715946 0.707919 

Experiment 5: 

Stacked (SVM + XGBoost) => RF  0.9325 0.932756 0.932674 0.932397 

Proposed Model: 

Stacked (RF + XGBoost) => RF 0.933125 0.932861 0.933226 0.932985 

Table 1: Performance Comparison of all Models 

 

6 Simulation and Validation 
 

To commence the simulation and validation of our proposed model, we first downloaded and 

installed our virtual machine and in this case we used the VMware Workstation 16 Pro as its 

freely available on the internet along with its installation guide. Next we install and OS, we 

used the Ubuntu 24.04 which is a new version of Linux to ensure our models run on recent 

resources and can be scalable. Then we go ahead to download and install our network 

simulator (Mininet network simulator) and all necessary libraries. 

Note: See links to download and installation guides below; 

 https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf 

 https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-

workstation-ce5f2d4d0438 

 https://mininet.org/overview/ 

 

After correctly installing the above and required libraries like Python and Pyshark, next we 

create our network topology that contains switch, controller, host, communication link 

(TClink). 

 

 
Figure 24: Python, Mininet and Pyshark Downloads 

 

 

 

 

https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://mininet.org/overview/
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Next we create our topology using Python scripts, see below 

 

 

 
Figure 25: Topology creation and attack simulation 

 

Below is the results and outputs of our topology creation and attack simulation: 

 

 
Figure 26: Results of Topology creation, attack simulation, Pcap file and conversion to CSV 

 

After simulating an attack and generating the a Pcap file. Next we need to read the pcap file 

with 5117 packets captured using Pyshark, and then converted our Pcap file into CSV format 
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in other for to ensure we can easily analyse and pre-process it to fit the features used for 

model training.  

 

We have to ensure our Pcap file is organized accordingly to fit the features of the dataset we 

used to train our model. So we used a python code to ensure some features are captured, see 

below screenshots of the python code used to ensure features matches training dataset: 
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Figures 27: the above 6 snapshots (27a, 27b, 27c, 27d, 27e, 27f) show reading of the Pcap 

file into CSV format to fit our same features as our training dataset. 

 

 

Validation: 

Next we Import our CSV file into the google colab environment for validation: 

 
Figure 28: Importation of the Validation Dataset generated from the simulated attack 

 

From the Figure 28 above, we can see that the duration is captured in year_day_time. But 

our trained dataset has duration in seconds. Next we pre-process our validation dataset to 

ensure our model can run well with it. 
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Figure 29: Converting Duration to seconds (29a and 29b). 

 

Next we carry out other pre-processing steps as we did with our training dataset: 

Standardization, checking for missing and null values, and dropping the label column so our 

model can predict. See below steps:  

 

 

 

 
 

 
Figure 30: 30a, 30b and 30c above shows pre-processing of the validation dataset 
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Figure 31: Validation dataset after dropping label column  

 

Next we carry out validation of our model on the ‘labeless_new_data’ to check its 

performance and prediction strength. 

 

Recall:  our remapped label from the pre-processing of our dataset used to train the models 

 
Figure 32: label encoded into numerical values using label encoder 

 

 
Figure 33: Our proposed model Prediction on the validation dataset 

 

From Figure 30 above, we can see that based on the label encoding, the attack classes ranged 

from Benign = 0, Brute-force = 1, DDoS = 2, DoS = 3, Mirai = 4, Reconnaissance = 5, 

Spoofing = 6, and Web = 7. 

 

And from Figure 31, we can see that our proposed model predicted (2 = DDoS and 5 = 

Reconnaissance). Hence we can say our proposed model did perform well by detecting signs 

of DDoS attack from the network traffic with frequency of 5081 and Reconnaissance 

frequency of 15.  
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