ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
MSc In Cybersecurity

Mayur Gaikwad
Student 1D: x22183655

School of Computing
National College of Ireland

Supervisor: Prof. Joel Aleburu

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name:
Mayur Dattajirao Gaikwad
Student ID: X22183655
Programme: MSc in Cybersecurity Year: 2023-2024
Module: MSc Research Project/Internship
Lecturer: Prof. Joel Aleburu
Submission Due
Date: 12/08/2024
Project Title: Enhanced IoT Image Encryption: A Hybrid Approach Using Duffing

and Henon Chaotic Systems
Word Count:1329Page Count:20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Mayur D. Gaikwad

Date: 12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project a
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | ©
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Mayur Gaikwad
X22183655

1 Overview

The project titled “The image encryption chaotic mapping” involves using of the chaotic
mapping to encrypt images. This blended learning method comprises of ideas from the three
chaotic systems in the ipynb file (google colab).

1. tinker-henon: Combines both the Tinker and Henon chaotic maps

2. tinker-duffing: Combines both the Duffing and Tinker chaotic maps

3. duffing-henon: Combines both the Duffing and Henon chaotic maps.

2 Hardware Configuration

Operating system: Windows >=7
Processor: Intel >=i2

System Compatibility: 64-bit
Hard Disk: 500 GB

RAM: >=4 GB

m o o & »

3 Software Configuration

3.1 Python 3.10.12

Python is classified as a general-purpose language which has fairly easy writing procedures
and also aims at minimizing the amount of writing required for the code; hence Python is
suitable for first-time learners as well as high-level users. Regarding the third benefit, it is
devoted to the simple syntax of the language, which allows the programmer to introduce
some notion with the help of fewer lines of code compared to other programming languages
besides increasing productivity, it reduces the risk of the inclusion of mistakes. Python can
therefore be regarded as an interpreted, high level language which supports procedural, object
oriented/functional paradigms and is distinguished by an ability to encompass a vast quantity
of packages/libraries for web development, data/machine learning/Al and sundry others.
They have made Python to be adopted in severally areas including software development and
scientific calculations (Python, 2019).

Python

& python’ . I

About Downloads Documentation Community Success Stories News Events

Python 3.10.12

Release Date: June 6, 2023

This is a security release of Python 3.10

Note: The release you're looking at is Python 3.10.12, a security bugfix release for the legacy 3.10 series. Python 3.11 is now the latest feature release series of Python 3. Get the latest

release of 3.11.x here.

Security content in this release

= gh-103142: The version of OpenSSL used in Windows and Mac installers has been upgraded to 1.1.1u to address CVE-2023-2650, CVE-2023-0465, CVE-2023-0466, CVE-2023-0464, as
well as CVE-2023-0286, CVE-2022-4303, and CVE-2022-4303 fixed previously in 1.1.1t (gh-101727).

Figure 3.1: Python Code

3.2 Google Colab

Google Colab is a free product of Google through which writing and running code in Python
is possible in notebook form. It integrates with Google Drive for files’ handling and it
supports multiple machine learning frameworks, including TensorFlow and PyTorch. Colab
also has the provision of GPU and TPU boost which makes it quite relevant for data scientist,
researcher, and developer especially for machine learning and data analysis. It also enjoys
equal patronage among the novices and the Experts since it can be used and accessed easily.

Welcome To Colab
Q) e Share €3 o
File Edit View Insert Runtime Tools Help
o= + Code + Text Copy to Drive Connect « + Gemini ~
:= Table of contents B X o
"
O\ Getting started

Welcome to Colab!

{x} Data science
Machine learnin P
or 9 Explore the Gemini API
More Resources L . L . L ;
[The Gemini API gives you access to Gemini models created by Google DeepMind. Gemini models are built from the ground up to be
Featured examples multimodal, so you can reason seamlessly across text, images, code, and audio.
—— How to get started
| + Section
— 1. Go to Google Al Studio and log in with your Google account.
2. Create an APl key.
3. Use a quickstart for Python, or call the REST API using curl.
Explore use cases
» Create a marketing campaign
<> » Analyze audio recordings
» Use System instructions in chat
=
To learn more, check out the Gemini cookbook or visit the Gemini APl documentation.

<

Figure 3.2: Google Colab

4 Libraries Overview

cv2 (OpenCV): An image and video library used in computer visions which are needed in
image and video operations. Some of the functions from cv2 that are used to sharpen images,
detect objects, and several other conversions.

Math: Has basic mathematical functions like trigonometric, logarithmic, constant functions
and many others. It is employed in the actual arithmetic manipulation in the scripts that you
are developing for your software.

Time: It allows for time-related operations that may include the setting as to how much time
a particular code will take or even incorporating time in your code.

random: Used in activities such as; production of random numbers or any random work that
you may think of. This type is usually used when the model is to be tested by feeding it with
many sets of data or when some arbitrary data is required.

numpy (np): Of Python, the numerical operations library that can be considered as an
essential element of it. Several functions for array manipulation are provided including
matrices, and an almost limitless host of mathematical preliminary operations to optimize
control of these structures.

pandas (pd): It can be defined as a highly effective data post-processing and analysis
instrument. Some of them include Data Frames that assist in working and operating on
formatted data easily.

copy: It provides the services to create new objects with or without the operations on the
objects’ contents. Used when it is required to lock mutable objects which should not be
altered.

seaborn (sns): An aggressive statistical data visualization library that is based upon
matplotlib. They are used for getting a lower level of interface for drawing good looking and
informative statistical graphics.

PIL (Python Imaging Library): Originally developed as Pillow, it is used for handling
various kinds of images and the files handling and storing.

matplotlib. pyplot (plt): A plotting library embedded in the vehicle of creating static,
interactive and animated graphics in Python. This provides MATLAB like feel to create and
generate plots and charts.

google. colab. patches: Comprises of a function called cv2_imshow which relates
exclusively to Google colab and will display Open CV image within the colab notebooks.
(colab.research.google.com, n.d.)

5 Usage

1. Set Up Notebooks: Click on the notebooks in order to open them in Jupyter Notebook. It
is better to perform simple variations of one type before switching to a combination of
another type, such as tinker-henon followed by tinker-duffing and duffing-henon.

2. Run the Notebooks: Do all the cells of one notebook one by one. That all cells must be
executed to keep all bounded input data in order to continue the computations of the program.
3. Encrypt an Image:

- Load an image using the described methods.

- These are the steps to encrypt the image using the chaotic mappings:

4. Save the Encrypted Image:
- The result to be produced will be advanced in the defined folder. See to it that this path is
correctly set in the duffing-henon notebook.

6 Project Implementation

6.1 Henon and Duffing

6.1.1 Importing Libraries

[] 1 from google.colab import drive
2 drive.mount(’/content/drive"}

S~ Mounted at /content/drive

[]

#Import basic libraries

import cwv2

import math

import time

import random

import numpy as np

import pandas as pd

from copy import copy

import seaborn as sns

from PIL import Image

import seaborn as sns

import matplotlib.pyplot as plt
3 from google.colab.patches import cv2_imshow

oW N

0]

W oo~

[
[T Ny

6.1.2 Image Loading

(1]

©

#load the test image
inputpath = "/content/drive/MyDrive/image encryption chaotic_mapping new/test images/pepper.p
input_image = cv2.imread(inputpath)

height = int(input_image.shape[0]*100/100)
width = int(input_image.shape[1]*100/100)

dsize = (width,height)

new_input_image = cv2.resize(input_image,dsize)
cv2_imshow(new_input_image)
print(height,width)

red = new_input_image[:,:,2]
green = new_input_image[:,:,1]
blue = new_input_image[:,:,0]

384 512

6.2 Histogram of original image

>

#Plot the histograms of the original image
#with pixel values on X axis

red_pixel = []
for i in range(@,height):
for j in range(8,width):
red_pixel.append(red[i][j])

blue_pixel = []
for i in range(@,height):
for j in range(8,width):
blue pixel.append(blue[i][j])

green_pixel = []
for i in range(@,height):
for j in range(8,width):
green_pixel.append(green[i][j])

plt.xlabel('Pixel values')
plt.ylabel('Number of pixels®)
plt.hist(red_pixel,bins=256, color = "red"”, 1lw=@)

plt.savefig('baboon_red_hist_original.eps', format="eps')

plt.show()
print{"\n")

plt.xlabel('Pixel wvalues')
plt.ylabel('Mumber of pixels')

plt.hist(green_pixel,bins=256, color = "green”, lw=8)
plt.savefig('baboon_green_hist_original.eps’, format="eps')

plt.show()
print("\n™)

plt.xlabel('Pixel values')
plt.ylabel('Number of pixels®)
plt.hist(blue_pixel,bins=256, color = "blue", lw=8)

plt.savefig('baboon_blue_hist_original.eps’, format='eps')

plt.show()

L00a

2000

Murnber of guact
-]
1

2000 4
1050 1
(-
i] 50 108 150 200 50
Bumd waluse

Number of pixels

7000 A

6000

5000 A

4000

3000 A

2000

1000 1

100 150
Pixel values

200

250

Number of pixels

2000

1000

100

150
Pixel values

6.3 Generating the chaotic array -

Generating the chaotic array with output.

#Generate the chaotic array

start_key = time.time()

blue = new_input_inage|:,:,0:
h,w = red.shape
dimension = h*u

1

FERTAUTRRSURRVIRESUTRNNN Generate chaotlc array FRENRFEBRRRINTEERRRENNEAAREE

-+ Duffing

x_duffs(a.1]

y_duff=[e.3]

for 1 in range(®,dimension-1):
next_x = y_duff[i]
next_y = 2.75%y_duff[i]
#next_x = next_x*100
#next_y = next_y*168
x_duff . append(next_x)
y_QuFF. append(next_y)

- 0.2°x_duff[i]

3)

- pow(y_duff[i],

= Henon

x_henana[8.1]

henan=[e.3]

for i in range(8,dimension
next_x = 1 - 1.4*x_henon[
next_y = 8.3%x_henon[i]
*_henaon. append (next_x)
y_henon. append(next_y)

)
1*x_henon[i] + y_henon[4]

e
td_x_conbination -
td_y_combination =
iin

® Combination of Duffing and Henon map

8]

ange(e, dimension):

6.4 Encryption Begins —

Chaotic Scrambling

WD rwrnnnnprnansrasanaas Encryption begins

@ E
key generation tine of the progran 15 8.7193195819854736 L
WARNING:matplot]ib. backends. backend_ps:The Postscript backend does not support transparency; partislly transparent

200

150

=100

FRERRERERARE SRR AR AR#RE Chaotic Scarambling begins

#Function for chaotic scrambling
def chaotic_scrambling(new_input_image):
start_chaotic_scrambling - time.time()

#RED CHANNEL
countl e
for 1 in range(8,h):
for § in rangs(@,w):
red[1][j] = red[1][3]*xor_array[count1]
countl+=1

#GREEN CHANNEL
count3 = @
for 1 in range(e,h):
for 3 in range(8,w):
green[1][j] - green[1][j]"xor_array[count3]
count3+=1

#BLUE CHANNEL
counts = @
for i in range(@,h):
for 3 in range(8,w):
blue[1][3] - blue[1][j]"xor_array[count5]
countss=1

chaotic_xor_image = cv2.merge((blue,green,red)
print("Image after xor operatien”)
cv2_imshow(chaotic_xor_image)
cv2.imerite('b.png’, chaotic_xor_image)

im = Image.open('b.png’)
im.save('b.eps’, lossless

True)

end_chaotic_scrambling = time.time()

print(f"Encryption time of the program is {end_chaotic_scrambling - start_chaotic_scrambling}")

chaotic_swapping(red,green,blue,x,y)

Chaotic scrambling

ends #EHE TR

chaotic swapping —

chaotic swaping begins #ésssERHER N
#function for chaotic swaping
def chaotic_swapping(red,green,blue,x,y):

start_chaotic_swapping = time.time()

count = @

for i in range(8,h):

for j in range(@,w):

temp = red[i][]]
red[i][j] = red[x[count]][y[count]]
red[x[count]][y[count]] = temp
count+=1

count = @
for i in range(8,h):
for j in range(@,w):
temp = green[i][]]
green[i][j] = green[x[count]][y[count]]
green[x[count]][y[count]] = temp
count+=1

count = @
for i in range(8,h):
for j in range(@,w):
temp = blue[i][j]
blue[i][j] = blue[x[count]][y[count]]
blue[x[count]][y[count]] = temp
count+=1

image_to_zigzag = cv2.merge((blue,green,red))
print("\nEncryption using chaotic map:")
cv2_imshow(image to_zigzag)

cv2. imwrite('c.png’, image to_zigzag)

im = Image.open('c.png’)

im.save(c.eps’, lossless = True)

end_chaotic_swapping = time.time()
print(f"Encryption time of the program is {end_chaotic_swapping - start_chaotic_swapping}™)
zigzag scrambling(image to_zigzag)

Chaotic swapping ends ##HEHERRHEREHEHERHHERH

Zigzag Scrambling -

© zigzag scrambling begins

Functions for zigzag scrambling
def zigzag scrambling(image_to_zigzag):
start_zigzag = time.time()
value = h+w-1
overall count = @
solution_array = [[],[].,[]]

#for images whose height = width

if h==uw:
while overall count!=3:
diag = 8
i=6
j=0
flag = @

if overall_count ==
channel = copy(red)

elif overall count == 1:
channel = copy(green)

elif overall count == 2:
channel = copy(blue)

solution_array[overall_count].append{channel[i][j])
while diag!=value-1:

if i==6 and jl=w-1:
J+=1
solution_array[overall_count].append(channel[i][j])
if i==0 and j==w-1:
while il=h-1:
is=1
j-=1
solution_array[overall_count].append{channel[i][]j])
flag = 1
while j!=@ and flag ==8:
is=1
j-=1
solution_array[overall_count].append(channel[i][j])
diag+=1

Then, Zigzag Matrix Formation-

igzag matrix formation
encrypted_red = []
encrypted_green = []
encrypted_blue = []
for i in range(@,h):
row = []
for j in range(@,w):
row.append(8)
encrypted_red. append(row)
encrypted_green.append(row)
encrypted_blue.append(row)

encrypted_red = np.array(encrypted red)
encrypted_green = np.array(encrypted green)
encrypted_blue = np.array(encrypted_blue)

c=8a
while c!=3:
if c== @:
red_count = @
for i in range(@,h):
or j in range(@,w):
encrypted_red[i][j] = solution_array[c][red_count]
red_count+=1

elif c
green_count = @
for 1 in range(®@,h):
or j in range(@,w):
encrypted green[i][j] = solution array[c][green_count]
green_count+=1

elif c
blue_count = @
for 1 in range(@,h):

or j in range(@,w):

encrypted_blue[i][j] = solution_array[c][blue_count]
blue_count+=1

Encryption ends

(4

Now, Decryption process begins —
Here start reverse process like start from zigzag decryption to original image
A) Zigzag descrambling —

FEFHEHHHAE SRR R HEEEEES Decryption begins HEs#RRiniEEEHEEERTEE
#function for zigzag descrambling
def zigzag descrambling(combined scrambling):

start_zigrzag dec = time.time()
received_blue,received_green,received_red = cv2.split(combined_scrambling)

red_traversal_array = []
for 1 in range(B,h):
for j in range(@,w):
red_traversal_array.append(received red[i][j])

green_traversal_array = []
for i in range(@,h):
for j in range(@,w):
green_traversal_array.append(received_green[i][j])

blue_traversal_array = []
for 1 in range(®,h):
for j in range(@,w):
blue_traversal_array.append(received blue[i][j])

matrix = []
for 1 in range(@,h):
row=[|
for j in range(@,w):
row.append(@)
matrix.append(row)

zero_array = np.array(matrix)
overall count = @

value = h+w-1

Then, Zigzag Matrix Formation-

igzag matrix formation
encrypted_red = []
encrypted_green =
encrypted blue = [
for i in range(@,h):
row = []
for j in range(@,w):
row.append(@)
encrypted_red.append(row)
encrypted_green.append(rouw)
encrypted_blue.append(row)

[1
]

encrypted_red = np.array(encrypted_red)
encrypted_green = np.array(encrypted_green)
encrypted_blue = np.array(encrypted_blue)

=28
while c!=3:
if c== @:
red count = @
for i in range(®,h):
for j in range(@,w):
encrypted_red[i][j] = solution_array[c][red_count]
red_count+=1

elif c==1:
green_count = @
for i in range(®,h):
for j in range(@,w):
encrypted_green[i][j] = solution_array[c][green_count]
green_count+=1

elif c==2:
blue_count = @
for i in range(®,h):
for j in range(@,w):
encrypted_blue[i][j] = solution_array[c][blue_count]
blue_count+=1
c+=1

Encryption ends

Encrypted Image -

Now, Decryption process begins —
Here start reverse process like start from zigzag decryption to original image
A) Zigzag descrambling -

HEHHHERREREHERRR A Decryption begins #HEHHRRHREHEREREHEE
#function for zigzag descrambling
def zigzag descrambling(combined_scrambling):

start_zigzag dec = time.time()
received_blue,received_green,received_red = cv2.split(combined_scrambling)

red_traversal_array = []
for 1 in range(®,h):
for j in range(@,w):
red_traversal_array.append(received red[i][j])

green_traversal_array = []
for 1 in range(®,h):
for j in range(@,w):

green_traversal_array.append(received_green[i][j])

blue_traversal_array = []
for i in range(B,h):
for j in range(@,w):

blue_traversal_array.append(received blue[i][j])

matrix = []
for i in range(@,h):
row=[|
for j in range(@,w):
row.append(8)
matrix.append(row)

Zero_array = np.array(matrix)

overall count = @
value = h+w-1

10

After zigzag descrambling image —

Decrypted image after inverse

B) Chaotic deswapping —

W#H#HMW#W#KM chactic deswapping begins st HHT R AT T R T
#function for chaotic deswapping
def chaotic_deswapping(decrypted_zigzag_ channel)

blue,green,red = cv2.split(decrypted_zigzag channel)

start_chaotic_deswapping = time.time()

#red channel

count = dimension-1

for i in range(h-1,-1,-1):

for j in range(w-1,-1,-1):

temp = red[i][j]
red[i][j] = red[x[count]][y[count]]
red[x[count]][y[count]] = temp
count-=1

#green channel
count = dimension-1
for i in range(h-1,-1,-1):
for j in range(w-1,-1,-1):
temp = green[i][j]
green[i][j] = green[x[count]][y[count]]
green[x[count]][y[count]] = temp
count-=1
#blue channel
count = dimension-1
for i in range(h-1,-1,-1):
for j in range(w-1,-1,-1):
temp = blue[i][]]
blue[i][j] = blue[x[count]][y[count]]
blue[x[count]][y[count]] = temp
count-=1
chaotic_xor_image 2 = cv2.merge((blue,green,red))
print("\nImage after chaotic deswapping.")
cv2_imshow(chaotic_xor_image 2)

cv2.imwrite('f.png", chaotic_xor_image_2)

im = Image.copen('f.png')

im.save('f.eps’', lossless = True)

end_chaotic_deswapping = time.time()

print(f"Deccryption time of the program is {end_chactic_deswapping - start_chaotic_deswapping}")
chaotic_descrambling(red,green,blue,xor_array,x,y)

chantic deswanning ends

11

After deswapping image —

C) Chaotic Descrambling —

12

Pt chaotic descrambling begins #HHEHERHERHHHEHERERREHRRHRRRHER R AR
#function for chaotic descrambling
def chaotic_descrambling(red,green,blue,xor_array,x,y):
start_chaotic_descrambling = time.time()
h,w = red.shape
dimension = h*u
#red channel
count2 = dimension-1
for i in range(h-1,-1,-1):
for j in range(w-1,-1,-1):
red[i][j] = red[i][j]*xor_array[count2]
count2-=1
#green channel
countd4 = dimension-1
for i in range(h-1,-1,-1):
for j in range(w-1,-1,-1):
green[i][j] = green[i][j]"xor_array[count4]
count4-=1
#blue channel
counté = dimension-1
for i in range(h-1,-1,-1):
for j in range(w-1,-1,-1):
blue[i][j] = blue[i][j]"xor_array[count6]
count6-=1
HEHHEHHRHRAERERRHRREARSE chaotic descrambling end #HRHHEEHRRHARNHEHEHERREHERHHREHERRERRHHRHHRRRREHE

DECRYPTION ENDS
received image = cv2.merge((blue,green,red))
end_chaotic_descrambling = time.time()
cv2.imwrite('g.png’, received_image)

im = Image.open('g.png’)

im.save('g.eps', lossless = True)
#final_blue,final_green,final_red = cv2.split(received_image)
#print(“\nDecrypted image (After inverse zigzag and chaotic map):")
cv2_imshow(received_image)

print(f"Deccryption time of the program is {end_chaotic_descrambling - start_chaotic_descrambling}")

#print("\nDecryption time:",time.perf_counter())
#print(final_red)

#print(”\n",final_green)

#print("\n",final blue)

After Chaotic Descrambling Image

Deccryption time of the program is 1.718552827835@83
Here get the original image.

Analysis of Proposed Scheme —
13

Here conducting the various tests to compare with original image.
A) NPCR and UACI test-

Result —

A wniinsninanasais Analysis of proposed scheme

#function for conducting the NCPR and UACI test

def ncpr_uaci(combined_scrambling):
encrypted_red = combined_scrambling[:,:,2]
encrypted_green = combined_scrambling[:,:,1]
encrypted_blue = combined_scrambling[:,:,8]

lena = cv2.imread(inputpath)
changed_red = lena[:,:,2]
changed_green = lena[:,:,1]
changed_blue = lena[:,:,@]

changed_red[12][98] = 123
changed_green[12][28] = 56
changed_blue[12][98] = 224

h,w =encrypted_red.shape

D_red = np.random.randint(1,size=(h,w))
D_green = np.random.randint(1,size=(h,w))
D_blue = np.random.randint(1,size=(h,w))

print(h,w)

for i in range(®,h):
for j in range(®,w):
if encrypted_red[i][j] == changed_red[i][]j]:
D_red[i][j] = @
else:
D_red[i][]j] = 1
for i in range(®,h):
for j in range(®e,w):
if encrypted_green[i][j] == changed_green[i][]j]:
D_green[i][j] = @
else:
D_green[i][j] = 1

for i in range(e,h):
for j in range(®,w):
if encrypted_blue[i][j] == changed_blue[i][]j]:
D_blue[i][j] = @
else:
D_blue[i][j] =1
nper_red = np.sum(D_red)
npcr_green = np.sum(D_green)
npcr_blue = np.sum(D_blue)

nper_red = (nper_red/(h*w))*100
npcr_green = (npcr_green/(h*w))*168
npcr_blue = (npcr_blue/(h*w))*18@

vaci red = @

uaci_green = @

uaci_blue = @

for i in range(@,h):

for j in range(8,w):

uaci red += abs(encrypted_red[i][j] - changed_red[i][j]}
uaci_green += abs(encrypted_green[i][j] - changed_green[i][]])
uvaci_blue += abs(encrypted_blue[i][j] - changed_blue[i][]])

uaci_red = (uaci_red/(h*w*255))*160
uaci_green = (uaci_green/(h*w*255))*1680
uaci_blue = (uaci_blue/(h*w*255))*18@

print({"NPCR values:")

print("Red channel: ",npcr_red)
print("Green channel: ",npcr_green)
print("Blue channel: ",npcr_blue)

print("\n")

print("UACI values:")

print("Red channel: ",uaci_red)
print("Green channel: ",uaci_green)
print("Blue channel: ",uaci_blue)
print("\n")

NPCR values:

Red channel: ©99.6@836637369791
Green channel: ©99.68276285897291
Blue channel: 99_593893953833334

UACT values:

Red channel: 31.983852012484632
Green channel: 34.67537875865522
Blue channel: 34.97897377412634

B) Histogram analysis —

14

HHHREHRRARHERRREEASE Histogram analysis
red_pixel = []
for i in range(®,height):
for j in range(@,width):
red_pixel.append(encrypted red[i][j])

blue_pixel = []
for i in range(@,height):
for j in range(@,width):
blue_pixel.append(encrypted_blue[i][]j])

green_pixel = []
for i in range(®@,height):
for j in range(@,width):
green_pixel.append(encrypted_green[i][j])

plt.xlabel('Pixel values')

plt.ylabel('Number of pixels®)
plt.hist(red_pixel,bins=256, color = "red”, lw=8)
plt.savefig(baboon_red_hist_encrypted.eps’, format="eps")
plt.show()

print(™\n")

plt.xlabel('Pixel values')

plt.ylabel('Number of pixels®)
plt.hist(green_pixel,bins=256, color = “"green”, lw=8)
plt.savefig('baboon_green_hist_encrypted.eps', format="eps')
plt.show()

print("\n")

plt.xlabel('Pixel values')

plt.ylabel(’Number of pixels®)
plt.hist(blue_pixel,bins=256, color = "blue”, lu=0)
plt.savefig(baboon_blue_hist_encrypted.eps’, format="eps’)
plt.show()

print("\n")

Result —

0

800 1

600

400

Number of pixels

200 A

0 50 100 150 200 250
Pixel values

800 4

600

400

Number of pixels

200 4

0 50 100 150 200 250
Pixel values

C) MSE analysis —

Number of pixels

800 4

600 1

400 4

2007

100 150
Pixel values

16

#EHEHEH T MSE analysis #esbaati R
difference_squared_red = []
for 1 in range(@,h)
for j in range(@,w):
number = (red[i][j] - encrypted_red[i][j])**2
difference_squared_red.append(number)
difference_sum_red = sum(difference_squared_red)

difference_squared_green = []
for 1 in range(®,h)
for j in range(8,w):
number = (green[i][j] - encrypted_green[i][j])**2
difference_squared_green.append(number)
difference_sum_green = sum({difference_squared_green)

difference_squared_blue = []
for 1 in range(@,h)
for j in range(@,w):
number = (blue[i][j] - encrypted_blue[i][j])**2
difference_squared_blue.append(number)
difference_sum_blue = sum(difference_squared_blue)

mse_red = difference_sum_red/(h*w)
mse_green = difference_sum_green/(h*w)
mse_blue = difference_sum_blue/(h*w)

psnr_red = 18*math.logl@((255**2)/mse_red)
psnr_green = 1@*math.logle((255**2)/mse_green)
psnr_blue = 1@*math.logle((255**2)/mse_blue)

print(“"Mean squared error red channel: ",mse_red)
print(“"Mean squared error green channel: ",mse_green)
print(“"Mean squared error blue channel: ",mse_blue)

print("PSNR red channel: ",psnr_red)
print("PSNR green channel: ",psnr_green)
print("PSNR blue channel: ",psnr_blue)

Result —

Mean squared error red channel: 18981.135864257812
Mean squared error green channel: 18%25.1848635768263
Mean squared error blue channel: 18913.51362562138
PSHR red channel: 7.756886884438363

PSHNR gresn channel: 7.746547464727636

PSHNR blus channel: 7.758993485815824

Encryption time of the program is B.8821888493927

224 512

Similar to above encryption and decryption processes are applied on other Algorithms -
v Tinker bell Algorithm + Duffing Algorithm

v’ Tinker bell Algorithm + Henon Algorithm

Found the Best resultant combination of algorithm which is
v Duffing Algorithm + Henon Algorithm

Which is explained above manual configuration.

17

References

1. Python (2019). Python For Beginners. [online] Python.org. Available at:
https://www.python.org/about/gettingstarted/.

2. colab.research.google.com. (n.d.). Google Colaboratory. [online] Available at:
https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb.

18

