

Configuration Manual

MSc Research Project

MSCCYBETOP

Darragh Goslin

Student ID: x20141416

School of Computing

National College of Ireland

Supervisor: Mark Monaghan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Darragh Goslin

Student ID:

x20141416@student.ncirl.ie

Programme:

MSc in Cyber Security

Year:

2024

Module:

MSc Research Project

Supervisor:

Mark Monaghan

Submission Due

Date:

Monday 12th August 2024

Project Title:

Using honeypots to develop an understanding of intrusion techniques.

Word Count: Page

Count:

1891

34

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature:

Darragh Goslin

Date:

10/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own reference

and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the

assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Contents
1 Introduction .. 3

2 Configuring Cloud Environment ... 3

3 Creating Virtual Machines .. 4

4 Installing Cowrie ... 10

5 Collecting Logs ... 18

6 Processing Logs .. 20

Configuration Manual

Darragh Goslin

Student ID: x20141416@student.ncirl.ie

1 Introduction

This configuration manual outlines the steps involved in implementing a cloud based

honeypot to research the intrusion techniques of malicious actors. This document is broken

into the sections necessary to implement the honeypot and process the data logs. Section 2

outlines how to configure the cloud environment. The next section shows the steps to create

the virtual machines. The third section provides the steps to install the honeypot Cowrie.

Section 4 shows the steps to collect the logs. The final section provides the code used to

process the data logs.

2 Configuring Cloud Environment

Droplets were set up on Digital Ocean which will each contain a virtual machine to host one

honeypot.

List of created Droplets:

3 Creating Virtual Machines

Three virtual machines were set up. Below are the steps to create a virtual machine hosted on

Digital Ocean.

Selecting Region:

Creating Ubuntu Virtual Machines

Selecting CPU type:

Setting root password:

Created Virtual Machines:

128.199.88.89:

209.38.16.42:

167.71.232.56:

Connecting To Virtual Machines from personal device.

4 Installing Cowrie

Start by updating systems

Sudo apt-get upgrade

Sudo apt-get update

Installing git and these Python packages: python3-virtualenv, libssl-dev, libffi-dev, build-

essential, libpython3-dev, python3-minimal, authbind and virtualenv

sudo apt-get install git python3-virtualenv libssl-dev libffi-dev build-essential libpython3-

dev python3-minimal authbind virtualenv

Installing python3 virtual environment

apt install python3.10-venv

Installing convenience package to point at python interpreter

sudo apt-get install python-is-python3

Creating Cowrie user with password disabled

sudo adduser --disabled-password cowrie

Switching to Cowrie user

su - cowrie

Cloning Cowrie git repository

git clone http://github.com/cowrie/cowrie

http://github.com/cowrie/cowrie

Switching to cowrie directory and installing Python pip

cd cowrie

python -m pip install --upgrade pippython -m pip install –upgrade pippython -m pip install

–upgrade pip

Installing Python3-pip module

Sudo apt install python3-pip

Installing pip

python -m pip install --upgrade pip

Installing pip package and recommendations from requirements text.

python -m pip install --upgrade -r requirements.txt

Copying Config files

cd etc

cp cowrie.cfg.dist cowrie.cfg

Changing hostname of cowrie server

nano cowrie.cfg

Enabling Telnet

Changing passwd file

cd honeyfs/etc

nano passwd

Blocking top 100 passwords on Honeypot A – 128.199.88.89

Changing default Cowrie user name

Creating fake directory

bin/fsctl share/cowrie/fs.pickle

share/cowrie/fs.pickle

fs.pickle:/$ mv /home/phil /home/rohit

exit

Creating fake files

Creating Cowrie virtual environment

python -m venv cowrie-env

Starting Cowrie virtual environment

source cowrie-env/bin/activate

5 Collecting Logs

Installing WinSCP

Connecting to honeypot

Downloading files

6 Processing Logs

Python Code

Anaconda and Jupyter notebook was used to run the Python scripts

Script to split logs into smaller files

Script1 counts ips and exports into dictionary in desc order

This script iterates through each of the files and finds patterns that match new IP connections.

It then counts each instance of an IP and exports them into a text file giving a total for each

address.

import os

import re

onlyips = []

#get data

paragraphs = []

#num = 1

num=+1

#collects new connections

num1 = 0

count = 0

newConn = []

myArray = []

#create array of only IPs from new connections

while os.path.exists('./part_'+ str(num) + '.txt'):

 with open('./part_'+ str(num) + '.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

 print("END...")

 myArray.append(paragraphs)

 num+=1

 #print(paragraphs)

else:

 print("not found")

myString = ','.join(map(str, myArray))

#pattern = r'(\d+\.\d+\.\d+\.\d+)'

pattern = r"New connection: ([\d.]+):\d+"

matches = re.findall(pattern, myString)

with open('bunch of ips.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(str(matches))

print("Complete")

#unique IPs

myset = set(matches)

print(myset)

my_dict = {item: 0 for item in myset}

for x in matches:

 print(x)

 if x in my_dict:

 my_dict.update({x: my_dict[x]+1})

sorted_dict = dict(sorted(my_dict.items(), key=lambda item: item[1], reverse=True))

with open('counted ips in dictionary.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(str(sorted_dict))

 print("complete")

Script2 extract passwords and export to text file

The script iterates through each file and finds a pattern that matches the inputted password.

The passwords are then exported to a text file.

import os

import re

num = 1

paragraphs = []

num1 = 0

count = 0

newConn = ["1"]

passwords = []

#pattern = r"/b'([^']*)'"

#pattern = r"'/b'([^']+)'"

pattern = r"/b'(.*?)'"

while os.path.exists('./part_'+ str(num) + '.txt'):

 with open('./part_'+ str(num) + '.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

 num+=1

 for x in range(0, len(paragraphs)):

 matches = re.findall(pattern, paragraphs[x])

 if matches:

 # Convert matches list to a comma-separated string without brackets

 matches_str = ', '.join(matches)

 print(matches_str)

 with open("password collection.txt", "a") as file:

 #file.write(matches_str + "\n")

 file.write(matches_str + ",")

script3 count passwords and export dictionary

The script opens the passwords file and counts the number of occurrences of each password

and exports the total count numbers into a text file.

import os

import re

num = 1

paragraphs = []

num1 = 0

count = 0

newConn = ["1"]

passwords = []

#pattern = r"/b'([^']*)'"

#pattern = r"/b'([^']+)'"

pattern = r"/b'(.*?)'"

#while os.path.exists('password collection.txt'):

with open('password collection.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

num+=1

for x in range(0, len(paragraphs)):

 #matches = re.findall(pattern, paragraphs[x])

 #if matches:

 # Convert matches list to a comma-separated string without brackets

 #matches_str = ', '.join(matches)

 print(paragraphs)

 #with open("password collection.txt", "a") as file:

 #file.write(matches_str + "\n")

x = str(paragraphs[0])

array = x.split(',')

myset = set(array)

my_dict = {item: 0 for item in myset}

for x in array:

 print(x)

 if x in my_dict:

 my_dict.update({x: my_dict[x]+1})

sorted_dict = dict(sorted(my_dict.items(), key=lambda item: item[1], reverse=True))

with open('counted passwords in dictionary.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(str(sorted_dict))

Script4 timestamps exported with commands

Script finds patterns that matches a timestamp and exports them into a text file. Initially

planned to be used to identify the hours with the most activity.

import re

import os

#get data

paragraphs = []

num=+1

onlyips = []

#collects new connections

num1 = 0

count = 0

newConn = []

myArray = []

while os.path.exists('./part_'+ str(num) + '.txt'):

 with open('./part_'+ str(num) + '.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

 print("END...")

 myArray.append(paragraphs)

 num+=1

else:

 print("not found")

myString = ','.join(map(str, myArray))

pattern = r'(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{6}Z) \[.*?\] NEW KEYS'

matches = re.findall(pattern, myString)

#unique IPs

myset = set(matches)

my_dict = {item: 0 for item in myset}

for x in matches:

 print(x)

 if x in my_dict:

 my_dict.update({x: my_dict[x]+1})

sorted_dict = dict(sorted(my_dict.items(), key=lambda item: item[1], reverse=True))

with open('timestamps for new connections.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(str(matches))

 print("complete")

Script5 count and print total commands

This script is used to find matching patterns and then count and export the total to a text file.

The pattern is changed to match various commands or files such as ‘uname’ or ‘redtail’.

import re

import os

#get data

paragraphs = []

onlyips = []

num=+1

#collects new connections

num1 = 0

count = 0

newConn = []

myArray = []

#create array of only IPs from new connections

while os.path.exists('./part_'+ str(num) + '.txt'):

 with open('./part_'+ str(num) + '.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

 print("END...")

 myArray.append(paragraphs)

 num+=1

 #print(paragraphs)

else:

 print("not found")

myString = ','.join(map(str, myArray))

pattern = r'(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{6}Z) \[.*?\] NEW KEYS'

matches = re.findall(pattern, myString)

if matches:

 print("yeah")

with open('count for new e ok command.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(f"The command was found {str(len(matches))} times")

 print("complete")

Script6 various commands and print total

This script is used to find matching patterns and then count and export the total to a text file.

Multiple patterns were identified:

• Grep name

• Busybox

• Pkill

• uname

import os

import re

onlyips = []

pattern = r'uname'

pattern2 = r'grep name'

pattern3 = r'pkill'

pattern4 = r'busybox'

#get data

paragraphs = []

num=+1

#collects new connections

num1 = 0

count = 0

newConn = []

myArray = []

while os.path.exists('./part_'+ str(num) + '.txt'):

 with open('./part_'+ str(num) + '.txt', encoding='utf-8') as f:

 paragraphs = f.readlines()

 print("END...")

 myArray.append(paragraphs)

 num+=1

 #print(paragraphs)

else:

 print("not found")

myString = ','.join(map(str, myArray))

matches = re.findall(pattern, myString)

if matches:

 print("yeah")

matches2 = re.findall(pattern2, myString)

if matches2:

 print("yeah")

matches3 = re.findall(pattern3, myString)

if matches3:

 print("yeah")

matches4 = re.findall(pattern4, myString)

if matches4:

 print("yeah")

with open('count for various commands.txt', 'w') as file:

 # Join the array elements with a comma and write to the file

 file.write(f"The command uname was found {str(len(matches))} times.\n" + f"The

command grep name was found {str(len(matches2))} times.\n" + f"The command pkill was

found {str(len(matches3))} times.\n" + f"The command busybox was found

{str(len(matches4))} times.\n")

 #file.write(f"The command grep name found {str(len(matches2))} times")

 print("complete")

script 7 import csv capture country export csv

The Ips from 'counted ips in dictionary.txt' file are placed into a file called 'ips.csv' which is

iterated through and the origin of country for each IP is returned from the ipinfo api. The

results are exported into a csv document.

import csv

import requests

def get_country_from_ip(ip_address):

 try:

 response = requests.get(f'https://ipinfo.io/{ip_address}/json')

 response.raise_for_status()

 data = response.json()

 country = data.get('country')

 return country

 except requests.RequestException as e:

 print(f"Request error for IP {ip_address}: {e}")

 return None

 except ValueError:

 print(f"Error parsing response for IP {ip_address}")

 return None

File paths

input_csv_file_path = 'ips.csv'

output_csv_file_path = 'ip_countries 209.38.16.42.csv'

try:

 # Read the input CSV file

 with open(input_csv_file_path, mode='r', encoding='utf-8-sig') as infile:

 csv_reader = csv.DictReader(infile)

 # Debugging: Print the fieldnames to check the headers

 print(f"CSV headers: {csv_reader.fieldnames}")

 # Ensure the 'ip_address' column is present

 if 'ip_address' not in csv_reader.fieldnames:

 raise KeyError("CSV does not contain 'ip_address' column")

 # Prepare to write to the output CSV file

 with open(output_csv_file_path, mode='w', newline='', encoding='utf-8') as outfile:

 fieldnames = ['ip_address', 'country']

 csv_writer = csv.DictWriter(outfile, fieldnames=fieldnames)

 csv_writer.writeheader()

 # Process each row in the input CSV

 for row in csv_reader:

 ip_address = row['ip_address'].strip()

 if ip_address:

 country = get_country_from_ip(ip_address)

 print(f'IP Address: {ip_address}, Country: {country}')

 # Write the result to the output CSV

 csv_writer.writerow({'ip_address': ip_address, 'country': country})

except FileNotFoundError:

 print(f"File not found: {input_csv_file_path}")

except KeyError as e:

 print(e)

except Exception as e:

 print(f"An unexpected error occurred: {e}")

