

Enhancing SDN Access Control

with

Private Ethereum Blockchain

MSc Research Project

Cybersecurity

Mariusz Graczyk

Student ID: x20197446

School of Computing

National College of Ireland

Supervisor: Mr. Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mariusz Graczyk ...

Student ID:

x20197446 ..

Programme:

MSCCYBETOP ..

Year:

2024 ..

Module:

Research Project ..

Supervisor:

Mr. Ross Spelman ..

Submission Due

Date:

12 August 2024 ...

Project Title:

Enhancing SDN Access Control with Private Ethereum Blockchain ...

Word Count:

7811 Page Count 20 ...

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Mariusz Graczyk ...

Date:

16 September 2024 ...

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Enhancing SDN Access Control with Private

Ethereum Blockchain

Mariusz Graczyk

x20197446

Abstract

Software Defined Networks (SDN) have been implemented in various environments

requiring agility, rapid and automated response to changing network circumstances and

centralised management control of all network components. This is achieved by

decoupling the data plane from the control plane in the SDN paradigm. Cloud

Computing and Internet of Things are the most common environments where SDNs can

handle large-scale network traffic loads efficiently and dynamically. However, the

central management control of the entire network has also its drawbacks. Blockchain

(BC) technologies come with numerous security-enhancing benefits and BCs offer

decentralised design which could effectively complement centrally controlled SDNs.

This paper highlights various aspects of combining BC with SDN to address inherent

security concerns related to SDNs. BCs address all three aspects of the CIA Triad and

this paper discusses their main benefits in the context of SDNs, which are decentralised

design, data immutability and integrity, enhanced authentication and non-repudiation.

Ethereum BC networks and the Proof of Authority (PoA) consensus mechanism are of

particular interest in this paper. The PoA consensus is best suited for private Ethereum

BC implementations.

1 Introduction
This research project investigates the security benefits of implementing private Ethereum BC

technologies to enhance the access control of data-plane and end-user devices operating in

OpenFlow SDN environments. While SDN architectures offer numerous benefits, such as

simplified management, operational network efficiency, enhanced flexibility, and reduced

reliance on vendor-specific solutions, they also raise significant concerns, such as the

controller being a single point of failure, Denial of Service (DoS) attacks, device spoofing

attacks or Man-In-The-Middle (MITM) attacks.

1.1 Research Question

“What security benefits are gained from integrating SDN Networks

with private Ethereum Blockchain?”

1.2 Objectives

The project analyses the benefits and implications of integrating private PoA
1
 Ethereum BCs

with SDN networks, focusing on the network infrastructure and end-user access control. The

objectives will be achieved by investigating four scenarios covering Transport Layer Security

1
 https://ethereum.org/en/developers/docs/consensus-mechanisms/poa/

2

(TLS) encryption, controller–generated certificates used for second-factor authentication,

failed login events stored in the BC as immutable logs, and a Metamask-based authentication

mechanism for end-user devices.

2 Related Work

SDN networks are still an emerging network paradigm, but have attracted attention of

research communities and industries in recent years, due to their network management and

control. SDN networks decouple the control plane from the data plane, as a result centralising

network management and allowing network programmability [1]. SDN-based solutions have

gained prominence especially in Cloud Computing environments and in heterogeneous IoT

infrastructures, where SDN networks are capable of processing large amounts of data

efficiently and rapidly respond to changing circumstances. However, the centralized aspect of

SDN networks exposes them to several types of potential attacks. Thus, SDNs could be

complemented by BC, another emerging technology, in a combined solution for enhanced

security. BC provides “a decentralized ledger for transactions and data security, preventing

unauthorized access and tampering” [2]. The participants in BC transactions remain in

control of their data and reliance on third–parties is eliminated [3]. Centralised SDNs are

complemented by distributed peer-to-peer BC nodes, which various researchers highlighted

as a significant advantage enhancing network security, privacy and efficiency [3].

2.1 SDN data-plane vulnerabilities and security solutions

SDNs simplify network administration and provide agility and flexibility that facilitates rapid

deployment of network updates, services and applications [4]. These characteristics of SDNs

are due to a global view and centralised control over all network components, such as the

Data/Forwarding Plane, the Southbound Interface, the Control Plane, the Northbound

Interface and the Application Plane. Goud and Gidituri [4] list the main SDN security

vulnerabilities and attack types, as well as the SDN components which they relate to. Data

plane devices could be vulnerable to DoS/DDoS attacks, malicious flow injections/tampering,

MITM attacks, TCAM buffer attacks, or TLS vulnerabilities. Agborubere and Sanchez-

Velazquez [5] emphasise the fact that TLS is not a default option in the OpenFlow standard.

Nevertheless, it is a pre-requisite to ensure the Southbound API and OpenFlow messages are

encrypted. Gupta et al. [1] assert that data-plane devices are prime targets for attackers. They

mention documented exploits, such as the NSA’s core infrastructure backdoors, or the CIA’s

exploitation of Cisco routers. They also list some challenges in securing the SDN data plane,

e.g. software switches like Open vSwitch being more vulnerable to attacks compared to

physical SDN switches. Ohri and Neogi [6] list several solutions for securing the SDN data

plane. The most common are FortNoX, FlowGuard, and VeriFlow. However, they assert that

these solutions were designed only for specific controllers and have not been implemented in

real-world environments due to performance issues, e.g. inadequate performance in multi-

controller setup in the case of VeriFlow. Jimenez et al. [18] assert that many proposed SDN

security implementations do not succeed “because they cannot be economically or technically

leveraged.” The aforementioned solutions are traditional approaches to securing SDN data

planes, which are contrasted by Abdi et al. [7] with new approaches to SDN security. They

3

assert that newer approaches to SDN security, such as Artificial Intelligence (AI) and Moving

Target Defence (MTD), provide more proactive and adaptive defence strategies compared to

traditional ones through enhanced detection and mitigation of sophisticated attacks.

2.2 Blockchain Technologies

The BC technology is defined by Alharbi [8] as a distributed ledger that stores a list of

transactions and events forming a sequence of blocks that are managed by a cluster of

computers instead of a single entity. One of the main benefits of BC is its de-centralized

architecture. BC networks are categorised as a public BC (open to everybody), a private or

permissioned BC (protected with restricted access) and a consortium BC (with multiple

organisations sharing it). Many different BC protocols have been implemented as frameworks

governing the operation of BC networks. The most well-known ones are Bitcoin and

Ethereum. The latter one facilitates a decentralized platform for smart contracts and

decentralized applications (dApps) based on Web3, which offers end-users more control and

ownership of their data compared to well-established Web2
2
.

Ethereum recently transitioned

from the Proof of Work (PoW) to the Proof of Stake (PoS) consensus mechanism with the

introduction of Ethereum 2.0, which resulted in significantly lower energy consumption.

According to Fahim et al. [19], the third consensus mechanism – PoA – is even better suited

for private BC implementations. They assert that, compared to PoS and PoW, it ensures

better transaction handling efficiency, lower energy and computation requirements, and it

provides effective defence against 51% network attacks.

2.3 Integrated BC-SDN solutions for enhanced security

The below table presents selected studies focusing on the security of integrated BC-SDN

solutions.

Table 1: Advantages and limitations of selected BC-SDN solutions

Study Advantages Limitations

Meng et al. [9] The study introduces BSDNFilter - an IDS-

based security mechanism building trust-

based filtration through traffic fusion and

aggregation to combat malicious traffic. The

solution offers enhanced traffic

management and decentralised trust

mechanisms.

Some issues might arise, such as performance

concerns, solution complexity, scalability

issues and integration or operational costs.

CPU workloads also proved to be a concern.

Latah and Kalkan

[11]

DPSec offers security enhancement for

SDN data-plane devices through the use of

BC. It addresses specific OpenFlow and

DoS vulnerabilities.

Challenges relate to solution performance,

scalability and implementation complexity

Derhab et al. [12] This innovative solution offers multi-

controller setup integrated with BC, which

decentralises network management and

mitigates the risk of a single point of failure.

A reputation mechanism rates controllers

It only covers the security of east-west

interfaces. The proposed solution introduces

significant complexity which might cause

integration issues with existing SDNs.

Achieving synchronized multiple controllers in

2
 https://ethereum.org/en/developers/docs/web2-vs-web3/

4

based on their actions, which enhances the

security of flow updates

a large-scale SDN network could cause

scalability concerns and would be resource-

intensive

Rahman et al. [2] DistB-SDCloud – solution enhancing

security of IIoT applications in cloud

computing through leveraging BC and

SDN, which helps in efficient management

of cloud resources. The paper is a thorough

solution evaluation using specific

performance metrics.

The combination of cloud computing, BC and

SDN introduces significant complexity and it

may lead to compatibility or interoperability

issues. There might be scalability issues in

large-scale IIoT deployments. As the BC

grows, it may cause performance overhead for

cloud computing.

Steichen et al.

[13]

ChainGuard is a firewall solution protecting

BC applications. It filters and manages

network traffic to BC nodes. ChainGuard

adapts to changing network conditions –

thus, providing a more responsive solution

compared to traditional firewalls. OpenFlow

integration ensures more granular control of

network traffic.

Lack of comprehensive practical evaluation

and tests performed in production

environments. ChainGuard might require

increased operational costs as both BC and

SDN require substantial computational power.

It might introduce performance overhead when

large-scale traffic needs to be filtered and

processed.

Houda at al. [14] ChainSecure is a scalable solution

integrating SDN with BC which provides

proactive security measures to protect BC

against network-related threats.

ChainSecure optimises routing of

Blockchain transactions, thus, reducing

latency.

This solution is tested only using Mininet

virtual environment rather than real physical

devices. It protects BC but relies on SDN

which itself may be vulnerable to various

attacks. A central controller constitutes a

single point of failure.

Sharma et al. [15] DistBlockNet provides a promising

approach to improving the management and

security of large-scale IoT networks by

combining SDN with BC. It offers a

decentralized multi-controller architecture

integrated with decentralized BC nodes.

Although it was tested with 6 controllers and

6000 software nodes, it still raises

performance overhead and resource

consumption concerns when it is implemented

in real-life production environments.

Moreover, compatibility issues may arise

when integrating heterogeneous IoT devices

with SDN and BC.

Hu et al. [16] The study introduces an innovative solution

integrating edge computing, SDNs and BC.

It recommends using a BC-as-a-Service

(BaaS) provider to integrate the BC aspect

into the solution, which might reduce the

total cost of ownership. The control is

distributed among the edge devices and

SDN switches are coupled with BC agents.

The integration of BaaS into the solution

might lead to regulatory issues in heavily

regulated industries. Although the control is

transferred to the network edge, this might

create new attack surfaces when the targets are

closer to the network edge. The combination

of edge computing and BC could put a strain

on resource-constrained IoT devices.

Faizullah et al.

[17]

The paper proposes an IoT cloud solution

based on OpenFlow SDN and permissioned

BC. The permissioned BC is contrasted

with public BC and experiments indicate

better efficiency of permissioned BC for

handling IoT devices at a large scale.

Although the experimental results are

promising, this solution has not been tested in

a real-life production environment. Despite

permissioned BCs being decentralised, a

limited number of miner nodes controlling the

BC might lead to scalability issues. Even when

permissioned BCs are less resource intensive

than public BCs, they still require substantial

computational resources, which may put a

strain on IoT devices.

5

The most prominent BC benefits highlighted in the literature include the potential for

enhanced data security, integrity and immutability, as well as anonymity, privacy and

transaction transparency. BC technologies have increasingly started to be integrated with

SDNs in various design contexts. Some of them emphasise the benefits of the BC-SDN

integration for large-scale IoT networks [13][16][17]. The usefulness of BC-SDN integration

offers great potential for cloud computing technologies [13][17], or when such BC-SDN

integration happens closer to the network edge in the context of edge computing and taking

advantage of the BaaS service [16]. Solution scalability and reduced transaction latency are

highlighted in [14][17], or multi-controller architectures [12][15] are emphasised by some

other studies. Better transaction efficiency and increased data security is discussed in the

context of private, permissioned or consortium BC networks [16][17]. Protection against

malicious flow injections [9][12] or DoS attacks [11] are also important mitigation measures

discussed. Not only the SDN planes, but also the BC nodes need to be protected against

attacks, which are offered as a BC firewall solution by [13]. Finally, end-user access control

and authentication is the focus of [10], which incorporates a digital wallet into the end-user

authentication process. The idea of digital wallets was integrated into this BC-SDN project.

Many of the BC-SDN benefits outlined in the literature laid foundations for this project,

which also implemented an integrated BC-SDN solution focused on data-plane access

control. Data confidentiality and integrity were ensured by implementing TLS encryption in

the south-bound interface, or by implementing HTTPS POST requests. Data Availability was

facilitated through the decentralised multi-node BC topology. Any data or logs saved in the

BC by the SCs cannot be reverted, deleted or tampered with. This immutable characteristic of

BC features prominently in many of the above studies. Moreover, the Metamask digital

wallet, based on the Private Key Infrastructure (PKI), combined with the SCs and SDNs

offers an effective and efficient authentication mechanism, which fulfils both the

confidentiality and non-repudiation requirements. The PoA consensus was identified as most

suitable for a private BC implementation, which is reflected in the literature [17][18]. Finally,

implementation complexity is a recurring limitation of many of the studies. Thus, this

proposed BC-SDN implementation is a light-weight solution capable of reacting

automatically to certain security events.

3 Research Methodology

In order to demonstrate how the BC could enhance the security of SDNs, many technical

components had to be implemented. The implementation of these components required

achieving mostly binary outcomes. However, the final case-study regarding the end-user

authentication mechanism involved gathering also continuous data that was analysed and

compared to the study conducted by Petcu et al. [10].

3.1 Technical stages and testing performed

An Ubuntu Virtual Machine (VM) running in VMware and having network connectivity to

the host operating system (OS) was created. The network connectivity to the host OS subnet

was facilitated via a virtual adapter operating in the bridged mode. The Ryu package and the

Mininet emulator were installed in the Ubuntu VM. A Ganache node emulating the BC node

6

was deployed in the host OS. The first iteration of the SDNEther app and the

SDNEtherMonitor SC was created to confirm that a simple transaction could be performed.

The SC was deployed to Ganache via Remix IDE.

i. First-Stage Implementation

Open vSwitch (OvS) was installed on a Raspberry Pi 4 device. A simple Mininet topology

was deployed to confirm successful connectivity to the Ryu controller. The SC was updated

to be able to register IP addresses and host names. When Mininet hosts were launched and

connected to the controller, their details were also registered in the SC. Moreover, a Python

script was created for Mininet that deployed an OvS switch, several hosts and an interface in

the Ubuntu VM. Each Mininet host was deployed as an SSH server. The second iteration of

the SDNEther app and the SDNEtherMonitor SC was created, i.e.: when a new switch or host

was connected to the controller, the app was capable at that stage of generating a self-signed

second-factor authentication (SFA) certificate and transferring it to the device via SFTP and

to the SC via the Web3 connection and the Application Binary Interface (ABI) interface. The

SC was capable of saving and storing the SFA certificates of devices. The port-handler

method was updated in the app to ensure that whenever a device re-connected to the OvS

switch port, the app automatically fetched the certificate from the device and sent it to the

SC, which in turn determined if the certificates are identical. Based on this test, network

access was either granted or denied. TLS self-signed certificates were generated for the OVS

switches and the controller to enforce TLS encryption of OpenFlow messages. The

implementation of the TLS certificates was tested with Wireshark. A Bash script was created

for OvS running on the Raspberry Pi 4 device and the corresponding REST endpoint was

implemented in the app to handle HTTPS POST requests sent to the app by the Bash script

when three consecutive failed login events occurred. The third iteration of the app and the SC

were created at that stage to facilitate saving logs generated on the OvS switch and sent by

the app to the SC.

ii. Second-Stage Implementation

A Reverse NGINX proxy was deployed in the Ubuntu VM and on the Lab PC2 running the

BC. The proxy was to listen on ports 443 (Ubuntu VM) and 8743 (PC2) and transfer

incoming requests to 127.0.0.1:8080 or 127.0.0.1:8501 respectively. A test simulating three

consecutive failed login attempts was performed and a successful log registration in the SC

was the desired outcome. A multi-node PoA BC network was deployed in the Lab PC2

running Ubuntu OS. The Geth and Puppeth binaries were installed and the BC network

consisting of three peer-nodes and a bootnode was successfully launched. A Metamask

digital wallet was created and the JSON file for the miner node account was imported into

this wallet. A transaction from the Metamask local account to the imported shared account

was successfully performed. The PCmonitor SC was deployed in the BC for registering

MAC addresses and associated end-user Metamask accounts. The new PCmonitor SC was

tested successfully by performing a transaction via Remix IDE in order to register end-user

MAC addresses and Metamask accounts in the SC. A Python script for monitoring the shared

account was created and a new REST endpoint was added to the app. After the Python

monitoring script was launched on the PC running the BC nodes, a test was carried out while

7

an end-user PC with the pre-installed Metamask wallet was connected to the Raspberry Pi’s

OvS switch. At that stage the PC had to have only limited network access to the BC node. An

ICMP (ping) probe test was suitable for confirming expected limited network connectivity. A

Metamask transaction with the destination of the imported shared account was performed.

The Python script, which monitored the shared account for any received transactions,

detected a pending transaction to this account and queried the PCmonitor SC for the MAC

address associated with the sender’s account and subsequently sent the transaction details,

including the MAC address, in a JSON format via an HTTPS POST request to the SDNEther

app. On receipt of the incoming POST request, the app in turn checked the

mac_to_datapath dictionary for the switch port where the given MAC address was

connected to. Finally, the app pushed the unblocking flows for the IP address of the end-

user’s PC to the relevant OvS switch. At that stage ICMP probe tests to private local IP

addresses and to public external IP addresses was successful. These ping tests confirmed that

the end-user PC was granted full network access.

3.2 Desired Outcomes

The desired outcomes for the expected goals were mostly binary results, i.e. was the log

registered in the SC or not, or was the end-user PC granted only limited network access or

full access. These outcomes could be verified by executing ping probe tests, or by sniffing the

network traffic for selected hosts with Wireshark to confirm TLC encryption, or by checking

the SC with Remix IDE. Another test was performed to prove that the SFA certificate

authentication was successfully implemented by simulating a Mininet host getting

disconnected from the network, then altering its SFA certificate, and reconnecting the host

and observing if the device network access was granted or blocked. The outcome of the use-

case regarding consecutive failed login attempts was verified by simulating three consecutive

failed login attempts and checking if a relevant log was saved in the SC for the device. This

was checked with Remix IDE.

However, the expected outcomes of the end-user PC authentication process required the

evaluation of both binary and continuous data, i.e. how fast and efficient the proposed BC

authentication mechanism was. Furthermore, authentication times were compared with the

work of Petcu et al. [10] who proposed a BC-based authentication mechanism involving

Metamask wallets as well. Once the authentication mechanism in this project was

implemented, quantitative raw data, including BC transaction hashes and Unix-format

timestamps, was collected at specific stages of the authentication process and analysed with

the Python-based NumPy and Matplotlib libraries
34

. The timestamps were captured at defined

stages. These stages were: when the end-user clicked the final ‘Confirm’ button, when the

Python monitoring script detected a received transaction by the shared account, when the

SDNEther app received an HTTPS POST request from the Python monitoring script, and

finally, when the unblocking flows were pushed to the authenticating PC.

3
 https://www.programiz.com/python-programming/numpy/statistical-functions

4
 https://matplotlib.org/stable/tutorials/index.html

8

4 Design Specification and Requirements

The implementation of the project was dependent on the app’s and controller’s interactions

with the data plane devices and the BC. Both virtual and physical switches and hosts,

deployed in the test setup, had to be able to register with the controller, which should install

initial flows in the OvS and register device details and failed login logs in the BC. End-user

PC authentication via a digital wallet and the BC were also to be implemented.

The diagram in Figure 1 presents a high-level design of the test lab setup.

H
o

s
ts

 /
 S

e
rv

e
rs

Mininet Switch

RYU Controller

Ubuntu VM

LAB PC1 – Windows running VMware

Wireless Router & Switch

OvS running on Raspberry Pi

OvS running on Raspberry Pi

LAB PC2 - Ubuntu

Ethereum Node 1 Ethereum Node 2

Ethereum Node 3
Bootnode

Wireless LAN

Mininet Emulator

End-User PC

Figure1. Test lab environment consisting of two Lab PCs, wireless router with Ethernet switch ports, two

Raspberry Pi 4 devices and an end-user laptop

The main design requirements for this test lab system are:

a) A VM hosted in VMware would accommodate the RYU Controller and the Mininet

emulator running concurrently. To validate the functionality of the test solution on

physical switches, OvS installed on Raspberry Pi 4 devices are to be used.

b) The controller app should interact with a private PoA Ethereum BC network

consisting of several nodes. It is essential to implement a private Ethereum BC

because the access to the BC should not be open to the public.

c) The SDNEther app should be the ‘brains’ of the entire system, interacting

dynamically with OvS, endpoint devices and with the BC to react to specific security

events, querying the BC and enforcing access control as required. This access control

would be based on feedback from the BC. Because the Ryu controller is based on

Python, the application executing expected outcomes on the controller ought to be

also developed in Python.

d) The end-to-end communication involving OvS switches, Mininet hosts, the controller

and the BC, must enforce TLS encryption to avoid any OpenFlow messages being

intercepted or potential MITM attacks. If any component is not capable of handling

9

SSL communication, a reverse proxy needs to be implemented to enforce the end-to-

end encryption.
5

e) The SC deployed in the BC needs to be able to register required details of OvS

switches or Mininet hosts in the BC and it should provide feedback on already

registered devices. The BC would be handling the validation of SFA certificates for

access control when queried by the app.

f) A private BC network utilising the PoA consensus mechanism should be

implemented. Unauthorised nodes should be prevented from joining the BC network.
6

g) The end-user PC, Mininet hosts and OvS switches should be authenticated by the BC.

However, the end-user PC should be using Metamask for authentication in the BC,

whereas Mininet servers and OvS switches should use SFA certificates.

5 Implementation

The test lab for this project includes multiple components. It uses VMware Workstation

hosting the Ubuntu VM, on which the Mininet network emulator and the Ryu controller were

installed. To simulate initially a private Ethereum BC node, the Ganache node with the

graphical user interface was installed on the host computer and the connectivity between the

Ubuntu VM and Ganache was established via a network adapter in the NAT mode.

Subsequently, a PoA Ethereum network was to be deployed on another PC running Ubuntu.

To test the implementation on physical devices, software-based OvS was installed on two

Raspberry Pi 4 devices and another network adapter in the bridge mode was created in

VMware, so that the Ubuntu VM could share the same subnet with the OvS switches. The

Mininet switch and hosts were deployed with a Python script creating the switch and servers,

and pointing these devices towards the controller, since Mininet and Ryu run concurrently in

the same VM. The script should also create a Network Address Translation (NAT) interface

on the Ubuntu VM, allowing it to establish SSH connectivity with each Mininet server. A

detailed step-by-step outline of how the test lab set-up was created is included in the

configuration manual.

5.1 Deployment of Ganache node and PoA Ethereum nodes

To achieve interactions as soon as possible between the developed app and the BC, the

Ganache server node was initially deployed in the Lab PC1 (see Figure 1) sharing the same

network subnet with the Ubuntu VM. However, in the final stage it was replaced with a

proper multi-node PoA Ethereum network. The Clique
6
 consensus engine was implemented

via Puppeth deployment manager (included in the Geth package
7
), in which one node acts as

a miner and transaction signer and the bootnode facilitates communication between all the

three nodes. In a private PoA BC network the crypto-currency has only a nominal meaning as

it cannot be used on the Ethereum Mainnet network, which suited the project purpose. Each

5
 https://blog.yeetpc.com/how-to-set-up-an-nginx-reverse-proxy-with-ssl-on-ubuntu-server-20-04-lts/

6
 https://github.com/ConsenSys-Academy/geth-poa-tutorial?tab=readme-ov-file#configuring-clique-via-puppeth

7
 https://geth.ethereum.org/docs/getting-started/installing-geth

10

node was launched with --nodiscover flag to prevent any unauthorised nodes from

discovering the current nodes.

5.2 Deployment of Smart Contracts

Two different SCs were created in the project – SDNEtherMonitor and PCmonitor. These

two smart contracts were created with the Solidity programming language and deployed via

Remix IDE to the BC. The former SC includes functions that register devices in the BC,

validate SFA certificates, update failed login logs, confirm prior device registration and list

registered devices’ details. The Remix IDE was used to deploy the SCs to the Ganache node

initially, and subsequently via Metamask, to one of the private BC nodes.

The PCmonitor SC plays a different role. It stores the Metamask accounts of authorised end-

users and the corresponding MAC addresses of the end-user PCs on which their Metamask

wallets were created. An additional script written in Python was deployed to monitor the BC

for any transactions sent to the shared account. When such transactions occur, the script

queries the PCmonitor SC for the MAC address associated with the sender’s account, and

subsequently it sends an HTTPS POST request to the SDNEther app. This request sends a

JSON including the transaction details and the MAC address associated with the sender’s

Metamask account.

5.3 SDNEther App

SDNEther, a light-weight Python app developed for this project, plays a central role in this

solution as it handles devices registrations in the BC and pushes the required flows to the

switches. It also processes HTTPS POST requests from the OvS switches and from the

Python script monitoring the BC. The following functionality was implemented in the app:

a) Three methods in the app play an important role to ensure the app could respond to

certain events, such as a device connecting to the controller, a switch port changing its

status, or an IP packet handled by the app. These methods are respectively:

 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)

 def switch_handler(self, ev):

 […]

 @set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)

 def port_handler(self, ev):

 […]

 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

 def packet_handler(self, ev):

 […]

The decorators @set_ev_cls(ofp_event.[…]) make these methods react to specific

network events in a dynamic way.

11

b) Upon initial host connection to the OvS switch, SDNEther detects such a connection

attempt and generates a self-signed certificate for the connecting device and sends the

certificate to it. The app then registers the device’s name, IP address and the

generated SFA certificate in the BC by interacting with the SC. Paramiko, a library

imported into the app, is used by SDNEther for initiating SFTP connections to the

hosts to transfer the certificates to them. The application communicates with the SC

via Web3 - a Python library that interacts with the SC via the ABI. The

switch_handler method handles initial device registration and subsequent access

validation.

c) The port_handler method monitors changes to the status of the links connected

to the switches. If the status of the link changes or a device reconnects to the switch,

SDNEther uses SFTP to fetch the previously deployed certificate from the device and

checks this certificate against the certificate copy for that device stored in the SC. If

both certificates are identical, the re-connecting device passes the authentication and

is granted network access. Otherwise, the app blocks this device by pushing device-

specific blocking flows to the switch.

d) Each switch runs a Bash script that monitors /var/log/auth.log file for any

three consecutive failed login attempts. In the event of such failed attempts, the switch

triggers an HTTPS POST request to the app and sends a log message to it. This

request is received by the NGINX reverse proxy on port 443 and forwarded to the app

on the URL: http://localhost:8080. This message includes the device name,

its IP address, SFA certificate and the source IP address of the device making these

login attempts. The app in turn passes the log message to the SC, which appends this

log event to the relevant device’s log.

e) The methods update_switch_log and handle_transaction handle incoming POST

requests addressed to /apps/{log} or /transactions endpoints respectively.

These endpoint handlers process log requests sent by OvS switches or by the BC

monitoring script when end-user device authentication occurs. Regarding the latter

method, once the end-user initiates the authentication transaction and it is detected by

the Python monitoring script, the script fetches the MAC address of the sender’s

Metamask account from PCmonitor SC and sends an HTTPS POST request to the

app. Upon receipt of the request, the app needs to determine which switch port this

incoming request relates to by checking the mapping dictionary mac_to_datapath.

When the datapath is obtained, the relevant unblocking flows are sent to the switch

and the end-user is granted network access.

12

5.4 Mininet deployment script

The topology deployment script is a custom Python script deploying a selected number of

switches and hosts acting as SSH servers to the Mininet emulator environment.
8
 The

deployment script creates an additional NAT interface in the Ubuntu VM. This interface is

available to all the created hosts and to Ubuntu VM itself, which allows access to each host

from the Ubuntu VM. The script also creates an SSH server on each host, which enables the

app to transfer certificates to each Mininet host via SFTP sessions on port 22. Furthermore,

the script also points the Mininet OvS switch to the path of its SSL certificate, private key

and the CA certificate
9
. As a result, the Ryu controller is able to establish encrypted TLS

communications with the Mininet-generated switch.

6 Evaluation

Several use-cases were created to investigate the potential of the BC to enhance the access-

control security of the OpenFlow SDN networks. The main characteristics of the BC that

these use-cases benefit from security wise are distributed architecture of the BC, strong

authentication based on PKI and data immutability and non-repudiation of transactions.

Another benefit that the BC could offer is anonymity, although it was not explored in this

project.

6.1 Case-study 1: TLS encryption

The OpenFlow protocol does not enforce TLS encryption be default, which might create an

opportunity for intercepting data in transit between the OvS switches and the controller if

such a configuration is left at its default. At the very least, a bad actor could sniff and

intercept unencrypted OpenFlow network packets and obtain a detailed view of

communications between the SDN switches and the controller.

Figure 2. Unencrypted OpenFlow messages

Figure 3. OpenFlow messages encrypted with TLS1.2

Figures 2 and 3 show OpenFlow messages captured by Wireshark running on a Kali Linux

device connected to the same subnet as the Ryu controller. If bad actors manage to sniff

OpenFlow packets for a sufficient time period, they could obtain a very detailed topology of

the SDN network. Figure 2 reveals a single flow instruction with the source IP address of the

8 https://github.com/mininet/mininet/blob/master/examples/natnet.py
9 https://techandtrains.com/2014/04/27/open-vswitch-with-ssl-and-mininet/

https://techandtrains.com/2014/04/27/open-vswitch-with-ssl-and-mininet/

13

BC node, the destination IP of the end-user device and the switch interface this flow should

be forwarded on. In contrast, Figure 3 does not reveal any detailed information of the

OpenFlow message because the flow is encrypted with TLS version 1.2.

Every such flow update, when sent to OvS switches, could also be forwarded to the BC for

registration with the SC. Subsequently, the data relating to these flows stored in the BC could

be queried when required. Because the information stored in the BC is immutable, i.e. it

cannot be altered or deleted, the BC offers a reliable source of historical data stored in

distributed peer nodes. To ensure that encryption of OpenFlow messages is enforced, it is

required to generate an SSL certificate for each server or OvS switch and pre-load the

certificate to the device before connecting it to the SDN network.

There are two different certificate types involved in this proposed solution. The first pre-

loaded one is required for TLS encryption and the second self-signed certificate is used for

second-factor authentication. The SSL certificate needs to be signed by the relevant

Certificate Authority (CA) and uploaded to the device prior to connecting the device to the

SDN network. This ensures that the OpenFlow messages are encrypted from the outset by

TLS version 1.2. Without these three files uploaded to the device, i.e. device certificate,

private key and the CA certificate, the device would be unable to connect and communicate

with the controller

However, OvS switches could be spoofed even when TLS is enforced. In the event that a bad

actor manages to obtain the SSL certificate of the victim device, such a spoofed device

appears to the controller as a genuine device, provided that the other details, such as the IP

address, MAC address and switch ID are also spoofed. For the purposes of the project, a Kali

Linux virtual device was configured with identical switch ID, interfaces and MAC addresses

and after the spoofed switch acquired identical IP address as the victim device from the

DHCP server, it was accepted by the controller. In a lab environment the same certificates

were uploaded to the spoofed device as the victim device had.

Figure 4: Genuine OvS details as seen by the controller

Figure 5: Spoofed device details as seen by the controller

The only difference in the above Figures 4 and 5 is the software version of the OvS switches.

With such a spoofed device joining the SDN network, bad actors could manipulate or delete

existing flows, which could have serious operational consequences to the network. For these

14

reason, the following two use-cases were also investigated to attempt to mitigate spoofed

switches joining the SDN network.

6.2 Case-study 2: Device registration and validation in the BC

When the device successfully connects to the controller over TLS, the SDNEther app verifies

if this device is already registered with the SC. If not, the app automatically generates a new

self-signed certificate, distributes it to the device and subsequently forwards the copy of this

certificate to the SC. This is done via the Secure File Transfer Protocol (SFTP) and the

SDNEther app uses the imported Paramiko library for this purpose. This self-signed

certificate is used as a second-factor authentication for the network infrastructure devices

such as OvS switches or servers.

The generate_certificate method uses pyOpenSSL in Python to generate a self-signed

certificate.
10

 The certificate generated by this method sets the expiration date to two years

from its creation. Each certificate generated in this way is unique based on its Common

Name (CN) being the IP address of the device, and based on its randomly generated serial

number. The certificate is signed with its relevant private key using the SHA-256 hashing

algorithm. Because each OvS switch or a server will be subsequently accessed by the app for

verification purposes using the IP address rather than the fully qualified domain name

(FQDN), specifying the device’s IP address in the CN attribute is justified.

The SDNEther app then sends such generated certificates to OvS switches or host servers. It

uses the paramiko.SSHClient() client instance for this purpose. The app uploads the self-

signed certificates to remote devices via SFTP, and saves these certificates in the Ubuntu VM

local files. Subsequently, the app registers this device’s name, its IP address and the

certificate in the SC. The fourth data type kept for each device in the SC is the failed login

log register outlined in the subsequent use-case. Whenever a server device or an OvS switch

re-connects to the SDN network, the app fetches the certificate from the device and compares

it with the expected identical certificate stored in the BC. If the certificates are not identical,

the network access for the device is blocked by the app that pushes the empty action[]

instruction (i.e. block all) to the device.

6.3 Case-study 3: Failed login events saved in the BC

SSH servers are enabled on each network infrastructure device like a server or OvS switch

connecting to the SDN network. To keep track of failed consecutive login attempts on such

devices, a mechanism is in place where after three consecutive failed login attempts such a

device sends a curl POST request to the controller over HTTPS. This request message

includes the device name, IP address and the message ‘three failed login

attempts made from {device IP} on {timestamp}’. Upon receipt of these

HTTPS POST requests, the SDNEther app uses the ABI and the Web3 connection to append

10

 https://stackoverflow.com/questions/45873832/how-do-i-create-and-sign-certificates-with-pythons-pyopenssl

15

such log messages to the relevant device field in the SC. The administrator can query the

historical data of all failed multiple login attempts relating to a given device.

6.4 Case-study 4: End-user device authentication via Metamask

Figure 6. End-user device authentication with BC

and Metamask.

End-User devices are initially granted limited

access to reach only the IP address of the BC

designated node. End-Users need to create a

Metamask wallet on the PC requiring SDN

network access. Once the Metamask wallet and

end-user account have been created, the

administrator registers the PC’s MAC address

and the newly created end-user’s Metamask

wallet account in the PCmonitor smart

contract. Subsequently, the end-users connect

their PCs to the SDN switch port and send a

transaction from their Metamask wallet account

to the designated shared account of the BC

miner node. A Python script, running alongside

the BC, monitors this designated shared

account for any transactions. When a

transaction is received, the script queries the

PCmonitor SC for the MAC address of the

sender’s account and initiates an HTTPS POST

request, sending a JSON with transaction

details to the app.

Upon receipt of the request, the app pushes new flows to the OvS switch, and as a result,

network access for the relevant device is granted. Figure 6 outlines the process for obtaining

network access with the help of Metamask, BC monitoring script and the PCmonitor SC.

Because each account created by BC wallets is unique and created on the basis of the PKI

infrastructure, it is virtually impossible to impersonate such accounts without obtaining the

private key to such an account. Therefore, this solution, although strong in terms of

transaction non-repudiation, might be potentially vulnerable to a phishing attack when a bad

actor obtains the Metamask secret login pass phrase, the Metamask password, or the private

key of the account created by the end-user in Metamask.

Table 2: Summary statistics for all stages of the authentication process (in seconds)

From Start of Metamask transaction till it is detected by the BC monitoring script
mean median standard deviation minimum duration maximum duration

0.4444880799243325 0.4015249013900757 0.2576397895844407 0.2443537712097168 1.4556472301483154

From transaction detection by BC monitoring script till HTTPS POST request is detected by the App
mean median standard deviation minimum duration maximum duration

0.05731898232510215 0.052414774894714355 0.019496967922950192 0.026781558990478516 0.12189531326293945

From the APP receiving the HTTPS POST request till the flows are pushed to OVS switch
mean median standard deviation minimum duration maximum duration

0.004556731173866673 0.0030477046966552734 0.003900135973887843 0.003900135973887843 0.014222145080566406

16

Figure 7: Stacked bar chart showing the total authentication times for the end-user

Table 2 and Figure 7 above present the summary statistics of the end-user authentication

times. It takes significantly more time to complete the first stage from Metamask to

transaction detection by the BC monitoring script. Compared to the first stage, the second

stage (from the detection of transactions by the BC script till HTTPS POST requests are

received by the App) is much shorter, and the final stage, resulting in granting network

access, is rapid.

6.5 Discussion

Case-study 1 lays the foundations for securing the OpenFlow communications between the

controller and the data-plane devices. Without strong TLS encryption in place, the SDN

network would be exposed to network sniffing, device spoofing and MITM attacks. It was

demonstrated that even with TLS encryption implemented, spoofing attacks could be possible

if an attacker obtains the legitimate SSL certificate from the victim device. In such a case a

spoofed device is accepted by the controller even with TLS in place. Thus, for this reason

further investigation was performed with Case-studies 2 and 3. In Case-study 2 a second-

factor authentication was implemented in the form of a unique self-signed certificate

generated for each infrastructure device by the app and distributed automatically to the device

and to the BC. Subsequently, whenever a device is re-connected to the network, the app

triggers the check in which the certificate is fetched from the connecting device and

compared with the one stored for it in the BC. The SC performs the comparison and based on

its feedback the device is granted network access or blocked completely. A successful test

was carried out to simulate tampering with the device SFA certificate, in that making a small

change in the certificate resulted in the device failing the BC check and being blocked by the

SDNEther app.

17

To reduce the risk of bad actors obtaining management access via SSH to the infrastructure

device, a log of failed consecutive logins stored in the BC was proposed in Case-study 3. It

was found to be working as expected. However, the design in this case study should go

further and implement a notification mechanism informing the administrator of failed login

attempts in real-time. An email notification should be sent to the administrator each time

three consecutive failed login attempts occur, and then such an event should be also logged in

the BC.

Finally, Case-study 4 proved effective and efficient in utilising Metamask combined with the

BC and the Python monitoring script to authenticate the end-user devices. Compared to the

experiments performed by Petcu et al. [10] the average authentication times recorded in Case-

study 4 were 0.506 second compared to 2.698 seconds in the experiment performed by Petcu

et al. Although the conclusions in both experiments had some common elements, in that the

most time-consuming stage in the authentication process was from the end-user transaction

initiation until the handover to the back-end for authentication handling, such a direct

comparison needs to be viewed with significant reservation because it is unclear how the end-

user interactions with Metamask to initiate authentication were measured by Petcu et al. In

Case-study 4 of this project it was attempted to reduce the human factor variability to the

minimum by capturing the first Unix-format timestamp at the very end of the transaction

when the end-user clicks the final ‘Confirm’ button to initiate the transaction. To ensure

reliable timestamp synchronisation, the recorded timestamps are all from the same Ubuntu

VM, i.e. although the end-user Metamask transaction is performed from a separate PC to

where the Ryu app and the BC are running, the JavaScript snippet injected into the Firefox

Web Console fetches the timestamp from the Ubuntu VM instead of capturing the timestamp

from the local PC. This ensures that at all the stages of the authentication process the

timestamps are captured from a single source. Furthermore, the summary statistics indicate

that the BC is not causing bottlenecks and the transactions are received and processed

efficiently by the BC. The difference in average authentication times between the two

experiments might also be attributed to the use of the more efficient PoA consensus

mechanism [19] in this project.

Finally, a multi-controller architecture, an important aspect of mitigating scalability issues

and the SDN controller being a single point of failure, were out of scope for this project. It is

acknowledged that single-controller architectures would widen the surface of potential

attacks, particularly DoS and DDoS attacks. It is possible to stage different types of

DoS/DDoS attacks targeted primarily at the controller and mitigation against such attacks

must also be in place when securing SDN networks. However, due to the fact that a variety

DoS/DDoS attack types and mitigation solutions have already been explored [20][21], a

separate project dedicated to DoS/DDoS in the context of BC-SDN is suggested.

18

7 Conclusion and Future Work

This research project attempted to highlight the benefits of integrating the BC and SDN

technologies to enhance the access control of data-plane and end-user devices. Four case-

studies were implemented and evaluated. The findings of the first case-study indicated that

securing the data plane communications with encryption is of paramount importance in

mitigating risks, such as data interception, network sniffing, devices spoofing and MITM

attacks. It was demonstrated with a Kali Linux VM that a spoofed OvS switch was accepted

by the controller, even when TLS encryption was in place, which may lead to devastating

results for the entire SDN network. Therefore, enforcing TLS encryption is not a sufficient

mitigation measure and second-factor authentication would reduce the risk of potential

attacks. The Ethereum SCs and BCs are able to enhance such authentication. Case-study 2

demonstrated that the SCs can act not only as data ledgers but they are capable of comparing

and validating SFA certificates and sending their feedback to the app, off-loading the app in

workload processing in this way. It was also demonstrated in Case-study 3 that the BC is an

excellent ledger for storing logs that cannot be tampered with or deleted due to the immutable

characteristic of BCs and their decentralised design. Finally, Case-study 4 demonstrated that

end-user device authentication could be efficiently enhanced by the BC, SCs and digital

wallets for which the PKI forms the foundation. The BC combined with the digital wallets

ensures data integrity and non-repudiation of authentication transactions. Therefore, it would

be extremely difficult, if not impossible, to impersonate an end-user without access to

Metamask secret pass phrase, account private key, or the password. However, a sophisticated

spear phishing attack staged on an individual could potentially obtain such secrets. To

conclude, it has been confirmed in numerous studies, and in this project’s findings that BCs

can enhance the SDN networks in all three aspects of the CIA triad, through

private/permissioned BCs architectures, built-in cryptography and transaction anonymity

(Confidentiality), through data immutability and tamper-resistance (Integrity), and through

distributed/decentralised architectures of BCs (Availability). The future work in respect of

BC-SDN integration might explore new aspects of Artificial Intelligence (Machine Learning

and its subset - Deep Learning), Moving Target Defence solutions and designing next

generation protection mechanisms against controller hijacking attacks.

19

References

[1] B. B. Gupta, G. M. Perez, D. P. Agrawal, and D. Gupta, Eds., Handbook of Computer

Networks and Cyber Security. Cham: Springer International Publishing, pp. 341-387,

2020

[2] A. Rahman, M. J. Islam, S. S. Band, G. Muhammad, K. Hasan, and P. Tiwari,

“Towards a blockchain-SDN-based secure architecture for cloud computing in smart

industrial IoT,” Digital Communications and Networks, Nov. 2022

[3] A. Rahman, A., Montieri, A., Kundu, D., Karim, Md.R., Islam, Md.J., Umme, S.,

Nascita, A. and Pescapé, A., “On the Integration of Blockchain and SDN: Overview,

Applications, and Future Perspectives,” Journal of Network and Systems Management,

vol. 30, no. 4, Sep. 2022

[4] K. S. Goud and S. R. Gidituri, “Security Challenges and Related Solutions in Software

Defined Networks: A Survey,” International Journal of Computer Networks and

Applications, vol. 9, no. 1, p. 22, Feb. 2022

[5] B. Agborubere and E. Sanchez-Velazquez, “OpenFlow Communications and TLS

Security in Software-Defined Networks,” IEEE Xplore, Jun. 01, 2017

[6] P. Ohri and S. G. Neogi, “Software-Defined Networking Security Challenges and

Solutions: A Comprehensive Survey,” International Journal of Computing and Digital

Systems, vol. 12, no. 1, pp. 383–400, Jul. 2022

[7] A. H. Abdi, L. Audah, M. A. Alhartomi, S. Ahmed, and A. Tahir, “Security Control and

Data Planes of SDN: A Comprehensive Review of Traditional, AI and MTD

Approaches to Security Solutions,” IEEE Access, pp. 1–1, Jan. 2024.

[8] T. Alharbi, “Deployment of Blockchain Technology in Software Defined Networks: A

Survey,” IEEE Access, vol. 8, pp. 9146–9156, 2020

[9] W. Meng, W. Li, and J. Zhou, “Enhancing the security of blockchain-based software

defined networking through trust-based traffic fusion and filtration,” Information

Fusion, vol. 70, pp. 60–71, Jun. 2021

[10] A. Petcu, B. Pahontu, M. Frunzete, and D. A. Stoichescu, “A Secure and Decentralized

Authentication Mechanism Based on Web 3.0 and Ethereum Blockchain

Technology,” Applied Sciences, vol. 13, no. 4, p. 2231, Feb. 2023

[11] M. Latah and K. Kalkan, “DPSec: A blockchain-based data plane authentication

protocol for SDNs,” Second International Conference on Blockchain Computing and

Applications (BCCA), 2020, pp. 22-29.

[12] A. Derhab, M. Guerroumi, M. Belaoued, and O. Cheikhrouhou, “BMC-SDN:

Blockchain-Based Multicontroller Architecture for Secure Software-Defined

Networks,” Wireless Communications and Mobile Computing, vol. 2021, pp. 1–12,

Apr. 2021

[13] M. Steichen, S. Hommes, and R. State, “ChainGuard - A firewall for blockchain

applications using SDN with OpenFlow,” 2017 Principles, Systems and Applications of

IP Telecommunications (IPTComm), 2017

[14] Z. A. El Houda, L. Khoukhi, and A. Hafid, “ChainSecure - A Scalable and Proactive

Solution for Protecting Blockchain Applications Using SDN,” 2018 IEEE Global

Communications Conference (GLOBECOM), Dec. 2018

[15] P. K. Sharma, S. Singh, Y. S. Jeong, and J. H. Park, “DistBlockNet: A Distributed

Blockchains-Based Secure SDN Architecture for IoT Networks,” IEEE

Communications Magazine, vol. 55, no. 9, pp. 78–85, 2017

[16] J. Hu, M. Reed, N. Thomos, M. F. AI-Naday, and K. Yang, “Securing SDN controlled

IoT Networks Through Edge-Blockchain,” IEEE Internet of Things Journal, pp. 1–1,

2020

20

[17] Safi Faizullah, M. Asad. Khan, A. Alzahrani, and I. Khan, “Permissioned Blockchain-

Based Security for SDN in IoT Cloud Networks,” International Conference on

Advances in the Emerging Computing Technologies (AECT), Feb. 2020

[18] M. B. Jimenez, D. Fernandez, J. E. Rivadeneira, L. Bellido, and A. Cardenas, “A

Survey of the Main Security Issues and Solutions for the SDN Architecture,” IEEE

Access, vol. 9, pp. 122016–122038, 2021

[19] S. R. Fahim, S. Rahman, and S. Mahmood, “Blockchain: A Comparative Study of

Consensus Algorithms PoW, PoS, PoA, PoV,” International Journal of Mathematical

Sciences and Computing, vol. 9, no. 3, pp. 46–57, Aug. 2023

[20] R. Jmal, W. Ghabri, R. Guesmi, B. M. Alshammari, A. S. Alshammari, and H. Alsaif,

“Distributed Blockchain-SDN Secure IoT System Based on ANN to Mitigate DDoS

Attacks,” Applied Sciences, vol. 13, no. 8, p. 4953, Jan. 2023

[21] R. F. Ibrahim, Q. Abu Al-Haija, and A. Ahmad, “DDoS Attack Prevention for Internet

of Thing Devices Using Ethereum Blockchain Technology,” Sensors, vol. 22, no. 18, p.

6806, Sep. 2022

