‘*
\ National

Collegef
Ireland

Configuration Manual

MSc Research Project
Cybersecurity

Mahavir Gala
Student ID: 22208208

School of Computing
National College of Ireland

Supervisor: Joel Aleburu

‘*
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Mahavir Gala
Student ID: 22208208
Programme: Masters in Cybersecurity Year: 2023-2024
Module: MSc Research Project
Supervisor: Joel Aleburu
Submission Due
Date: 12/08/2024
Project Title: Adult content filtering using Machine learning
Word Count: 497 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mahavir Gala

12/08/2024
Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Mahavir Gala
22208208
1 Introduction

The document outlines the steps required to successfully execute the project. The project has
been developed on an online cloud platform for executing “python” language codes, with the
help of necessary python packages and libraries.

2 Experimental Setup

2.1 System Configuration

Hardware Used in this Version Purpose
Experiment

Acer Aspire A315-41 OS Name: Microsoft Workstation
Processor: AMDG64 Family | Windows 10 Home Single

23 Model 17 Stepping 0 Language

AuthenticAMD ~2000 Mhz | OS Version: 10.0.19045 N/A

Total Physical Memory: Build 19045

3,485 MB

Available Physical

Memory: 240 MB

Virtual Memory: Max Size:
10,831 MB

Virtual Memory:
Available: 4,022 MB

2.2 Software Used in this Experiment

Google colab has been used due to its easy accessibility, pre-installed packages and the ease
of running python codes. Since Machine learning algorithms have been developed, a number
of libraries were imported such as:
Packages
e Random (Built-in)
e Shutil (Built-in)
e Numpy 1.26.4
e ¢v24.10.0
tensorflow 2.17.0
sklearn 1.3.2
e Keras2.12.0

2.2.1 The developer needs a Google account and a browser to access the online
“Jupyter” notebook environment. Running the code requires opening the
notebook and clicking on the “run” or “play” button associated with each cells.

Notebook settings

Runtime type

Python 3 v

Hardware accelerator @
@ cru () T4aGPU) atoocpu () wacru (O TPUV2

Want access to premium GPUs? Purchase additional compute units

[[] Automatically run the first cell or section on any execution

E] Omit code cell output when saving this notebook

Cancel Save

2.3 Dataset

The dataset contained 2 folders, one containing normal images and the other having “adult”
or “conspicuous’ images. More than 7000 images were collected in the dataset.

2.3.1 Steps to upload dataset into Google Collab

Uploading the image folder file to Google Drive
2) Mount Google Drive in Google Colab

[1 drive.mount('/content/drive')
5% Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

[1 os.chdir('/content/drive/My Drive/")

with zipfile.ZipFile('image dataset.zip', 'r') as zip_ref:
zip_ref.extractall('image_dataset')

3) Extracting the images

[4] def extract_images(src_dir, dest_dir, num_images):
if not os.path.exists(dest_dir):
os.makedirs(dest_dir)

files = os.listdir(src_dir)
for file in files[:num_images]:
shutil.copy(os.path.join(src_dir, file), dest_dir)

Define directories
train_dir = '/content/drive/MyDrive/image_dataset/image_dataset/image dataset/train'
test_dir = '/content/drive/MyDrive/image_dataset/image_dataset/image dataset/train'

[5] # Create new directories for the extracted images

new_train_dir = 'extracted_images/train'
new_val_dir = 'extracted_images/val'
new_test_dir = 'extracted_images/test'

[6] # Extract images
extract_images(os.path.join
extract_images(os.path.join

train_dir, , os.path.join(new_train_dir, '1'), 1500)

1')
train_dir, '2'), os.path.join(new_train_dir, '2'), 1500)

(

(
extract_images(os.path.join(test_dir, '1'), os.path.join(new_val_dir, '1'), 500)
extract_images(os.path.join(test_dir, '2'), os.path.join(new_val_dir, '2'), 500)
extract_images(os.path.join(test_dir, '1'), os.path.join(new_test_dir, '1'), 250)
extract_images(os.path.join(test_dir, '2'), os.path.join(new_test_dir, '2'), 250)

3 Implementation Steps

3.1 Importing necessary libraries

D import random
import shutil
import cv2
import numpy as np
import tensorflow as tf

from sklearn.model_selection import train_test_split
import os

from google.colab import drive

import zipfile

from tensorflow.keras.applications import VGG16
from

ten :1s import Model
from keras.optimizers import Adam
from

censorflo qs:lqygps import Dense, Flatten, Dropout

import matplotlib.pyplot as plt

from sklearn.metrics import classification_report, confusion_matrix
import numpy as np

3.2 Data Preparation
The experiment involves preparing a dataset of images by extracting and organizing them
into training, validation, and test sets. This is done to ensure the model has sufficient and

well-organized data to learn from and evaluate its performance.

3.3 Data Augmentation

Data augmentation techniques (e.g., shear, zoom, and horizontal flip) are applied to the
training data to improve the model's robustness and generalization capabilities by artificially
increasing the diversity of the training data.

[] # Data Augmentation for Training
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zZoom_range=0.2,
horizontal_ flip=True

3.4 Model Building

A Convolutional Neural Network (CNN) is built using the VGG16 architecture, which is a
well-established pre-trained model. The VGG16 model is used as a base for feature
extraction, with additional custom layers added to adapt it for the specific classification task.

D # Load the VGG16 model
base_model = VGG16(weights="imagenet', include_top=False, input_shape=(224, 224, 3))

3% Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vggl6/vgglé_weights_tf_dim_ordering_tf_kernels_notop.hS

€ - 800

58889256/58889256 ————————————————— 0s 0Qus/step

3.5 Model Training

The model is trained on the prepared training data and evaluated on the validation set. The
goal is to fine-tune the model to accurately classify images into the two categories while
avoiding overfitting.

3.6 Model Evaluation

The model's performance is assessed using the test set. Metrics such as accuracy, loss,
classification report, and confusion matrix are calculated to evaluate how well the model
performs in classifying images.

3% Epoch 1/5

94/94 ———————————— 2427s 26s/step - accuracy: ©.7099 - loss: 0.5453 - val_accuracy: ©.8206 - val_loss: 0.3863
Epoch 2/5
94/94 —————————————— 24165 25s/step - accuracy: ©.8949 - loss: 0.2586 - val_accuracy: ©.9729 - val_loss: 0.1106
Epoch 3/5
94/94 —————————————— 23595 25s5/step - accuracy: ©.9524 - loss: 0.1443 - val_accuracy: ©.9800 - val_loss: 0.08729
Epoch 4/5
94/94 ———————————————— 2354s 25s/step - accuracy: ©.9726 - loss: ©.8983 - val_accuracy: ©.9870 - val_loss: 0.0568
Epoch 5/5
94/94 ——————————————— 2348s 25s/step - accuracy: ©.9690 - loss: ©.8897 - val_accuracy: ©.9980 - val_loss: 0.0384

Evaluate the model
test_loss, test_accuracy = model.evaluate(test_generator)

print(f'Test Accuracy: {test_accuracy}")
print(f'Test Loss: {test_loss}')

()

16/16 =—————————————— 286s 18s/step - accuracy: ©.9905 - loss: ©.0454
Test Accuracy: ©.9879759550094604
Test Loss: ©.04213355481624603

3.7 Visualization
Accuracy and loss curves are plotted to visualize the training process and to understand how
the model's performance evolves over epochs.

Accuracy

0.975 A

0.950

0.925

0.900 -

0.875 A

0.850

0.825 A

0.800

—— Training Accuracy
~—— Validation Accuracy

0.0

0.5

1.0

15

2.0

T T

25 30 35 40

0.40 4

0.35

0.30

0.25 A

0.20

0.15 4

0.10

0.05 4

—— Training Loss
——— Validation Loss

0.0

0.5

1.0

15

2.0

25 30 35 40

