

Using honeypots to develop an

understanding of intrusion techniques

MSc Research Project

MSc in Cyber Security

MSCCYBETOP

Darragh Goslin

Student ID: x20141416@student.ncirl.ie

School of Computing

National College of Ireland

Supervisor: Mark Monaghan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Darragh Goslin

Student ID:

x20141416@student.ncirl.ie

Programme:

MSc in Cyber Security

Year:

2024

Module:

MSc Research Project

Supervisor:

Mark Monaghan

Submission Due

Date:

Monday 12th August 2024

Project Title:

Using honeypots to develop an understanding of intrusion techniques.

Word Count: Page

Count:

8369

31

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature:

Darragh Goslin

Date:

10/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Contents
Using honeypots to develop an understanding of intrusion techniques .. 5

1 Introduction ... 5

2 Related Work ... 6

3 Research Method .. 10

3.1 Implementation .. 10

3.2 System Assembly ... 10

3.3 Data Gathering ... 10

3.4 Data Processing .. 11

3.5 Data Analysis ... 11

3.6 Tools ... 11

3.7 Evaluation ... 11

3.8 Ethical Issues ... 11

4 Design Specification .. 12

4.1 Cloud Provider ... 12

4.2 Cowrie .. 12

4.3 Logs .. 13

5 Implementation .. 14

5.1 Hosting ... 14

5.2 Installing Cowrie .. 14

5.3 Honeypot in action .. 15

5.4 Log Collection ... 15

5.5 Gathering Logs ... 15

5.6 Processing ... 15

5.7 API ... 16

5.8 Log File Breakdown ... 16

5.9 IP Addresses .. 16

5.10 Country Of Origin ... 16

5.11 Passwords .. 16

5.12 Commands ... 17

6 Evaluation .. 17

6.1 Connections ... 17

6.2 Most Frequent Connections ... 18

6.3 Top country of origin .. 18

6.4 Passwords .. 20

6.5 Attack Vector ... 21

6.6 X6F\x6b - OK ... 21

6.7 Uname .. 21

6.8 Busybox .. 22

6.9 CPUINFO.. 24

6.10 Maintaining Access ... 25

6.11 Secure.sh and PKILL... 25

6.12 chmod +x setup.sh .. 27

6.13 Files Collected .. 28

6.14 Discussion ... 30

7 Conclusion .. 31

Bibliography ... 32

Using honeypots to develop an understanding of

intrusion techniques
Darragh Goslin

x20141416

Abstract

With modern systems relying upon cloud infrastructure to support enterprise networks it essential to

protect these systems from attacks. As cyber threats increase in complexity it is necessary to develop

methods to detect how a malicious threat actor will breach a network. Through building a better

understanding of the threats we can make efforts to harden and protect the network. A honeypot is

used to achieve this goal. A honeypot is a rogue endpoint on a network. It is an endpoint that is

intentionally left vulnerable. By allowing this rogue system to be breached we can monitor and see the

methods a malicious actor might employ. We can also see how a malicious actor will behave once

they gain access to a vulnerable endpoint.

Keywords:

Honeypot, Cloud Computing, Intrusion Detection

1 Introduction
Threat intelligence is essential for improving a security posture. Threat intelligence is

gathered through a number of methods. This can include government agencies, private sector

organisations, and open-source information. One source for gathering threat intelligence is

the use of honeypots. The honeypot will be left vulnerable to allow for threat actors to scan

and attempt to gain entrance. The methods used can be analysed and studied to build a better

understanding of what vulnerabilities are available.

A successful cyber threat will ideally go unnoticed as they gain access. Unless the goal is

distribution for issuing ransomware where the goal is to make the threat actors action visible

to the victims. A honeypot can be modified to collect and gather data on a malicious actors

actions in specific circumstances. Honeys can be classified into different categories such as

low interaction to high interaction which will provide threat actors varying degrees on

interaction. The implementation of honeypot will be created in a manner that will not put any

production devices at risk. For the purposes of research a honeypot can be put in a cloud

environment isolated from a researchers devices. The data gathered can be used to create a

better picture of how threat actors will interact with vulnerable systems. This can include

information such as which ports are used, what IP addresses the threat actors originate from,

what passwords are compromised and what countries or times the attacks take place. With a

better understanding of the attacks the security posture can be improved by closing ports,

restricting geo location access and blocking malicious IP addresses. The file paths or files

accessed by a threat actor can identify vulnerable areas for a security team to review. To

gather threat intelligence a number of honeypots will be deployed in the cloud. The

honeypots will have different configurations to test the different approaches by threat actors.

The attacks are often implemented by bots which can lead to repetitive actions. These actions

can be recorded in logs and the frequency of attacks measure.

2 Related Work

Honeypots are a suitable method for collecting research data. Bhagat and Arora (Arora, 2018)

noted that using honeypots to gather small amounts of data makes it easier to analyse and

understand. By having a honeypot with a limited scope it gives a more concise area to focus

upon. However it is important to note that the honeypot is not to be seen as a way to solve

any issues or vulnerabilities on a network. Any interactions with the honeypot should be

considered malicious. A honeypot involves silent detection by tracking malicious actors Ips

and actions which will later be reviewed and analysed. A core principle in a functioning

honeypot is the ability to avoid detection.

While they cannot be used to solve vulnerability issues Negi, Garg and Lal (P. S.

Negi, 2020) did argue that they can be utilised to divert malicious threat actors away from

critical frameworks to the honeynet framework. They did agree that a key concept of a

working honeypot involves silent detection. A low interaction honeypot will be easier to

detect no matter how good the emulation is. Eventually a skilled threat actor will discover

their presence. As they are often based upon open-source frameworks a skilled threat actor

will have access to the same resources and learn to spot the signs of a honeypot. Some

restraints will need to be taken when implementing a honeypot which may include setting up

the decoy system in an isolated network. This kind of deployment means they are suited to

cloud infrastructure for detecting intrusions. The authors went further suggesting any cloud

framework should have a honeypot deployed.

The deployment of a honeypot needs consideration. This was further expanded on in

Architecture of the Honeypot System for Studying Targeted Attacks (Lapin, 2018) where the

authors identified what information the administrator is seeking to gather. The design of a

honeynet will differ from typical system architecture as they are designed in a way to allow

for the study of malicious actors attacks.

The information we are seeking to achieve include:

• analyzing step-by-step intruder’s actions within the information system

• identifying targets pursued by intruders and potential targets of encroachment.

• detecting previously unknown malicious software used by intruders

• collecting various information about the intruder’s infrastructure (server, address, etc.

Other factors that need to be considered are that every endpoint needs logging capabilities

with self-storage available. The logs collected should be protected from unauthorised access

and preserved. The true function of the honeypot should be hidden from detection

After the malicious actor connects to the honey trap, Polyakov and S. A. Lapin groups the

actions into:

• single use instance of the Honeypot system.

• using the Honeypot system as a gateway for further illegal actions against other information

systems.

• usage of the Honeypot system instance to commit unlawful actions in relation to the

workstation's LAN of the enterprise.

The threat actor needs to be able to gain access to the system without arousing their

suspicion. This could involve providing fake file directories or changing the default

hostnames and user names.

Each instance of the Honeypot system must include tools that will allow it to:

• monitor network activity. Their main task is to obtain a complete copy of the transmitted

data, as well as to collect information on emerging network connections, such as IP

addresses, port numbers, domain names, etc.

• monitor the events of the file system.

• track the activity of emerging and existing processes in the system, as an intruder can use

malicious software which could generate new processes in the operating system.

In collecting the data it is essential for our honeypots to work efficiently and it is important

that they maintain their activity around the clock. (Chandane, 2021) argue that in the design

process a decision needs to be made towards whether the approach should be a qualitive or

quantitative model. A honeypot can be designed so that it would difficult to gain entry and

have many decoy services to entice an attacker. However, it would have limited results

whereas a quantitative model will entice more treat actors. By having a larger amount of data

we can build a stronger model on threat actor behaviour.

It is necessary to take steps to address this issue as the honeypot could result in

misrepresentation, ineffectiveness and inadvertently allow detection by an attacker. An

ineffective honeypot is a challenge for researchers. A researcher must be able to work with

limited resources in the most efficient manner. A passive honey can be more efficient that an

active honeypot where incidents will not require intervention by the researcher. To assist with

maintaining around the clock access and that resources do not fall short a cloud environment

will be preferential to an on-premises infrastructure.

In Long-Term Study of Honeypots in a Public Cloud (al, 2022) the authors states that

a public cloud environment are convenient for computation and storage resources. However

they can also be beneficial for malicious web based attacks which results in cloud based

virtual machines often being attacked. This study showed that low interaction honeypots were

repeatedly attacked when compared to medium interaction honeypots. Attackers seek to

compromise cloud resources to launch their attacks or run command and control operations.

A cloud resource could be used for mining cryptocurrencies. An analysis of threat behaviour

actions may be divided by looking at the traffic interacting with the honeypot and then

secondly by reviewing the content of files dropped onto honeypots.

More time spent on the system and interacting with the honeypot allows for more data

to be collected. The data gathered from honeypots can lead to a type of feedback loop where

the information that is collected is then used to further improve the interaction, deception and

camouflage of these systems. Which is a point raised by Ali (Ali, 2022).

They believed there are two different areas for approaching the honeypot: attack

versus secure. In the first scenario a fake endpoint can facilitate man in the middle attacks by

a malicious actor. In the second scenario the honey is used for tracking the malicious actors

and the data gathered used for securing a network. With increasing geopolitical crises, cyber

attacks will continue to rise in frequency and sophistication the benefits of using honeypots to

secure a network will persist. However this has some difficulties. They only give an

overview of the malicious actors activities against the network. So if the threat actor was to

bypass the honeypot when penetrating the network, then their actions will be oblivious.

By passing the honeypot is not the only concern, the other is that the malicious actors

may become aware of the honeypot. Some indicators that may give away its presence is using

‘Fingerprinting’. An attacker will expect a web server to respond with typical errors and

returning common HTML syntax but if the honeypot responds with incorrect HTML

commands or has spelling errors it will give away the deception. By setting up a honeypot in

the IT network a degree of risk is being introduced to the environment. A simpler honeypot

will have a lower risk. The risk can be reduced or mitigated by how the honeypot is built and

deployed.

Dowling, Schukat and Melvin (S. Dowling, 2017) agreed that the operation of

honeypots can have ethical and legal concerns. A compromised honeypot could be involved

in further attacks. The majority of attacks on honeypots are caused by botnets. These provide

a method to threat actors for global cyber attacks. The attacks take the form of infection and

control. A botnet is a large network of compromised machines which are under the control of

a single command and control (C & C). The machines are common everyday machines that

are inadvertently participating in the attacks. It is difficult to take down the botmaster as the

C & C connection is changed.

To combat the bots we need to understand the methods for attacking. The data

gathered can be used for calculating the probability of attacks occurring at certain times and

the different types. (Mittal, 2024) explained that a botnet is a group of computers that is

controlled and monitored by malicious actors. Hackers use bots to send malicious code. The

botnet will infect a device that is connected to the network. Once the victim device

establishes a connection to an existing command and control server the victim device can be

used to spread malicious code under the control of the command and control server. The code

is often injected using protocols like HTTP, P2P and other remote tools. A common attack is

brute force method for cracking passwords. It is a hit and error way of guessing the victim

device password.

The threat actors will be seeking Zero day attacks which are undiscovered

vulnerabilities that have yet to be patched. (M. Başer, 2021) noted they are a challenge for

traditional cybersecurity methods where they invalidate any of the actions taken. Honeypots

can be used to discover the attacks. The deception machine can be divided up based upon the

classification. Baser stated their two divisions of classification:

i) Classification based upon installation which is whether the honeypot is production

or research.

ii) Classification based upon interaction. This depends on the level of interaction by

the malicious actor. Başer states there are three types which are low, medium and

high interaction.

A high interaction honeypot will replicate many services and provide a sphere of activity for

the threat actor. Whereas a low interaction honeypot will provide the least amount of

interaction. It may just replicate limited number of services such as SSH remote access.

Teknet and SSH are common protocols used for attempting unauthorised access to machines.

Threat actors will frequently use default credentials to attack secure systems. A low

interaction honeypot that utilises Telnet and SSH connections will allow for gathering

information on how a malicious actor interacts with a endpoint via those connections.

In Analyzing the Attack Pattern of Brute Force Attack on SSH Port (A. Subhan, 2023)

the authors agreed that in identifying the attack patterns one of the most frequent targets are

remote access services such as Secure Shell (SSH). SSH is common used in Linux and Unix-

based systems as an access shell. SSH is a network protocol used for exchanging data through

secure channels. SSH operates at the application layer of the TCP/IP protocol. It uses the TCP

port number 22. Threat actors will often target SSH ports using brute force. The attack rate

can reach up to 25% in Denial of Service (DoS) attacks. The impact of the brute force attack

is influenced by the complexity and length of passwords. The time required to impact them

can vary from seconds to years.

(Dadarlat, 2018) agreed that a honeypot can discover correlations between successful

attack methods and simple login credentials used during ssh connections. Analysis of

honeypots over a longer period of time will show frequency of attacks. Long period analysis

can be used to measure the effectiveness of security policies. For example a complex

password policy can be tested by running a honeypot that prevents simple passwords.

A challenges to be addressed with running the research honeypots will be the volume

of data which (S. Sunil, 2023) agreed by stating noted that as log become larger manual log

analysis becomes more challenging. Concerns were also raised over the unstructured nature

of logs and how they are often not in uniform design and that there is no set way for

deciphering log files. A common concern raised is that they logs could be injected with

malicious code or scripts in an attempt to corrupt the logs. Proper parsing will be needed to

protect the logs. (Georgieva, 2020) agreed that information security is an unsolved challenge

for organisations managing the volume of security logs. Georgieva proposed beginning by

using filtering using relevant features for selection. The elimination of irrelevant features can

speed up the process. Content and context analysis is necessary with so many attack vectors

available. Different models being built up using a variety of feature filters will provide more

information on attack vectors.

3 Research Method

3.1 Implementation

To collect research data honeypots will be deployed on a cloud environment. The honeypots

installed on vulnerable virtual machines with the capacity to log connections to SSH and

Telnet on ports 2222 and 2223. Any actions made by the threat actor will also be logged.

The research can be broken down into these phases:

• System Assembly

• Data Gathering

• Data Processing

• Data Analysis

•

3.2 System Assembly

This step will involve creating the environment for the research and configuring the

honeypots with different settings.

Hosting Environment

A Cloud environment will be used as it is better suited for hosting the honeypots and will

provide the researcher a degree of protection in the event of a breach. Should a threat actor

escape the honeypot or if the machine is compromised it will be easier to shut down and there

will be no risk of actual data being at risk. Virtual machines allow for quick deployment. The

cloud providers have images of the virtual machines that can be selected and configured to

suit the requirements of the honeypots.

3.3 Data Gathering

The honeypots are left running to collect and monitor activity by threat actors. WinSCP will

be used to gather the data files. Once a connection is made to the honeypots the log files will

be downloaded to the research device. To reduce risk when collecting any suspicious files

that have been uploaded to the vulnerable machines, this will be performed from a virtual

machine. Windows Sandbox will add an extra layer of protection so that the files can be

scanned and confirmed to be safe for interaction.

Cowrie is a medium interaction honeypot. It will simulate that ports 2222 and 2223 are open

and allow SSH and Telnet connections. When a successful connection is made the threat actor

will in a simulated Linux directory.

3.4 Data Processing

The data processing phase will involve transforming the logs to a form that will allow for

analysis. Python scripts will be used to break down the log files and extract the relevant data

for analysis. The connections will be extracted from the logs files and exported to a file for

analysis. The passwords used by the treat actors will also be extracted and stored in a file.

The IP addresses will also be sought from the log files. Suspicious files will be uploaded to

VirusTotal to confirm whether they are known threats and to retrieve the Sha256 number.

3.5 Data Analysis

The resulting data from the processing is reviewed to gain any key findings or insights.

Excell and Python will be used to perform the analysis of the data.

3.6 Tools

Cowrie

Ubuntu

Python

Excell

Winscp

Putty

3.7 Evaluation

At the end of the process there should be a collection of malicious Ips. To further confirm the

Ips are threats they will be checked against existing collections of malicious Ips such as

abuseipdb and virustotal. The research should provide logs of data that include not just Ips

but the credentials and passwords that have been breached.

The research will be a greater success if the actions and the commands of a threat actor are

recorded in the logs. We will then be able to better understand the methods taken by the threat

actors. To attain different forms of data one of the honeypots will be configured so that the

most common passwords will be blocked

3.8 Ethical Issues

The honeypots need to be implemented in a manner that will prevent other systems from

being breached. There are also concerns that should the systems become compromised they

could be used to host malicious attacks or as a launching ground for malicious activity.

Failure to identify these risks and threats to a network could lead to the honeypot becoming it

compromised and the researchers device.

4 Design Specification

4.1 Cloud Provider

The underlying elements in the design will be to isolate the honeytraps from other systems

and to leave them vulnerable to entice an attacker. The honeypots will be hosted on a cloud

provider to keep them isolated from the researchers devices. Should an attacker escape the

device they will not be able to retrieve any actual data or launch attacks onto the researchers

devices. If the machine is compromised it will be easier to shut down.

Figure 1: Three vms in cloud

On the Cloud Provider the honeypots will be implemented onto three separate virtual

machines. Each vm will be hosted on a separate projects space to further isolate the devices.

The honeypots will be installed on virtual machines with Ubuntu installed. This allows for

quick installation and easy configuration.

4.2 Cowrie

Cowrie will be used to implement the honeypot. Cowrie is a medium interaction SSH and

Telnet honeypot which is used to log brute force attempts and shell interactions performed by

an attacker. A factor in selecting Cowrie was because it is open source and allows for

customisation. In additional when implemented it runs a virtual environment on the host

system which will add an additional layer of protection unlike some honeypots which are run

as applications. Other honeypots that were reviewed have since deprecated and or had

insufficient logging capabilities. The different honeypots will have different configurations

such as blocked passwords, fake directories and fake files created. To increase the quality of

the data two honeypots will be configured to allow all passwords and logins. One will be

configured to block the most common passwords. To prevent malicious actors from spotting

the signs that they are connected to a cowrie service, the system configurations will be

changed to appear as later versions of a Ubuntu server and a personal device.

4.3 Logs

The logs are collected and processed for data analysis.

The logs are used to create a collection of malicious IP addresses. At the end a text file is

created which shows each IP address that connected and a count of how frequently. With this

information we can also discover the country of origin for the IP address used by the

malicious actor.

From the logs the passwords are gathered to compile a list of compromised or weak

passwords. This information will be built upon to provide insight on possible attack vectors.

Entries in the logs that do not involve logins or passwords will be commands entered by the

threat actors.

The logs are transferred to a virtual machine where they are scanned to ensure there is no

malware. The log files are stored on a windows 10 device and copies are stored on a external

hard drive.

There was concern in the design that the logs could be compromised by a threat actor after

they connect to the system. However, Cowrie operates by creating a virtual environment. This

virtual environment is how the threat actor interacts with the system. They will be inside a

false directory. Any commands that are run are only simulated. Any files that are transferred

to the honeypot are stored in the Cowrie directory but this cannot be accessed from inside the

virtual environment directory.

5 Implementation

5.1 Hosting

A DigitalOcean account will be created using a student account as it provided free credit.

DigitialOcean calls the virtual machines ‘Droplets’. Separate projects were created for

hosting the Droplets. This would allow for quick disposal of the virtual machines should

there be issues and made it easier to keep track of the different configurations.

Virtual Machines

Within each project a virtual machine was created. The specifications were the following:

Ubuntu 23.10 – 2 GB RAM 50 GB Disk

5.2 Installing Cowrie

To install Cowrie the following packages needed to be installed on the virtual machines:

Git – used for downloading and installing source code

Python3 Virtualenv – used for create Python virtual environments

Libssl-dev – Development tools for OpenSSL, TLS and SSL protocols.

Libffi-dev - Development libraries for libffi

Python3-minimal – used to ensure Python 3 essentials are installed

Authbind – used to bind root to UDP and TCP ports

Build-essential – used for building software

Libpython3-dev – Library for Python3

After using the above packages to install Cowire changes made from the default

configurations. The Cowrie username was changed from ‘Phil’ to make it harder for a threat

actor to spot. The ports were configured to redirect to ports 2222 and 2223.

On two honeypots fake documents and directories were created. These involved documents

with names such as passwords, invoices or other sensitive information to entice a threat actor

to navigate the honeypot.

On one honeypot the default passwords and top 100 most common passwords were changed

and/or blocked.

Once Cowrie was launched the service was tested by seeing if I could connect to the virtual

machine and what passwords were accepted or not accepted.

5.3 Honeypot in action

When the Cowrie service has been started the virtual machine will accept SSH and Telnet

connections on ports 2222 and 2223. When a connection is attempted the honeypot will log

the IP address, username and password. Successful connections will present the threat actor

with a bash shell that replicates a Linux machine. Any commands taken within the honeypot

will also be logged. Cowrie will attempt to mimic the commands of most Linux machines

such as changing directory or accessing files. However, as it is a simulation, more

complicated commands will not result is any action but the log files will still record the

attempts. Unsuccessful attempts to connect will log the IP address, time, login name and

password but refuse access to the bash shell.

5.4 Log Collection

The logs from Cowrie contain data collected over 24 hour period. They timestamp and record

the interactions with the honeypot.

5.5 Gathering Logs

The analysis is performed on a Windows device so WinSCP is used to collect the logs. It

allows for the Linux directories to be traversed which will be easier for locating the logs and

downloading them.

5.6 Processing

Python is used for processing the log files as it is quick and simple to use and has a wide

range of libraries and packages available. Anaconda and Jupyter notebook were used for

creating and running Python. The following packages are used during the process:

re – it is regex module used for matching patterns

os – allows for interacting with operating system directories

requests – used for making http requests

5.7 API

ipinfo.io – this api is used to gather info about IP addresses.

5.8 Log File Breakdown

The log files can vary in size from 0.1 MB to 100 MB. In this format they are too large for

processing. Using python and the os package the log files are broken into smaller parts.

The log files are quite large and will cause any Python programs to crash or reach index

limits. To begin processing the logs they need to be broken down. A Python script would

copy the content of a log file and write a smaller copy of the log file broken into parts of 1000

lines. The smaller files were a manageable size for the other scripts to manage.

5.9 IP Addresses

A Python script is used to collect the successful logins and create a collection of IP addresses.

These IP’s should be considered malicious , this is verified using abuseipdb or virustotal.

The code imports the log in a text format and creates entries in an array where each entry

from the logs is a separate index. A regex will search for a pattern that matches an IP address.

The matches will be added to another array that will then be used for counting the frequency.

To count the frequency of the IP’s a dictionary is created containing the addresses as Keys.

The corresponding key value will be a count of each time the IP is found when iterating

through the array of log entries. Once completed the dictionary will be outputted to a text file.

To measure the frequency of attacks originating from IP addresses the log is fed to an array

using Python. The indexes that contain ‘New Connections’ are extracted and placed into a

new Array. We then iterate through the array looking for patterns that match IP addresses. The

IP addresses are placed into a dictionary. The dictionary will contain a unique set of IP

addresses. Each address will be the dictionary Key and the value will be a count of how often

the IP address connects. The key value initial starts as one. To gain the count the array will be

iterated through again and when a match is found in the dictionary the key value will be

increased by one.

At the end a text file is created of the dictionary which shows each IP address that connected

and a count of how frequently.

5.10 Country Of Origin

To gather information about the origin country of the IP addresses the IP is fed into the

ipInfo.io api. The python script takes the IP address and uses the requests package to connect

to the ipinfo api. The script then returns a Country code which provides the origin of the

malicious IP.

5.11 Passwords

The logs will also be used to harvest the passwords used to access the honeypot.

Using the packages re and os the log files are imported into an array and then using regex the

array is iterated through and the passwords are placed into a dictionary. The dictionary is used

to create a count of how frequently the passwords are used.

5.12 Commands

The commands entered by the threat actors in the logs will be extracted and analysed to

create a better understanding of the potential attack vector.

6 Evaluation

6.1 Connections

The purpose of the research is to gather intelligence on malicious actors. In total 2.02 GB of

logs were collected for analysis.

• 215 MB from Honeypot A

• 1.5 GB from Honeypot B

• 309 MB from Honeypot C

In examining the logs the most striking statistic is the volume of brute force attacks. While

the machines were not publicly broadcasted or advertised, they were still seen as targets. The

below table shows the total number of connections for each honeypot. A connection was

recorded whether the login was successful or not. Each new session with a honeypot would

create a ‘new connection’. These new connections are what was logged and recorded.

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C - 209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default

system.

Dummy files created in the

directory.

Total number of connections to each system in 30 days

119391 504852 101382

6.2 Most Frequent Connections

Each connection would contain information about the IP address the connection was

originating from. The below table shows the top ten most frequent IP addresses and the

number of connections to each honeypot.

Honeypot - 128.199.88.89 Honeypot - 167.71.232.56 Honeypot - 209.38.16.42

IP Address Number of

Connections

IP Address Number of

Connections

IP Address Number of

Connections

137.184.226.118 23274 167.71.228.234 435466 209.38.218.172 27101

147.139.140.172 11742 34.100.251.17 24593 120.78.75.128 25755

112.90.182.230 5556 157.173.202.91 7930 47.237.27.243 13395

39.105.20.1 5206 43.239.111.20 6843 124.109.53.102 10538

120.27.249.1 4673 123.56.126.166 6001 170.64.185.217 1260

120.26.86.123 4360 170.64.185.217 1800 79.137.206.11 940

170.64.185.217 3240 31.129.106.85 933 49.235.180.71 651

139.59.102.191 3100 49.235.180.71 651 193.201.9.156 558

43.134.161.57 3100 193.201.9.156 338 139.199.80.137 343

43.134.250.114 3100 139.199.80.137 334 85.209.11.227 285

Only one address appeared in the top ten of each honeypot which was 170.64.185.217.

Abuseipdb.com gave a confidence of abuse score of 100%. The address appears to originate

from Australia and the ISP is DigitalOcean LLC.

6.3 Top country of origin

The IP addresses have a country of origin for the ISP associated with the addresses.

The below table shows the number of unique IP connections made by country of origin.

547

417

378

310

157

132

119

98
605351

Country Connections

CN US SG HK JP KR IN DE RU ID BR

Honeypot A - 128.199.88.89 Honeypot B - Honeypot C

Country IPs

Connecting

Country IPs

Connecting

Country IPs

Connecting

CN 150 CN 196 CN 201

US 149 US 133 US 135

SG 130 SG 119 SG 129

HK 108 HK 111 HK 91

JP 52 JP 52 JP 53

KR 45 KR 43 IN 44

IN 41 IN 34 KR 44

DE 34 RU 31 DE 37

ID 32 BR 31 RU 29

BR 20 DE 27 ID 21

6.4 Passwords

The most frequently used passwords recorded by the log files. There were over 1000 different

password taken from the login attempts. The below table demonstrates the top ten most used

passwords. It would be advisable for a company or organization to block the use of these in

any password policies.

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C -209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default system.

Dummy files created in the

directory.

'345gs5662d34' 424 '345gs5662d34' 840 '3245gs5662d34' 388

'3245gs5662d34' 424 '3245gs5662d34' 839 '345gs5662d34' 388

'123456' 134 'broadguam1' 42 'broadguam1' 94

'root1234567890' 93 'sk123456.' 39 'admin' 28

'agent007' 91 '123456' 36 '123456' 28

'asdf!@#123' 91 'test@123' 28 'edwin' 24

'webmonkey' 90 'validator' 24 'admin123' 22

'tribal' 88 '12345678' 23 'm1' 22

'zj!@#$%^&' 88 'Asd123456' 22 'fallahi' 22

'p@$$w0rt' 87 'Qq123321' 22 'mozam' 22

'dxyh@#13915417585' 86 'admin123' 21 'fuxi' 22

'xmhdipc' 86 'Root123456' 21 'alphama' 22

'apache@12345' 85 'a' 20 'vimal' 22

'alpin' 84 'Aa123123' 20 'mahbub1' 22

'you' 84 'Aa123456.' 20 'rahim' 22

'test@' 83 '1234' 19 'ander' 22

'HuaWei@123#' 83 'Qq123123' 19 'wukong' 22

'hbgug7800' 83 'Aa123456!' 18 'cup' 22

'Yjlgjwdata@wlzx.com' 82 'video' 16 'puestovo' 22

'ABCd^1234' 82 'x' 15 'qingfuzhu' 22

'HUAWEI123456' 82 'grafana' 15 'poorya' 22

'Asdf1234' 82 '123123' 15 'yonesfar' 22

'qwer123.com' 81 'elango' 15 'santlal' 22

'passw0RD' 81 'pwcanswers' 15 'talib' 22

'splunk123' 80 'colucci' 15 '12345678' 21

6.5 Attack Vector

The actions of the malicious connections can be broken into these categories:

• Information Gathering

• Maintaining Access

The following commands can be classified as information gathering. They are actions that

collect information and specifications about the system.

6.6 X6F\x6b - OK

 In a number of connections, the following command was run:

CMD: echo -e "\x6F\x6B"

Command found: echo -e \x6F\x6B

The command is a bash command that sends the ashii characters ‘OK’ to the terminal. It

would appear the goal is to test that commands can be run on the system. After the command

is successfully run the connection ends.

6.7 Uname

The command ‘uname’ was run in an attempt to gather information about the system.

CMD: uname -s -v -n -r -m

Commands containing uname were run the following amount of times:

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C -209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default

system.

Dummy files created in the

directory.

326 4248 4260

Variations of the command were found which gathered different data:

unamne -a : Retrieves and prints all information on the system.

uname -s : Prints the kernel name.

uname -v : Prints the kernel version.

uname -n : Prints the network node hostname.

uname -r : Prints the kernel release.

uname -m : Prints the machine hardware name.

Over the 30 day period there appears to be a decline in instances of gathering system

information. Honeypots B and C appear to have similar spikes near the 7th and 8th day and

later near the 10th and 11th days.

6.8 Busybox

These commands appear to be an attempt to extract information from the system using a Unix

suite called Busybox.

CMD: enable

Command found: enable

Reading txtcmd from "share/cowrie/txtcmds/bin/enable"

CMD: system

Can't find command system

Command not found: system

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Uname Commands

A B C

CMD: shell

Can't find command shell

Command not found: shell

CMD: sh

Command found: sh

CMD: ping; sh

Command found: ping

Command found: sh

CMD: busybox dd if=$SHELL bs=22 count=1||dd if=/proc/self/exe bs=22 count=1||while read i;do

busybox echo -n $i;done</proc/self/exe||cat /proc/self/exe

Command found: busybox dd if=$SHELL bs=22 count=1

Command found: dd if=$SHELL bs=22 count=1

Command found: dd if=/proc/self/exe bs=22 count=1

Can't find command while

Command not found: while read i

Command found: do busybox echo -n

Command found: done < /proc/self/exe

Command found: cat /proc/self/exe

The enable command is frequently used in devices such as Cisco to elevate privileges. The

attacker may then be using System to gain configurations or system level functions. The shell

command is not a typical Linux command. The attacker is probably trying to gain a shell

interface. The sh command is to attempt to access a unix shell. The ping command is an

attempt to check network interfaces.

The next command is a collection of commands that uses Busybox which combines

command Unix utilities into a single executable. The dd command is used for copying and

converting files. The next part of the command is for attempting to copy data from a shell

binary if=$SHELL bs=22 count=1.

The final part of the command /proc/self/exe attempts to execute the binary of the process

and read the contents.

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C -209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default

system.

Dummy files created in the

directory.

245 649 311

From the above graph we see that there is an increase in these commands towards the end of

the 30 month period.

6.9 CPUINFO

CMD: cat /proc/cpuinfo | grep name | head -n 1 | awk '{print $4,$5,$6,$7,$8,$9;}'

The command cat /proc/cpuinfo is used to display the CPU information. The grep name

command will filter for lines containing the word name. If there is a matching line the

command head -n 1 will select it. The following command awk '{print $4,$5,$6,$7,$8,$9;}'

extracts specific fields.

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C -209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default

system.

Dummy files created in the

directory.

162 354 444

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Busybox

A B C

6.10 Maintaining Access

The below commands are classified as attempts by the threat actors to maintain access to the

system.

6.11 Secure.sh and PKILL

The following commands appear to be an attempt to maintain access to the system.

Executing command "b'rm -rf /tmp/secure.sh; rm -rf /tmp/auth.sh; pkill -9 secure.sh; pkill -9

auth.sh; echo > /etc/hosts.deny; pkill -9 sleep;'"

 CMD: rm -rf /tmp/secure.sh; rm -rf /tmp/auth.sh; pkill -9 secure.sh; pkill -9 auth.sh; echo >

/etc/hosts.deny; pkill -9 sleep;

 Command found: rm -rf /tmp/secure.sh

 Command found: rm -rf /tmp/auth.sh

 Command found: pkill -9 secure.sh

 Reading txtcmd from "share/cowrie/txtcmds/usr/bin/pkill"

 Command found: pkill -9 auth.sh

 Reading txtcmd from "share/cowrie/txtcmds/usr/bin/pkill"

 Command found: echo > /etc/hosts.deny

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

cpuinfo

A B C

 Command found: pkill -9 sleep

 Reading txtcmd from "share/cowrie/txtcmds/usr/bin/pkill"

rm -rf /tmp/secure.sh: This command removes the file secure.sh from the temporary /tmp

directory.

rm -rf /tmp/auth.sh: Removes the file auth.sh from the /tmp directory.

pkill -9 secure.sh: Forcefully terminates any processes that are named secure.sh.

pkill -9 auth.sh: This forcefully terminates any processes named auth.sh.

echo > /etc/hosts.deny: Clears the contents of the /etc/hosts.deny file, which could be used to

block specific hosts from accessing the system.

pkill -9 sleep: Forcefully terminates any sleep processes which prevents the system from

shutting down.

These commands appear to be attempts to remove or cover up a scripts or services. The

hosts.deny could be an attempt to allow broader access to the system while pkill will prevent

the system from disconnecting.

Honeypot A - 128.199.88.89 Honeypot B - 167.71.232.56 Honeypot C -209.38.16.42

Top 100 passwords blocked. Fake directory and

modifications to default

system.

Dummy files created in the

directory.

216 468 576

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

PKill Commands

A B C

6.12 chmod +x setup.sh

To maintain access to the device the threat actor attempts to establish a foothold by altering

the authorised keys file. The below command was detected 282 times.

Command found: chmod +x setup.sh

Command found: sh setup.sh

Command found: rm -rf setup.sh

Command found: mkdir -p ~/.ssh

Command found: chattr -ia

Command found: echo ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQCqHrvnL6l7rT/mt1AdgdY9tC1GPK216q0q/7neN

Vqm7AgvfJIM3ZKniGC3S5x6KOEApk+83GM4IKjCPfq007SvT07qh9AscVxegv66I5yuZTEaD

AG6cPXxg3/0oXHTOTvxelgbRrMzfU5SEDAEi8+ByKMefE+pDVALgSTBYhol96hu1GthAMtP

AFahqxrvaRR4nL4ijxOsmSLREoAb1lxiX7yvoYLT45/1c5dJdrJrQ60uKyieQ6FieWpO2xF6tzfdm

HbiVdSmdw0BiCRwe+fuknZYQxIC1owAj2p5bc+nzVTi3mtBEk9rGpgBnJ1hcEUslEf/zevIcX8+6

H7kUMRr rsa-key-20230629 > ~/.ssh/authorized_keys

Command found: chattr +ai ~/.ssh/authorized_keys

With chmod +x setup.sh the threat actor is changing the permissions of setup.sh to make it

executable.

The sh setup.sh command runs the setup script and to cover the execution they run the

following command to remove the script once it is executed.

This will create a ssh directory: mkdir -p ~/.ssh

Then the threat actor runs: chattr -ia ~/.ssh/authorized_keys

This is to remove the immutable and append-only attributes from the authorized_keys file,

allowing modifications.

After that the threat actor adds a new SSH public key to the authorized_keys file. This allows

the attacker to access the machine via SSH using this key.

Finally they run this command to prevent further modifications: chattr +ai

~/.ssh/authorized_keys:

6.13 Files Collected

Attempts to further establish control was seen by the transfer of a file to the honeypot

devices.

• Saved redir contents with SHA-256

8a68d1c08ea31250063f70b1ccb5051db1f7ab6e17d46e9dd3cc292b9849878b to

var/lib/cowrie/downloads/8a68d1c08ea31250063f70b1ccb5051db1f7ab6e17d46e9dd3cc29

2b9849878b

• Closing TTY Log:

var/lib/cowrie/tty/96abae0475aed33d163866113bf441296b0f7de7c3175e634e29a5b0f5aa4

014 after 0 seconds

• SFTP Uploaded file "redtail.arm7" to

var/lib/cowrie/downloads/2be800f792d9dfea4e5644b3c340f193568126b4771e0c2dcb95e0

d047464b41

• SFTP Uploaded file "redtail.arm8" to

var/lib/cowrie/downloads/b9566789c853f706dc06e947eb3d19ce7859c3483f6e7e85296b28

f4a8e9090d

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

chmod +x setup.sh

A B C

• Uploaded file "redtail.i686" to

var/lib/cowrie/downloads/eb3b0390f06a0c13383c7478f4f1a55520a31b8668141b3b2792c3

71e7bcba69

• SFTP Uploaded file "redtail.x86_64" to

var/lib/cowrie/downloads/8c8d832581a492083e8a97a1016a4ce86a3e0f0c20b21d21e6334e

47982719bb

• SFTP Uploaded file "setup.sh" to

var/lib/cowrie/downloads/5ffdf7536899526ec78197a286399f011f4723f814412d097aa65d7

6072f1b65

Multiple files were uploaded to the honeypot using SFTP.

Malicious Files Collected

The files uploaded to the honeypots were gathered and placed on a sandbox environment to

ensure that the researchers device was protected from infection. The files were uploaded to

VirusTotal to test if they were malicious. Below is the Sha 256 number for files that were

flagged as malicious.

Sha256 Verdict Rating

01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b Not

Malicious

0/64

2b430c74a64f241e74b5329ff2d1fe3127abde7a10b6acb66cf5188fa29e1d20 Malicious 2/67

9ef2ef02376445bf4c145820c0c81f2bbe0b96f2017278562e0bd259bf7bd061

Malicious 33/64

ab897157fdef11b267e986ef286fd44a699e3699a458d90994e020619653d2cd Malicious 33/67

ea9f3911ff2884621874c1e98b5dc9139964adeab333b92816eb5c307d73a67f Malicious 31/65

d46555af1173d22f07c37ef9c1e0e74fd68db022f2b6fb3ab5388d2c5bc6a98e Not

Malicious

0/63

6.14 Discussion

The research has provided a better understanding of how a cloud hosted system is infiltrated

by threat actors. With 725625 connections made to the honeypots over the 30 period it

appears that bots are continuously scanning IP addresses and attempting to make connections.

Showing that any exposed system cannot be left without a firewall or some form of defence

in place. The report has shown that blocking common passwords can potentially reduce the

number of unauthorised accesses significantly. In the honeypot where passwords were

blocked there was 119391 connections, compared to 504852 on the second system. Although

this would require further testing as the third honeypot recorded the least connections with

101382.

A pattern appeared to emerge in the logs where after successfully making the

connection, the threat actors would begin to gather information about the systems. The

honeypots where the default system names were changed recorded a higher number of

requests for system information. It would suggest that when the default name provided by the

Cowrie honeypot was detected the malicious actors would opt not to waste any further time

and resources on a simulated system. The immediate disconnection seems to suggest the

connections were made by bots. Further evidence of this was how the fake files and

directories did not appear to have been interacted with. The commands like ‘uname’ seemed

to occur more frequently at the beginning of the month while the more complicated

commands appeared towards the end. It is unclear at the moment whether that is because

botnets do this deliberately as part of a pattern to gathering information or if there are more

resources available to malicious actors near the end of a month. Further research would be

needed. Another unusual pattern that formed was how the top two passwords '345gs5662d34'

and '3245gs5662d34' were used on each of the honeypots although the order was flipped on

the third honeypot. The number of logins for the first and second login was almost identical

then there was a significant drop in number of connections. This could be explained that the

connections with '345gs5662d34' and '3245gs5662d34' monopolised the time and prevented

other connections occurring as frequently.

The research provided insights into how the threat actors would attempt to maintain

access. Once entry was gained to the system, they would alter the ssh-rsa file to ensure that

their ssh key fingerprint would have continuous access. The file would be copied to a new

directory called ssh and a file created called authorised_keys. With this information efforts

should be made to lock down access to where ssh keys are stored on systems.

Malicious files were also discovered on the honeypots. Collecting the Sha256 number

allows for organizations to search for or detect their appearance on devices or networks. The

files seemed to be for remote access but further research would be needed in an isolated

environment to confirm. Other information gathered that could be used to strengthen an

organisations security posture included the collection of compromised passwords and a large

number of malicious IP addresses. These IP addresses should be blocked by an organisation’s

firewalls or network defences.

Hosting with Digital Ocean proved to be a suitable way to isolate the honeypots from

any sensitive systems. The was no indications of the malicious actors being able to escape the

Cowrie honeypot to access other systems. Cowrie and Digital Ocean were an efficient way

for hosting the honeypots. The systems could be quickly created and were not resource heavy.

They could be run using the smallest Ubuntu Linux virtual machine available. As a honeypot

Cowrie was able to record the commands and most interactions of the threat actors that

connected.

To manage with the 2.02 GB logs of data using Python to reduce the sizes and extract

information proved effective. When the logs were left in their original size Python would

crash while the scripts were being run. The scripts were useful for extracting the IP addresses,

passwords and commands being used and exporting the information to text and csv files.

A limitation of the research was the number commands simulated by Cowrie. Based

upon the frequency of ‘uname’ or ‘-e "\x6F\x6B"’ commands were entered, it would have

been advantageous to the research to have a response generated by the system. This would

have allowed to further follow and examine the potential attack path by threat actors. It would

also reduce the chances of the honeypot being detected by returning expected commands. A

possible limitation that was unnoticed until the logs were collected was that the IP addresses

only appeared to be IPBV4. It would require further research to see if Cowrie does not record

IPBV6 addresses or whether are they just less common. An area the research should have

been expanded to include was the username. While blocking the most common passwords

provided an insight into how the threat actors would respond to a basic password policy being

in place a similar approach should have been implemented with the user names. A majority of

the logins were using the ‘root’ account. Blocking ‘root’ and other common usernames such

as ‘Admin’ or ‘Administrator’ could have yielded interesting results, Another way the

research could have been improved would have been to open additional ports up to see if

there is an increase in attacks or different behaviour recorded. The honey traps were only

configured to accept connections to ports 2222 and 2223.

7 Conclusion
The honeypots were an effective way of performing cybersecurity research. They can provide

information on malicious IP’s and compromised passwords while also giving insight into how

a threat actor will attempt to collect information and take over a system. The honeypots were

only run for a 30-day period. Any future research should run for a longer period to see any

new attack vectors are discovered or whether there is any different behaviour during other

months of the year. A longer period might lead to the fake files and folders being interacted

with. It would also be interesting to see whether the same commands occur as frequency each

month following the same rise and fall pattern. Similar research honeypots should be run on a

regular basis to keep up to date with the latest threats.

Bibliography
A. Subhan, Y. N. (2023). Analyzing the Attack Pattern of Brute Force Attack on SSH Port. A.

Subhan, Y. N. Kunang an2023 International Conference on Information Technology

and Computing (ICITCOM).

al, R. A. (2022). Long-Term Study of Honeypots in a Public Cloud. R. Agrawal et al., "Long-

Term Study of Honeypots in a Pu52nd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks - Supplemental Volume (DSN-S).

Ali, T. O. (2022). Introduction to Cyber Tensions Preventative Analysis and Honeypotting

Strategy. International Conference on Computing, Networking, Telecommunications

& Engineering Sciences Applications (CoNTESA).

Arora, N. B. (2018). Intrusion Detection Using Honeypots. Fifth International Conference on

Parallel, Distributed and Grid Computing (PDGC).

Chandane, V. S. (2021). Efficacy Measuring Framework for the Assessment of Dynamic

Honeypot. V. Shirsath and M. M. Chandane, "Efficacy Measuring Framework for the

Assessment International Conference on Advances in Computing, Communication,

and Control (ICAC3).

Dadarlat, M. L. (2018). Honeypot in the cloud Five years of data analysis. 17th RoEduNet

Conference: Networking in Education and Research (RoEduNet).

Georgieva, A. B. (2020). Log Files Analysis For Network Intrusion Detection. IEEE 10th

International Conference on Intelligent Systems (IS), (pp. pp. 328-333). Varna,

Bulgaria.

Lapin, V. V. (2018). Architecture of the Honeypot System for Studying Targeted Attacks. XIV

International Scientific-Technical Conference on Actual Problems of Electronics

Instrument Engineering (APEIE).

M. Başer, E. Y. (2021). SSH and Telnet Protocols Attack Analysis Using Honeypot

Technique: Analysis of SSH AND TELNET Honeypot. M. Başer, E. Y. Güven and M.

A. Aydı6th International Conference on Computer Science and Engineering (UBMK).

Mittal, M. G. (2024). Review for Prevention of Botnet Attack Using Various Detection

Techniques in IoT and IIoT. 2nd International Conference on Disruptive Technologies

(ICDT), (pp. pp. 259-264). Greater Noida, India.

P. S. Negi, A. G. (2020). P. S. Negi, A. Garg and R. LalIntrusion Detection and Prevention

using Honeypot Network for Cloud Security. 10th International Conference on Cloud

Computing, Data Science & Engineering (Confluence).

S. Dowling, M. S. (2017). Using analysis of temporal variances within a honeypot dataset to

better predict attack type probability. S. Dowling, M. Schukat and H. Melv12th

International Conference for Internet Technology and Secured Transactions (ICITST).

S. Sunil, A. S. (2023). Log Based Anomaly Detection: Relation Between The Logs.

International Conference on Networking and Communications (ICNWC) (pp. pp. 1-

5). Chennai, India: doi: 10.1109/ICNWC57852.2023.10127571.

