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Mariam Uleyele Isedu
Student ID: X22151079

1 Introduction

The configuration manual provides a systematic technique for the project titled 'Network
Intrusion Detection: A Cooperative Security in The IoT Ecosystem Using Ensemble ML
Algorithm'. The process encompasses the process workflow, implementation and validation
required for the research. The purpose of this configuration manual is to provide any
individual that encounters this research work with guidance and assistance at each step of the
process including the instructions and tools used, and enabling them to achieve the required
outcomes and results which are presented in a research report.

Project Overview:

The research focuses on malware (botnet) detection in an loT network environment by
introducing a ‘fog node’ created with machine learning models and in this case with the
utilization of ‘stacking ensemble ML technique’. The proposed model is intended to be a
proactive approach to protect 10T devices and network users from attack intrusion that can
spread in within the network and then lead to a DoS/DDoS attack. In order to accomplish the
objective, our proposed model utilizes the predictive strength of multiple machine learning
models like the Random forest (RF) and Extreme gradient boost (XGBoost). The model
explored a dataset, which was pre-processed and then features were selected using the
SMOTE technique before proceeding to split the dataset into a train and test set for the model
training and performance evaluation (accuracy, recall, precision and F1-score). And finally,
we simulate and validate our model on a simulated-attack dataset generated from a network
simulator.

2 Hardware and Software Requirements

All processes and methodologies carried out during the course of this research were achieved
by using various hardware and software tools. Hardware and software requirements may vary
based on system type and resources need to implement a chosen model. The requirements
stated in this configuration document matched the research objectives and chosen machine
learning models, hence why it was used.

2.1 Hardware Requirements
In the course of implementing this research work, below are the basic hardware requirements
that were utilized to achieved the results:



Operating System: Windows 10 Pro

RAM: 16.0 GB

Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz
Storage: 512 GB SSD

System Type: 64-bit operating system, x64-based processor
Processor: Intel Core i7

VVVVYVYYVYY

2.2 Software Requirements
In other to ensure the implementation of this research work was carried out to achieve the
required results, some software tools and solutions were leveraged at various stages as
required. The software used to attain our goal and model is subject to change based on recent
research, system capacity and resources available. Some of the basic requirements include:

» Open-source Google Colab Platform
Microsoft Excel — to view and analyse dataset in CSV format
Python 3.12 version
Virtual Machine — Vmware workstation 16 Pro: for simulation purpose
Ubuntu 24.04 — Linux OS to be installed on the VMware with better terminal usage
Mininet Network Simulator — for network topology creation, attack simulation and
dataset generation used for model validation.

YVVVVY

3 Dataset Description

The dataset utilised in this study was acquired from the 'Kaggle' platform, which is publicly
available for researchers. The 'UNB CIC loT 2023 dataset' created by Neto et al. (2023) from
the University of Brunswick Centre of Cybersecurity was selected based on its inclusion of
network traffic characteristics from 105 Internet of Things (IoT) devices. These devices were
subjected to seven different forms of cyberattacks, including Denial of Service, Distributed
Denial of Service (DDoS), botnets, and brute-force attacks. The entire dataset contained a
CSV folder which of comprised 169 separate pieces of datasets in multiple excel sheets. Each
excel sheet had the same number of labels (47 columns) but distinct instances. The 'Part
00000' containing 238,688 rows was selected for this research for ease of iteration, faster
processing time, quick balance and analysis, simpler debugging, and classification.

4 Project Implementation on Google Colab Platform

The Implementation phase is one of the very crucial phase of the research, and various phases
were considered in other to ensure a ‘systematic’ approach is followed to enable adjustment
if need be, updates and easy review of phases to ensure they meet the needed requirements to
meet the objective of the research. Phases followed include to first import the necessary
python libraries and dataset into the google colab environment.

4.1 Dataset Pre-Processing
After the python libraries and dataset importation, next is to carry out data pre-processing
which include the data cleaning, checking for null and missing values, dropping duplicate



instances, sampling using the SMOTE technique and encoding to change categorical data to
numerical data type for easy computation.

n, os

tqdm

ore, precision f1_score
ication_i > ionMatrixDisplay, accuracy score

ytation importance
train_test split

.set_option(
.set_option(
.set_option("d

df = pd.read csv('/content/drive
len(df)
df.info()

Figure 1: Libraries and Dataset Importation into the Google Colab Environment

Next we carry out standardization on the dataset, drop the label column and then check for
missing and null values, and in the case of the research the dataset used had no null values.

StandardScaler, RobustScaler

scaled_features . ., columns—features.icolumns)
scaled_df = pd.concat([scaled_+features, =

del df

scaled_df.info()

Figure 2: Standardization of the dataset

Now, check for the missing values; using the ‘isnull().sum()’ command




Next we want to see our label value counts in other to have a good knowledge of the attack-

class counts to ensure we able to choose the right samples for implementation.
L 1

scaled_df["label”].value_counts()

label
DDoS-ICMP_Flood
DDoS-UDP_Flood
DDoS-TCP_Flood
DDoS-PSHACK _Flood
DDoS-SYM_Flood
DDoS-RSTFINFlood
DDoS -SynonymousIP Flood
DoS-UDP_Flood

TCF_Flood

dpplain
greip flood

MP_Fragmentation
MITM-ArpSpoofing
DDoS-ACK_Fragmentation
DDoS-UDP_Fragmentation
DNS_Spoofing
Recon-HostDiscowvery
Recon-0OSScan
Recon-Portscan
DoS-HTTP_Flood
WulnerabilityScan
DDoS-HTTP_Flood
DDoS-Slowloris
DictionaryBruteForce
sSqlX ection
BrowserHijacking
CommandInjection
Backdoor_Malware
H55
Uploading aAttack
Recon-PingSweep
Mame: count, dtype: inted

Figure 4: Label VValue Counts
Figure 4 shows 34 labels that have in-balanced counts and repetition of attack types.

Next we remapped the 34 labels into 8 labels of known attacks as it relates to each attack-
class.

scaled _df["label”] = scaled df["label’].apply( x : remap_labels[x])

scaled dfl"label”l.value counts()

Figure 5: Remapping 34 Labels into 8 Labels




After remapping the attack-classes, we decided to choose a sample of 1000 for easy
processing, but the samples were still not balanced. Next we carried out SMOTE for the
balancing and label encoding to convert categorical values into numerical values. See code
segments and results of these actions below:

sampled_df = scaled df.groupby( label’, group keys= x: x-head(n}))

sampled_df.wvalue counts(’'label")

sampled_df.dro
sampled_df[ " 1a

smote = SMOTE(sampling strat
X_resampled, y_resampled =

resampled_df = pd.DataFram sampled, columns=X.columns}
resampled_df[ "label”] xled

resampled_ df.value counts({ label”

Figure 7: Dropping Label column

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()
resampled df["1: ] = label encoder.fit transform{resampled df['label’])

resampled_df.value_counts(’label’)

Figure 8: Encoding Labels into numerical values

Below are the results from achieved from Figure 5, 6, 7 and 8 simultaneously: after the below
then we drop the label column.

label

173777 Benign 1000

41276 BruteForce 1000

13435 DDoS 1000
Benign 5600 DoS 1000

1000
1000
1000
1000

Spoofing 2539 Mirai 1000
Recon 1860 Recon 1000
Web Spoofing 1000
BruteForce Web 1000
Name: count, dtype: int64 Name: count, dtype:

1000
1000
1000

1
0
1
P
3
4 1000
5
6
7
Name: count, dtype: int64

Figure 9: Remapped attack-class, SMOTE application and Label Encoding application

Check the Skewness

25

Figure 10: Dataset Skewness



4.2 Train_Test Split
The pre-processed dataset is divided using the 80/20 ratio for train and test sub-dataset. And
then we defined our evaluation metrics which include: Accuracy, Recall, Precision and F1-

y_test = train_test_split(resampled_df.drop(’label’, axis=1), resampled_df[ 'label’], test_size-0.2, random_state-42)

Figure 11: Train_Test Split and Performance Metrics Definition

From Figure 10 above, after carrying out the train and split, our test set became 1600
instances.

4.3 Application of the Machine Learning (ML) Models

After the pre-processing phase, next we carry out ML models application on the dataset. The
models explored in the course of this research include; Random Forest (RF)!, Logistic
Regression (LR), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM)?,
Stacked Model (Experiment 5 = (SVM+XGBoost=>RF)) and our proposed model as a
solution for DDoS attack detection using the Stacking technique® with minimum resources
and less memory space is Stacked (RF+XGBoost=>RF).

Experiment 1 — Random Forest (RF)
sifier(n_estimators-10@, random_state-42)
in)
rf_feature_importances = rf_model.feature importances_
importances_random forest_d _Da - olL - portance’: rf_feature_importances})
plt.b: e(len(rf_feature_i

plt.show()

rf y pred = rf model.predict(X test)

flow duration 8.850846

Figure 12: Random Forest Experiment

L https://scikit-learn.org/stable/modules/ensemble.html#histogram-based-gradient-boosting
2 https://scikit-learn.org/stable/modules/svm.html|
3 https://scikit-learn.org/stable/modules/ensemble.html#stacking
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From the Figure 12 above, the top 5 features that influence the RF results are IAT,
magnitude, Header_lenght, Rst_count, and Flow_duration.

confusion_matr ssification_ t, ConfusionMatrixDisplay, accuracy_.
rf_y_pred)

red)

True Label

logreg_model — LogisticRegr
logreg_| Fit( i

feature_coefficients — logreg_model

: feature_coefficients})
endin, . inplace- b

1r_y pred — logreg model.predic

1r_metrics — get_perf metrics(lr_y pred, y_test)

flow durat
rst_count
Header_Length
variance
ack_flag number
TCP
sh_flag number :
Max -597197
Covariance . 548260

True Label

a
Predicted Label

Figure 15: Confusion Matrix and Accuracy score of LR model



Experiment 3 — Extreme Gradient Boost (XGBoost)

[1]

xgboo. xgh

xg_model = XGBClass
xg_model.fi _train, y_

xg_feature_importances g_model . feature_importanc

impertanc X_train.columns, ° : xg_feature_importanc

ascending=

plt.bar(range(len(xg_feature_importanc . xg_feature_importances)
plt.show()

xg y_pred = xg model.predict(X test)

xg_metrics = get_perf_metrics(xg_y_pred, y_ test)

print(
print(xg_met

Feature Importance

41 Magnitude @.186254
24 SSH @.123684
39 IAT 8.8861689
48 Number ©.869866
ICMP 8.868296

Figure 16: XGBoost Experiment

Xg v _pred)

confusion_matr - X pred)
-heatmap(cm, anno b

W
=
s
@
=
=

Predicted Label

Figure 17: Confusion Matrix and Accuracy score of XGBoost model




Experiment 4 — Support Vector Machine (SVM)
[~]

svm_feature_coefficients — svm_model.

plt.bar(range(len
plt.

svm_y_p

L]

svm_metrics

print("[

Feature Coefficient
flow_duration 19367e+80
rst_count 2.353390e+88
1.783108e+08

1.6827592+00

-1.5739572+00
1.522144e+88

1.246521e+88

confusion_matri
heatmap(cm.

label ("Pr
plt.show()

Score: F1.25

w
=
5
W
=
=

Predicted Label

Figure 19: Confusion Matrix and Accuracy score of SVM model

Experiment 5 — Stacked (SVM+XGBoost=>RF
©

sklearn.ensemble import RandomForestClassifier, StackingClass

learn.svm

xgboc
base_model

VC(probability= ., random 5
XGBC1 fier(use_label_e , eval_metric= ., random_state-42

meta_model = RandomForestClassifier(random_state=42)
stacked_model = StackingClassifieri(estimators=base models, final estimator=meta_model, cv=5))

stacked_model.fit(X_train,

StackingClassifier
svm xgb
|- svc|| > xeBC1assifier |
final_estimator

| RandomForestclassifier|

Figure 20: Stacking (SVM+XGBoost=>RF)



True Label

Predicted Label

Figure 21: Confusion Matrix and Accuracy score of Experiment 5 (Stacking
SVM+XGBoost=>RF) model

Our Proposed Model - which is Stacking (RF+XGBoost=>RF

RandomForestCla
fier

ifier(random_.
+ label encoder= » eval metric= » random state=42 I

meta model = RandomForestCla Ffier({random state=42)

RFstacked model = StackingClassifier(estimators=base models, final estimator=meta model, cv=5)

RFstacked model.fit(X_train, y_train)

M

i~ StackingClassifier

| RF xgh
= RandomForestClassifie » XGBClassifier

T

T
final estimator

| » RandomForestClassifier |

Figure 22: Our Proposed Model Experiment Stacking (RF+XGBoost=>RF)

-
=
=
@
=
=

Predicted Label

Figure 23: Confusion Matrix and Accuracy score of our Proposed Model
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5 Evaluation

Evaluation of the models was done using the above stated metrics: Accuracy, Recall,
Precision and F1-score across all models and experiments:

Models and Experiments Accuracy | Recall Precision | F1-Score
Experiment 1- Random Forest (RF) 0.915625 | 0.916523 | 0.915867 | 0.914595
Experiment 2- Logistic Regression (LR) 0.668125 | 0.697858 | 0.673208 | 0.666283
Experiment 3- Extreme Gradient Boost

(XGBoost) 0.933125 | 0.932762 | 0.933390 | 0.932899
Experiment 4- Support Vector Machine

(SVM) 0.7125 0.749363 | 0.715946 | 0.707919
Experiment 5:

Stacked (SVM + XGBoost) => RF 0.9325 0.932756 | 0.932674 | 0.932397
Proposed Model:

Stacked (RF + XGBoost) => RF 0.933125 | 0.932861 | 0.933226 | 0.932985

Table 1: Performance Comparison of all Models

6 Simulation and Validation

To commence the simulation and validation of our proposed model, we first downloaded and
installed our virtual machine and in this case we used the VMware Workstation 16 Pro as its
freely available on the internet along with its installation guide. Next we install and OS, we
used the Ubuntu 24.04 which is a new version of Linux to ensure our models run on recent
resources and can be scalable. Then we go ahead to download and install our network
simulator (Mininet network simulator) and all necessary libraries.

Note: See links to download and installation guides below;

> https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf

> https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-
workstation-ce5f2d4d0438

> https://mininet.org/overview/

After correctly installing the above and required libraries like Python and Pyshark, next we
create our network topology that contains switch, controller, host, communication link

11



https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/workstation-pro-16-user-guide.pdf
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://medium.com/@florenceify74/how-to-download-install-and-run-ubuntu-in-vmware-workstation-ce5f2d4d0438
https://mininet.org/overview/

Next we create our topology using Python scripts, see below

1ink=TCLink,

noteController, ip=

addLink
addLink (

{pcap_Tfile

pcap file

i -.path. exlsLs(pcap file)
os.vemove(pcap flle)
.system( C <

info(

hl.cmd( " hpir

time.sleep(30)

infof=r*s
CLI(net)

il"lfo( factny >
net.stop()

name == r
;etLogLevel( ir
startNetwork()

Figure 25: Topology creation and attack simulation

Below is the results and outputs of our topology creatlon and attack S|mulat|on

atform: ’ ido pyt

rting controller
tarting 1 switches

o capture

are-Virtual-Platform:

Figure 26 Results of Topology creation, attack S|mulat|0n Pcap file and conversion to CSV

After simulating an attack and generating the a Pcap file. Next we need to read the pcap file
with 5117 packets captured using Pyshark, and then converted our Pcap file into CSV format
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in other for to ensure we can easily analyse and pre-process it to fit the features used for
model training.

We have to ensure our Pcap file is organized accordingly to fit the features of the dataset we
used to train our model. So we used a python code to ensure some features are captured, see
below screenshots of the python code used to ensure features matches training dataset:

cap = pyshark.

flow duration
header le

for packet in cap:
try:

13



numbe r
numbe
numbe r
numbe
numbe r
numbe
numbe r

urg
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csv', index=

Figures 27: the above 6 snapshots (27a, 27b, 27c, 27d, 27e, 27f) show reading of the Pcap
file into CSV format to fit our same features as our training dataset.

Validation:
Next we Import our CSV file into the google colab environment for validation:

e B PE

flow_duration Header_Length : rai in_flag_nusber syn_flag number rst_flag mumber psh_flag number ack_flag number ece_flag nusber cur_flag number

Figure 28: Importation of the Validation Dataset generated from the simulated attack

From the Figure 28 above, we can see that the duration is captured in year_day_time. But
our trained dataset has duration in seconds. Next we pre-process our validation dataset to
ensure our model can run well with it.
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minutes 60 + ¢ s 18 ** len(str(fraction)))
onds

new_data[ 1 - new_data[ Dt

print("\ny|

Updated DataFrame:

new_data.head(48)

Flow_duration Header Length ""“t?;‘;i Duration Rate Srate Drate fin flag number syn flag number rst flag number psh_flag number ack flag number

42 1 17.0 92005348 42 1 0

10 y 470 _oonnsson 4o 5 n

gure 29: Converting Duration to seconds (29a and 29b).

— )

F

Next we carry out other pre-processing steps as we did with our training dataset:
Standardization, checking for missing and null values, and dropping the label column so our
model can predict. See below steps:

StandardScaler, RobustScaler

aled_new_data.head()

aled new data.isnull().sum()

flow_duration
Header Length
Protocol Type
Duration

Rate

Srate

Drate

fin_flag number
syn_flag number
rst flag number
psh_flag number
ack flag number
ece_flag number
cwr_flag number
ack_count
syn_count

N

o0 00RO OCROD

cleaned_new data : _new_data.dropna()

cleaned_new_data- ull() - sum()

Flow duration

Header_ Length

Protocol Twvpe

Duration

Rate

Srate

Drate

Ffin_flag number

syn_flag number
~flag number

psh_+flag number

Figu re 30: 3'0é, 30b and 30c above shows pre-processing of the validation dataset
16
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labeless new data = cleaned new data.drop(

abel’, axis=1)

Figure 31: Validation dataset after dropping label column

Next we carry out validation of our model on the ‘labeless new data’ to check its

performance and prediction strength.

Recall: our remapped label from the pre-processing of our dataset used to train the models

label

Benign 1000
BruteForce 1000
DDoS 1000
DoS 1000

1000
1000
1000
1000
1000
1000
1000
1000
Name: count, dtype:

Mirai 1000

Recon 1000
Spoofing 1000
wWeb 1000
Name: count, dtype:

Figure 32: label encoded into numerical values using label encoder

[ 1 RFstacked_prediction= RFstacked model.predict(labeless_new data)
RFstacked_prediction

array([2, 2, 2, ..., :

import numpy as np

ini_array = RFstacked_prediction

unique, frequency = np.unique(ini_array,
E y ( _ ¥
return_counts =

print{"Unique Values:™,

unique}

print("Fr
frequ

Unique Values: [2 5]
Frequency Values: [5881 15]

Figure 33: Our proposed model Prediction on the validation dataset

int6e4

From Figure 30 above, we can see that based on the label encoding, the attack classes ranged
from Benign = 0, Brute-force = 1, DDoS = 2, DoS = 3, Mirai = 4, Reconnaissance = 5,

Spoofing = 6, and Web =7.

And from Figure 31, we can see that our proposed model predicted (2 = DDoS and 5 =
Reconnaissance). Hence we can say our proposed model did perform well by detecting signs
of DDoS attack from the network traffic with frequency of 5081 and Reconnaissance

frequency of 15.
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