

Enhanced Malware Detection with Supervised

Algorithms: Identifying Malicious Links

with Browser Extensions

MSc Research Project

Cyber Security

David Frank Frank

Student ID: x21130388

School of Computing

National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

DAVID FRANK FRANK
………

Student ID:

X21130388
………..……

Programme:

CYBERSECURITY

………………………………………………………………

Year:

…2023/2024…

Module:

MSC RESEARCH PRACTICUM/INTERNSHIP

…….………

Supervisor:

IMRAN KHAN
…………………………………………………………………………………….………

Submission Due
Date:

12/08/2024
…….………

Project Title:

Enhanced Malware Detection with Supervised Algorithms: Identifying
Malicious Links with Browser Extensions
……………………………………………………………………………………………………….………

Word Count:

3296
………………………………………
Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

DAVID FRANK

……

Date:

06/08/2024

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to

keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

1 Introduction Section
This Configuration Manual outlines the procedures and methods used in the

creation of this project, which is an malware browser extension. It explains

every configuration and piece of software required to duplicate the project's

experimental setup.

2 System Specification

The project system specification are as follows:

 Operating System: Windows 10

 Processor: Intel Core i5 7 Gen

 Hard Drive: 500GB

 RAM: 8GB

3 Software Tools

Some of the software tools used to implement this project are:

 Python (Sckit-Learn, Pandas,Tensorflow, Flask)

 Google Colab https://colab.google/

 Chrome Browser https://www.google.com/intl/en_ie/chrome/

 HTML

 JavaScript

 Vs code https://code.visualstudio.com/

3.1 Software Installation

This is the process of installing the software used.

 Download and Installation of Python 3.11.4. The download link is

https://www.python.org/downloads/

These Codes are hosted here:

The Chrome Malware Detector Extension code has been deployed on GitHub and this is the repository

https://github.com/davidfrank96/Broswer_Extension_Malware_Dectection

This is the Trained Machine learning model using SVM, Random Tree, XBoost, DNN and DTC

https://colab.research.google.com/drive/14WXUdpQo2ImwcKvuHScTt515jWZFGdhk?usp=sharing

https://colab.google/
https://www.google.com/intl/en_ie/chrome/
https://code.visualstudio.com/
https://www.python.org/downloads/
https://github.com/davidfrank96/Broswer_Extension_Malware_Dectection
https://colab.research.google.com/drive/14WXUdpQo2ImwcKvuHScTt515jWZFGdhk?usp=sharing

1

Fig1: Python download

Fig2: Python Installation

The image above shows how to install python but the reason I’m having the

options above is because I have python installed on my laptop.

2

4 Implementation

The libraries from Python used in implementing this project:

 Sckit-Learn

 Keras

 Pandas

 Matplotlib

 Flask

Fig3: Mounting local file in Google Colab

Fig4: Libraries Import

3

1. Data preparation

This chapter explains the procedures for preparing data so that it can be

used for model training and testing among these steps are:

 Normalization/Data Scaling

 Data cleaning

 Data splitting

Fig5: Data Load

The pandas library is used to read the uploaded file into a dataframe object

named dataset_full.cvs. The head() method is used to display the first few

rows of the dataset.

Fig6: Data preparation

The info() method provides information about the dataframe, including the

number of rows and columns, data-types and memory usage. The

value_counts() method is used to count the occurences of each unique

4

value in the “phishing” column. The describe() method provides statistics

of the numerica columns in the dataset.

Fig 7: Finding missing value

The isna().sum() method checks for missing values in each column.

2. Data Standardization

Fig 8: Data Standardization/Normalization

The code creates a copy of the original dataset named ‘df’. The drop()

method is used to remove the ‘phishing’ column from the ‘df’ dataframe. The

code identifies the columns containing numerical data using the

select_dtypes() method.

Fig 9: Data Normalization

The code imports the necessary libraries for data normalization. The

standardScaler () from the sklearn.preprocessing module is used to

normalize the numerical columns. The normalization() function is

defined to perform the normalization process. The function iterates through the

specified numerical columns and applies the fit_transform() method of

5

the standardScaler object to normalize each column. The normalized data

is stored in a new Dataframe names ‘data’.

3. Feature Selection

Fig 10: Feature Selection

The code creates a new dataframe named “numeric_bin” that contains only the

selected numerical columns and the phishing column. The corr() method is

used to compute the Pearson correlation coefficient between all pairs of the

columns in the numeric_bin dataframe. The abs() function is used to take the

absolute value of the correlation coefficients. The highest_corr variable stores

the correlation coefficients between the phishing column and all other columns,

where the absolute value of the correlation coefficient is greater than 0.5. The

sort_values() method is used to sort the highest_corr series in ascending order.

Fig 11: Creating a new dataframe

The code selects the attributes with the highest correlation values to create a

new dataframe named data2.

This codes above demonstrates a comprehensive process for loading, exploring,

cleaning, normalizing and selecting features from a dataset. This process is

crucial for preparing data for further analysis and modeling tasks.

6

4. Data splitting

Fig 12: Data splitting

The dataset is split into X and Y, Every features except phishing column

represent X and phishing column represent Y then later splitted into training and

testing with train_test_split() function . 80% will be used for training and 20%

will be used for testing.

5. Model Training
In this project we used several machine learning algorithms such as Deep

Neural Network, Random Forest, Support Vector Machine, Decision Tree

Classifier and Xtreme Gradient Boost.

5.1 Deep Neural Network

Fig 13: DNN Model

7

Fig 14: DNN Training

Fig 15: Training Graph

Fig 16: Validation Accuracy Graph

8

Confusion Matrix: Provides a detailed breakdown of the model's

performance, showing the number of True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN) for each class.

 True Positive (TP):

 The model correctly predicts the positive class.

 False Positive (FP):

 The model incorrectly predicts the positive class.

 False Negative (FN):

 The model incorrectly predicts the negative class.

 True Negative (TN):

 The model correctly predicts the negative class.

True Positive = 10661.0

False Positive = 951.0

False Negative = 865.0

True Negative = 5253.0

9

DNN_ ROC

Fig 17: DNN Metrics

10

Fig 17: calculating Metrics and saving it

The above code calculate Accuracy, F1-score, Recall and precision then save

the metrics later to be used for graphical visualization of all model metrics. This

code is gotten from github repository:

https://github.com/VaibhavBichave/Phishing-URL-

Detection/blob/master/Phishing%20URL%20Detection.ipynb.

5.2 SVM

https://github.com/VaibhavBichave/Phishing-URL-Detection/blob/master/Phishing%20URL%20Detection.ipynb
https://github.com/VaibhavBichave/Phishing-URL-Detection/blob/master/Phishing%20URL%20Detection.ipynb

11

Fig 18: SVM Training

True Positive = 9442.0

False Positive = 2170.0

False Negative = 138.0

True Negative = 5980.0

12

SVM_ROC

Fig20: SVM Metrics

Fig 19: Saving Model

13

5.3 DTC

Fig 20: Decision Tree Classifier Model

True Positive = 10600.0

False Positive = 1012.0

False Negative = 803.0

True Negative = 5315.0

14

DTC_ROC

Fig 22: DTC Metrics

5.4 XGBOOST

Fig 21: Xgboost Model

15

True Positive = 9442.0

False Positive = 2170.0

False Negative = 138.0

True Negative = 5980.0

XGB_ROC

16

Fig 24: XGBOOST Metrics

5.5 Random Forest

Fig 22: Random Forest Model

True Positive = 10545.0

False Positive = 1067.0

17

False Negative = 761.0

True Negative = 5357.0

RF _ROC

Fig 26: Random Forest Metrics

Results and Evaluation

Algorithm Accuracy Precision Recall F1 Score

DNN 90.00 96.00 89.00 89.00

SVM 87.00 86.00 90.00 86.00

DTC 90.00 89.00 89.00 89.00

Xgboost 87.00 86.00 90.00 87.00

Random Forest 90.00 88.00 89.00 89.00

18

Fig 23: Loading the save metrics

Fig 24: Metrics Performance Visualization

19

Chrome Malware Detection Extension
The project aims to develop a Chrome extension that detects and alerts users

about potentially malicious URLs. The extension leverages a backend Flask

API to perform URL analysis and provide a prediction on the URL's safety

status. The goal is to create a user-friendly tool that operates seamlessly in the

background while ensuring user security when browsing the web.

Methodology

1. Requirements Analysis

Installation of the Extension into Chrome / Brave Browsers (Unpacking Chrome

/ Brave Browsers)

Fig 26: Toggling the Developer mode to Unpack the Extension

 Functional Requirements

- URL Monitoring: Monitor URLs accessed by the user and evaluate their

safety.

- Alert Mechanism: Provide real-time alerts for malicious URLs.

- User Interface: Simple and intuitive popup for user interactions.

- Backend Integration: Connect to a Flask API for URL analysis.

Non-Functional Requirements

- Performance: Ensure minimal impact on browser performance.

- Scalability: Handle a large number of URL checks efficiently.

- Security: Securely communicate with the backend and handle sensitive

data.

2. Design and Architecture

20

 System Components

- Chrome Extension: Frontend component responsible for user interaction and

initial URL monitoring.

- Backend Flask API: Server-side component performing URL feature

extraction and safety prediction.

Architecture Diagram

3. Implementation Details

3.1 Chrome Extension

a. Manifest Configuration

User Action
Chrome Extension

(Popup / Background)
Flask API

21

The `manifest.json` file specifies the extension's permissions, icons, and scripts.

This code was gotten from this GitHub repo: https://github.com/philomathic-

guy/Malicious-Web-Content-Detection-Using-Machine-

Learning/blob/master/Extension/manifest.json.

Overview

The extension is designed to detect malicious URLs using machine learning,

providing users with alerts when they visit potentially harmful websites.

Manifest Details

Manifest Version:

- The manifest file is configured for Manifest Version 3. This is the latest

version, which introduces enhanced security, privacy, and performance

improvements over the previous versions.

Extension Name:

- The extension is named "Frankie."

Version:

- The current version of the extension is 1.0.

Description:

- The extension's description indicates that it detects malicious URLs using

machine learning.

Permissions

The extension requires the following permissions:

tabs:

 - Allows the extension to interact with browser tabs. This permission is

necessary for querying the active tab's URL.

Notifications

 - Enables the extension to display notifications to the user. This is used to alert

users when a URL is detected as malicious or safe.

activeTab:

 - Grants temporary access to the active tab when the extension's action (e.g.,

button click) is triggered. This is useful for fetching the current tab's URL for

analysis.

Background Service Worker

service_worker: "background.js":

 - The background script is specified as `background.js`. In Manifest Version 3,

the background page has been replaced with service workers to improve

performance and resource management.

https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using-Machine-Learning/blob/master/Extension/manifest.json
https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using-Machine-Learning/blob/master/Extension/manifest.json
https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using-Machine-Learning/blob/master/Extension/manifest.json

22

Action Configuration

default_popup: "popup.html":

 - Specifies `popup.html` as the default popup that appears when the extension's

icon is clicked. This HTML file provides the user interface for checking the

current URL.

- default_icon:

 - Defines the extension's icon in various sizes (16x16, 48x48, 128x128). These

icons are used in the toolbar and the Chrome Web Store.

Icons

-icons:

 - Specifies the extension's icons in different sizes (16x16 and 48x48). These

icons represent the extension in various parts of the browser interface.

b. Background Script (`background.js`)

Handles URL monitoring and communicates with the backend for URL

evaluation.

23

Overview

The script includes event listeners for installation and tab updates, functions to

check URLs by communicating with a backend API, and notifications to alert

the user about the URL's safety status.

Host Permissions

- host permissions: ["http://localhost:7000/*"]:

 - Grants the extension permission to access resources on

`http://localhost:7000/*`. This is necessary for making API requests to the

backend server that provides the machine learning-based URL predictions.

The manifest file for the "Frankie" Chrome extension is well-structured and

follows the guidelines for Manifest Version 3. The permissions requested are

appropriate for the functionality provided by the extension, ensuring that it can

interact with browser tabs, display notifications, and communicate with the

backend server. The use of service workers in the background script enhances

performance and resource management, aligning with the improvements

introduced in Manifest Version 3.

The extension is designed to provide a user-friendly interface for detecting

malicious URLs, with clear notifications and alerts to keep users informed about

the safety of the websites they visit. The inclusion of appropriate icons and a well-

defined action popup enhances the overall user experience.

Detailed Analysis

Event Listener: Extension Installation

This listener executes when the extension is installed. It logs a message to the

console indicating the successful installation of the "Malware Detector

Extension."

Event Listener: Tab Updates

 This listener monitors tab updates and triggers a URL check whenever a tab's

status is 'complete' (i.e., fully loaded) and has a valid URL.

24

Check URL

This function sends a POST request to a Flask API to check the URL. It

includes the URL in the request body and specifies the content type as JSON.

Alert User

This function creates a notification to alert the user about the safety status of the

URL. It sets different titles and messages based on whether the URL is detected

as malicious or safe.

The background script for the "Frankie" Chrome extension is well-designed and

effectively accomplishes its purpose of detecting malicious URLs. The script

leverages Chrome's API to monitor tab updates, communicate with a backend

machine learning API, and notify users of the results.

25

c. Popup Script (`popup.js`)

Provides an interface for manual URL checks.

The script includes event listeners for user actions, functions to interact with the

backend API, and mechanisms to display prediction results in a popup.

Detailed Analysis

Document Ready Event Listener

DOMContentLoaded Event Listener
 - Ensures that the DOM is fully loaded before executing the script.

 - Initializes variables to reference various DOM elements (`checkUrlButton`,

`popup`, `overlay`, `popupClose`, and `predictionText`).

26

Event Listeners for User Interactions:

checkUrlButton: Adds a click event listener to the "Check URL" button. When

clicked, it queries the active tab in the current window and invokes the

`checkUrl` function with the tab's URL.

popupClose: Adds a click event listener to the popup close button to close the

popup when clicked.

overlay: Adds a click event listener to the overlay to close the popup when the

overlay is clicked.

checkUrl Function: Sends a POST request to a Flask API endpoint

(`http://localhost:7000/api/predict`) with the URL to be checked.

Parses the JSON response from the API to determine if the URL is 'malicious'

or 'safe'. Invokes the `showPopup` function with an appropriate message based

on the API response.

showPopup Function: Sets the `textContent` of the `predictionText` element to

the given message. Displays the popup and overlay by changing their CSS

`display` properties to 'block'.

27

closePopup Function:Hides the popup and overlay by setting their CSS

`display` properties to 'none'.

The script for the "Frankie" Chrome extension provides a robust and user-

friendly mechanism for detecting malicious URLs. It integrates well with the

extension's UI and backend API, offering clear and informative feedback to

users. The recommendations provided aim to further enhance the script's

functionality, error handling, and performance.

Content.js

The listeners are designed to process predictions from a machine learning model

that classifies URLs as either 'malicious' or 'benign' and to update the user

interface accordingly.

Detailed Analysis

Message Listener for Alerts

This listener responds to messages containing a `prediction` property. Based on

the prediction value, it displays an alert to the user indicating whether the

website is 'malicious' or 'benign'.

Message Listener for Updating UI Element

This listener updates the text content of a UI element with the ID 'checkUrl' to

display the prediction result.

The message listeners in the code are designed to handle predictions from a

machine learning model, providing alerts and updating the UI.

28

3.2 Backend Flask API

A. URL Feature Extraction

A set of functions to extract various features from the URL for analysis. These

include checks for IP addresses, suspicious words, URL length, etc. This code

was obtained from this.

 GitHub repo: https://github.com/philomathic-guy/Malicious-Web-Content-

Detection-Using-Machine-Learning/blob/master/features_extraction.py

https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using-Machine-Learning/blob/master/features_extraction.py
https://github.com/philomathic-guy/Malicious-Web-Content-Detection-Using-Machine-Learning/blob/master/features_extraction.py

29

B. Prediction Function

Loads the pre-trained model and makes a prediction.

The `get_prediction_from_url` function is designed to predict whether a given

URL is malicious or benign. This is achieved by extracting features from the

30

URL, reshaping these features into the appropriate format, loading a pre-trained

machine learning model, and using this model to make a prediction.

def get_prediction_from_url(url):

Input: A single URL as a string.

Output: A string indicating whether the URL is "malicious" or "benign".

Feature Extraction
Extracts features from the given URL using the `main` function.

`features = main(url)` calls the `main` function, which returns a list of features

extracted from the URL.

`features = np.array(features).reshape(1, -1)` converts the list of features into a

NumPy array and reshapes it into a 2D array with one row. This is necessary

because the model expects the input in this format.

Model Loading
This loads the pre-trained machine-learning model from a file.

loaded_model = load('rf_model.joblib')` attempts to load the model file

a`rf_model.joblib`. If the model file is not found, a `FileNotFoundError` is

caught, and a `RuntimeError` is raised with a clear message.

Prediction
Uses the loaded model to predict whether the URL is malicious or benign.

prediction = loaded_model.predict(features)` makes a prediction using the

model.

The function checks the prediction value. If the value is `1`, it returns

"malicious"; otherwise, it returns "benign".

Error Handling
Catches any exceptions that occur during the feature extraction, model loading,

or prediction steps and raises a `RuntimeError` with a descriptive message.

This ensures that any issues encountered during the execution of the function

are reported clearly.

The `get_prediction_from_url` function is a critical part of the URL

classification pipeline. It effectively integrates feature extraction with a machine

learning model to classify URLs as malicious or benign. The function handles

errors gracefully, providing clear messages when something goes wrong.

31

 C. Flask API Endpoint

Handles POST requests and returns the prediction.

Overview

The given code sets up a Flask web server that provides an endpoint for

predicting whether a given URL is malicious or benign. The server exposes a

single API endpoint (`/api/predict`) which accepts POST requests with a JSON

payload containing the URL to be checked. It uses logging to track requests and

errors and returns JSON responses to the client.

32

1. Imports

Flask: The web framework used to create the server.

request, jsonify: Flask utilities for handling requests and responses.

logging: Python's built-in logging module for tracking events and errors.

main, get_prediction_from_url: Functions imported from the `extract` module

for feature extraction and URL prediction.

2. Flask Application Initialization

Initializes a Flask application instance.

3. Logging Configuration

Configures logging to display messages of level DEBUG and above.

4. API Endpoint Definition

Defines a POST endpoint at `/api/predict`.

5. Request Handling

JSON Check: Ensures that the request content type is JSON. Logs an error and

returns a 400 response if the check fails.

URL Extraction: Extracts the URL from the JSON data. Logs an error and

returns a 400 response if the URL is missing.

Logging and Prediction

Logs the received URL.

33

Calls `get_prediction_from_url` to predict whether the URL is malicious or

benign.

Logs the prediction result.

Returns the result in a JSON response.

Error Handling

- Catches any exceptions that occur during the prediction process.

- Logs the exception with a traceback.

- Returns a 500 response with the error message.

Server Execution

- Runs the Flask server on port 7000 if the script is executed directly.

This Flask application provides a simple and robust interface for predicting

whether URLs are malicious or benign. Key features include:

- JSON Validation: Ensures the request data is in JSON format and contains a

URL.

- Logging: Comprehensive logging for debugging and monitoring.

- Error Handling: Graceful handling of errors with informative responses

34

4. Testing and Validation

a. Local Testing

- Extension: Tested the Chrome extension locally to ensure URL checks

and notifications function as expected.

- Backend: Verified the Flask API responds accurately to URL

predictions.

Testing of a safe URL

35

Result of the testing with a pop up notification.

Testing of a malicious URL

Result of the testing with a pop up notification

36

b. Integration Testing

- End-to-End Testing: Simulated real user scenarios by navigating to

various URLs and observing the extension's response.

- Error Handling: Checked for graceful handling of API errors and

invalid URLs.

These were some of the malicious sites tested –

http://example-login-secure.com/banking/login.php?session=1234567890

http://malicious-

site.example.com/login.php?username=admin&password=admin123

http://malicioussite.example.com/login.php?username=admin&password=admi

n123

http://192.168.0.1/fakebank/login.php?user=admin&password=admin123

http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/m

alicious?user=1&id=100&session=xyz

http://example-login-secure.com/banking/login.php?session=1234567890

http://secure-

update.example.com/verifyaccount/login.php?user=admin&token=abcdef12345

6

http://account-security.example.com/update-

info/login.php?email=user@example.com&session=xyz123

http://secure-login.example.net/update-

info.php?user=admin&auth=abcdef123456

http://account-verification.example.com/secure-

login.php?user=admin&token=xyz987654

http://malicious-site.example.com/login.php?username=admin&password=admin123

http://malicious-site.example.com/login.php?username=admin&password=admin123

http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/malicious?user

=1&id=100&session=xyz

http://example-login-secure.com/banking/login.php?session=1234567890

http://pub-0fac81924c9e47b7901a9cc6d41b136a.r2.dev/megproctect.html

http://example-login-secure.com/banking/login.php?session=1234567890
http://malicious-site.example.com/login.php?username=admin&password=admin123
http://malicious-site.example.com/login.php?username=admin&password=admin123
http://malicioussite.example.com/login.php?username=admin&password=admin123
http://malicioussite.example.com/login.php?username=admin&password=admin123
http://192.168.0.1/fakebank/login.php?user=admin&password=admin123
http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/malicious?user=1&id=100&session=xyz
http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/malicious?user=1&id=100&session=xyz
http://example-login-secure.com/banking/login.php?session=1234567890
http://secure-update.example.com/verifyaccount/login.php?user=admin&token=abcdef123456
http://secure-update.example.com/verifyaccount/login.php?user=admin&token=abcdef123456
http://secure-update.example.com/verifyaccount/login.php?user=admin&token=abcdef123456
http://account-security.example.com/update-info/login.php?email=user@example.com&session=xyz123
http://account-security.example.com/update-info/login.php?email=user@example.com&session=xyz123
http://secure-login.example.net/update-info.php?user=admin&auth=abcdef123456
http://secure-login.example.net/update-info.php?user=admin&auth=abcdef123456
http://account-verification.example.com/secure-login.php?user=admin&token=xyz987654
http://account-verification.example.com/secure-login.php?user=admin&token=xyz987654
http://malicious-site.example.com/login.php?username=admin&password=admin123
http://malicious-site.example.com/login.php?username=admin&password=admin123
http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/malicious?user=1&id=100&session=xyz
http://example.com/this/is/a/very/long/path/that/looks/suspicious/and/may/be/malicious?user=1&id=100&session=xyz
http://example-login-secure.com/banking/login.php?session=1234567890
http://pub-0fac81924c9e47b7901a9cc6d41b136a.r2.dev/megproctect.html

37

http://pub-ba8507aed7c44524b1e60764505db63c.r2.dev/index3.htm

http://pub-ba8507aed7c44524b1e60764505db63c.r2.dev/index3.htm

