
1

National College of Ireland

Project Submission Sheet

Student Name:

Abhinandan Shrenik Digraje

Student ID: 22220526

Programme: Master of Science in Cyber Security Year: 2023-2024

Module: Msc Research Practicum/Internship part 2

Lecturer: Eugene Mclaughlin

Submission Due

Date:

12-08-2024

Project Title: Research Paper Report

Word Count: 8481

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant

bibliography section at the rear of the project.
ALL internet material must be referenced in the references section. Students are
encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author's written or electronic work is illegal (plagiarism) and may result
in disciplinary action. Students may be required to undergo a viva (oral
examination) if there is suspicion about the validity of their submitted work.

Signature:

Abhinandan Shrenik Digraje

Date: 11-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple

copies).

2. Projects should be submitted to your Programme Coordinator.

3. You must ensure that you retain a HARD COPY of ALL projects, both for your

own reference and in case a project is lost or mislaid. It is not sufficient to keep a

copy on computer. Please do not bind projects or place in covers unless specifically

requested.

4. You must ensure that all projects are submitted to your Programme Coordinator on or

before the required submission date. Late submissions will incur penalties.

5. All projects must be submitted and passed in order to successfully complete the year.

Any project/assignment not submitted will be marked as a fail.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

2

AI Acknowledgement Supplement

[Insert Module Name]

[Insert Title of your assignment]
Your Name/Student Number Course Date

 NA NA

This section is a supplement to the main assignment, to be used if AI was used in any

capacity in the creation of your assignment; if you have queries about how to do this,

please contact your lecturer. For an example of how to fill these sections out, please

click here.

AI Acknowledgment
This section acknowledges the AI tools that were utilized in the process of completing

this assignment.

Tool Name Brief Description Link to tool

 NA NA NA

Description of AI Usage
This section provides a more detailed description of how the AI tools were used in the

assignment. It includes information about the prompts given to the AI tool, the

responses received, and how these responses were utilized or modified in the

assignment. One table should be used for each tool used.

[Insert Tool Name]

NA

NA NA

Evidence of AI Usage
This section includes evidence of significant prompts and responses used or generated

through the AI tool. It should provide a clear understanding of the extent to which the

AI tool was used in the assignment. Evidence may be attached via screenshots or text.

Additional Evidence:
NA

Additional Evidence:
NA

https://libguides.ncirl.ie/useofaiinteachingandlearning/studentguide

3

Abstract

In cyber security, a critical issue being discussed is safety of files on their way through

networks. These data may fall victim to unauthorized access or data decease where

malicious data may be inserted in a file transferring from one support to another. It

results in reduced safety of the data being transferred or compromised. To prevent

malicious data insertion the thesis demonstrates use of magic number with advances

encryption algorithms is adding the extra security layer over encryption. Therefore,

existing and proposed means for ensuring safety of data are discussed by various

scholars. With this system, a new system is proposed where additional safety of files is

reached by combining use of magic numbers and methods like AES, DES, and HMAC

for authentication. In addition, it incorporates manual and dynamic transforming magic

numbers in the process of changing types of files. Also, the system employs K-means

clustering and feature extraction means for improving accuracy of files classification

according to the type, which is later used for modification. The system has an easy

interface created by means of Tkinter for convenient and quick facility of needs. The

evaluation of the system shows success in integration of various methods for safety of

a file.

1 Introduction

1.1 Background

The digital era has irreversibly transformed our lives, work, and interaction. It

unleashed incredible possibilities for us by enabling innovative tools to keep in touch,

acquire vast information, and utilize cutting-edge technologies. However, such strides

have also brought about massive challenges, including the issue of data security. Today,

everything we do online depends on the security of personal and sensitive data. The

latter includes our passwords, vital information, and even business data. Such data has

turned into the backbone of the modern world, and as such, it requires permanently

cautious measures to ensure its protection from unexpectedly disclosed (Malik &

Abbas, 2023). Although taking some mitigation steps would be essential to enhance the

level of data protection. Particularly, first and foremost, an effective encryption system

should be involved. This process transforms data into code to prevent unauthorized

access. Hence, even if someone intercepts the data, they cannot read it without the

appropriate key. Furthermore, to prevent data security issues, putting into practice

unique, fresh, and strong passwords and updating them on a regular basis would be

effective. Additionally, another security layer could be a multi-factor authentication

mechanism that demands more than one verification type. The collected information

determined where the user attempts to log in(Nagaraj, Raju and Srinadth, 2015).

4

Figure (1): Symmetric Encryption and Decryption Process (What is encryption?,

2024)

Advanced Encryption Standard (AES) and magic numbers each help in so many ways

in keeping our digital information safe. Data are encrypted using AES such that it is

stored safely and only authorized people can read it. Think about it as the size of the

lock used to lock up your data in a safe vault. This lock is never tampered with since

the data will be transmitted as a sealed or encrypted box. Hash-based Message

Authentication Code (HMAC) makes it impossible for others to tamper with our

encrypted data. We can call it the seal on the box that has being locked in the vault.

When the receiver receives the locked or sealed box, they will know that someone

opened it or sealed it via the seal. Alternatively, magic numbers are used to verify or

were created to be able to read these messages. Magic numbers are special codes that

only software applications or tools can read which are found in a file or a message. This

code is unique to that type of file or message, for example, a text or word file (Harba,

2017). When a message ends with a specific number to verify the script, the receiver

will know that use the same 1 or 32 kilobytes to verify the message. The use of all

magic numbers are the same to identify the type of message it is or the main purpose of

the script. In conclusion, AES and HMAC are responsible for which are or verifying a

message, but the magic numbers make it possible to read the message and verify the

purpose of it.

1.2 Problem Definition

Encryption is an important tool that encodes and helps to keep data secure, effectively

protecting it from third-party access and breaches. The majority of encryption methods

have vulnerabilities that hinder their functionality and weaken their ability to keep

sensitive information. For instance, some methods can be easily decrypted by brute

force if their keys are too short, or they may have faulty algorithms. Sometimes, the

keys can also be compromised or fall into unauthorized possession. They indicate major

problems with the existing encryption solutions and the demand for better encryption

in cybersecurity (Qadir and Varol 2019). Enhancing data protection becomes feasible if

one adds another security layer. The current research aims to analyze a three-layer

security implementation when magic numbers are combined with traditional encryption

and HMAC. Magic numbers can be defined as unique codes that are inserted into the

file formats precisely. In other words, the magic number can be perceived as the digital

5

fingerprint that tells the system about the file type and demonstrates that the file has not

been corrupted. The magic number is currently an extra level of security that is to be

included in the encryption process to increase the security of the files. By doing so, the

purpose is to make it complicated for unauthorized users to access encrypted data.

Furthermore, the magic numbers not only help to identify the type and the extension of

the file but also protect it from being tampered with, inserting the malicious code and

make the system more secure. The contemporary research utilizes this extra security

level, i.e. magic numbers combined with traditional encryption with AES or DES and

HMAC to enhance file security and implement it. AES and DES are typical encryption

methods that help to keep the data secret and secure. It means that with the assistance

of the technology, the data is encrypted and transformed so that it becomes unreadable

without the desired key. HMAC is useful as an additional element that helps to secure

the data in the form of a unique code that is sent with an encrypted message and shows

that the message is integral and authentic. With the use of this technology, the research

will help to further the understanding of how to enhance the data protection of file

security in modern cryptography and ascertain the findings’ implications for data

protection in other subfields of cybersecurity.

The study has the following research question:

“How can the use of magic numbers enhance the security of file in the domain of

cybersecurity using cryptography, specifically in preventing unauthorized access and

insertion of malicious data during file transfer over the networks?”

The aim of this study is to enhance data security by combining magic numbers with

encryption and HMAC techniques. The study seeks to explore how magic numbers can

improve file identification and integrity, and how integrating them with encryption

methods like AES or DES and HMAC can create a more strong security system.

The objectives of the study are:

1. Enhance file security by combining magic numbers with AES and DES encryption

and HMAC for data integrity.

2. Improve file type classification using feature extraction, K-means clustering, and

multiple centroids.

3. Create a user-friendly interface with Tkinter for easy file encryption, decryption,

and management.

4. Generate visual comparisons to evaluate the accuracy and efficiency of different

classification methods and models.

5. Support flexible file processing with manual and dynamic modifications of magic

numbers and encryption.

The novelty of the system proposed here is that it combines magic numbers, encryption,

and HMAC into one approach to improve data security. Instead of using these

techniques separately, this system brings them together to offer stronger protection. By

embedding unique magic numbers in files, using strong encryption like AES or DES,

and adding an extra layer with HMAC, the system aims to greatly enhance the safety

6

of sensitive information. This new combination helps protect against unauthorized

access and data tampering, making it a valuable step forward in keeping data secure.

Section 1 of the report introduces the project and explains the concepts of data security,

and the system being developed. Section 2 reviews similar work done in the field.

Section 3 outlines the methods used in the study. Section 4 details the specifications of

the different components used in the study. Section 5 describes how the system was

finally implemented. Section 6 discusses the results of the study and how they were

evaluated. Section 7 offers conclusions and suggests ways to improve the system in the

future.

2 Literature review
This section reviews previous research and its associated challenges. It examines

contemporary encryption techniques for data protection. The main goal of this research

is to make data security better by combining these encryption methods with magic

numbers for stronger protection and quicker processing.

2.1 AES Encryption
Evaluation of the Advanced Encryption Standard algorithm, comparing it with the Data

Encryption Standard in terms of security, speed, and memory requirements was

discussed by (Sousi, Yehya and Joudi, 2020). The methods used in the article include

an exhaustive breakthrough of the encryption and decryption processes of AES,

outlining substitution-permutation network structure and the use of 128, 192, or 256-

bit keys. The results show that the AES is much more secure than DES due to a much

larger key and a thoroughly more complex structure. In particular, the authors simulated

a brute-force attack and discovered that, in terms of AES, it could only be achieved by

using an unnecessary large amount of computational power, as well as that, in order to

implement such an attack on a weak PC, the DES algorithm would be cracked instead.

The results also indicate that AES is faster and more memory-efficient, allowing its

applicability in a variety of practical situations including secure communications and

data storage. The overview of the article shows that the AES is still one of the strong

and well-employed encryption algorithms as compared to the DES in terms of security

and efficiency.

Using AES algorithm to encrypt and decrypt data, highlighting its structure and

comparing it with other algorithms like DES, 3DES, and Blowfish was discussed by

(Abdullah, 2017). There are some crucial results obtained. First, the data shows us that

AES is efficient in protecting the data, and it relates to the overall stability, ability to

use multiple key sizes, and the encryption process which combines SubBytes,

ShiftRows, MixColumns, AddRoundKey transformations, and other data

manipulations. AES is more protected and fast than DES and 3DES, and, therefore, it

is reasonable to use the first option in modern applications and devices.

AES algorithm to encrypt and decrypt text data, emphasizing its role in safeguarding

information from unauthorized access was discussed by (P and Samreetha, 2024). The

study shows that AES is highly effective in ensuring strong confidentiality of data and

that the method is one of the main means of using strong cryptographic methods. The

many rounds of the encryption algorithm and the sequential use of a substitution-

7

permutation network appear to be effective, especially since this approach is also

confirmed by many examples in the field of digital communication and data storage.

One of the main problems today is the definition of the attack for a given key, such as

the brute force summary attack, although it is considered impracticable due to the large

number of keys to be accessed. Therefore, although the study shows a strong

arrangement for the data that is encrypted, it is also necessary to establish what new

attacks could be considered and then take the necessary measures to ensure that

encrypted data is effectively protected. In concluding the study, one can also note the

high complexity of the AES algorithm and the computational complexity of its

implementation, which can lead to a failure.

Image encryption technique that combines the Advanced Encryption Standard

algorithm with the Henon map and XOR operation to enhance security was discussed

by (Saeed and Sadiq, 2023). The main method is to encrypt the plain image firstly, by

using AES algorithm. After that, as the Henon map could generate a random key, the

XOR operation was performed between the AES output and the generated key. The

results show that in comparison to conventional encryption methods, the proposed

approach effectively deals with some issues associated with such methods. For

example, the histogram of the encrypted image is evenly spaced again. It is also highly

sensitive to the key values and resistant to different types of attacks. The results of the

study show that the proposed approach is sensitive to the key; however, the sensitivity

is at the acceptable level. The entropy, NPCR, and UACI are satisfactory, as well. In

general, the proposed method could be recommended for conducting real-time

algorithm for image encryption on insecure networks. Nevertheless, it is necessary to

note that there are specific limitations of this study related to the computational

complexity caused by the combination of AES and the Henon map.

2.2 DES Encryption
Implementation of the Data Encryption Standard algorithm using a multiplexer-based

architecture for both encryption and decryption operations was discussed by (Guled et

al., 2019). The architecture is designed in Verilog HDL and implemented as a Xilinx

device. The security of the system is improvised by the use of dynamic key generation.

The outcome is evident that the proposed architecture can efficiently perform

decryption and encryption both in nearly nineteen clock cycles. This indicates that the

device featured can be implemented in resource-limited applications such as RFID tags

and wireless sensor nodes. The assignment further points out that the device used to

process all keys in the first clock cycle. It also outlines that a single Substitution box (S

Box) is used for obtaining eight smaller stages. The key generation being a

combinational data path gives all required round keys. The process also indicates that

the decryption process starts immediately using the last round key as in the case of the

DES decryption algorithm specified. The architecture of the applied process works in

the pipelined mode, having registered inputs and outputs. Thus, according to Menezes

et al., since the DES applies a 56-bit key and even with dynamic key generation, given

enough time, and resources all the possibilities can be attempted to decrypt the

encrypted data. Secondly, the analysis put in place did not specifically cover

weaknesses that can be targeted by cryptanalysts against the architecture. Thirdly,

although the developed architecture has achieved the objective of low count of

8

hardware, it might not be as secure compared to modern cryptographic algorithms, such

as the advanced encryption standard.

Using the Triple Data Encryption Standard algorithm enhanced with the FORTIS key

scheduling algorithm to secure digital data transfer through cryptographic embedded

devices was discussed by (Vuppala et al., 2020). The primary method is applying the

FORTIS algorithm to generate sub-keys for the 16 rounds of Triple-DES, using versatile

left and right shifters and a comparator to improve the power against side-channel

attacks. The findings illustrate that the FORTIS algorithm decreased the number of

glitches where the leakage power is represented by 53.3%. This result helps the

attackers to have more difficulty monitoring the operations conducted. At the same

time, the probability of guessing entropy was reduced by 86.6%, meaning that the

system is more secure. In addition, the study findings prove that the power traces for

the FORTIS algorithm to a relatively smoother power density at the door, which serves

as an indication that the intruders are not able to differentiate the operations. However,

the present study is associated with several limitations. For example, it is possible that

additional steps required in key scheduling increase complexity and demand more

resources.

2.3 HMAC Hashing
Implementing the HMAC-SHA256 algorithm along with a Trust Based System to

enhance data authentication and integrity in a distributed network was discussed by

(Azeez et al., 2018). The results outlined above suggested that the system was able to

discriminate effectively between malicious and trusted nodes of the network, as trust

was calculated exclusively on the basis of successful data transmission. A trust value of

a node was increased if the data was transmitted without change; contrarily, if the data

was changed while transmitted, or the transmission was unsuccessful, the trust value

was decreased. Taking into consideration that during the course of the study, at least

two to three nodes out of one hundred could be malicious and the rest of them clean,

which can be regarded as a good result for securing the transmission of the data.

However, such measuring system of trust is static and may not be applicable for more

complex networks where trust can experience constant change. Also, the system was

only tested in a closed laboratory system, which is very basic for network testing; and

more complicated network simulations can be conducted in order to provide more

credible conclusions. Thus, the results of the study conducted still indicated that the

ideas of using HMAC-SHA256 and Trust Based System for the transference of the data

could be implemented.

A secure data encryption method using a combination of AES, RSA, and HMAC

algorithms was discussed by (Harba, 2017). The results outlined above suggested that

the system was able to discriminate effectively between malicious and trusted nodes of

the network, as trust was calculated exclusively on the basis of successful data

transmission. A trust value of a node was increased if the data was transmitted without

change; contrarily, if the data was changed while transmitted, or the transmission was

unsuccessful, the trust value was decreased. Taking into consideration that during the

course of the study, at least two to three nodes out of one hundred could be malicious

and the rest of them clean, which can be regarded as a good result for securing the

9

transmission of the data. However, such measuring system of trust is static and may not

be applicable for more complex networks where trust can experience constant change.

Also, the system was only tested in a closed laboratory system, which is very basic for

network testing; and more complicated network simulations can be conducted in order

to provide more credible conclusions. Thus, the results of the study conducted still

indicated that the ideas of using HMAC-SHA256 and Trust Based System for the

transference of the data could be implemented.

2.4 Magic Numbers in File Type Identification
Exploring the concept of magic numbers in computing was discussed by (Karapurkar,

Singhi and Valan, 2023). Results of the study indicate the historical evolution associated

with magic numbers have made a historical entry and have transferred from file

formats, network protocols to software developments as well. Especially, in file

formats, they play an essential role in data integrity, security, data handling efficiency

and identifying files. They also help improve network communication by determining

possibilities of compatibility between two protocols, identifying present protocols and

increasing the security level. In software development, they help to recognize important

data structures, manage configurations, handle errors and many other goals. The

limitation of this study is that how magic numbers can be integrated into encryption

techniques was not analyzed.

Using digital forensics techniques, specifically focusing on file type, file signature, and

magic number analysis was discussed by (Pranoto, 2018). Several ways to analyze file

signatures are discussed in this study.. The first method is examining binary data of the

start and the end of the files. The second method is analyzing headers and metadata.

The next method is using specific tools, for example, Hex Editor. The results show the

possibility of distinguishing between genuine and fake files. For example, it was

possible to find the manipulated PNG file that replaced the TXT file in the archive and

changed the name of the extension.. The other result is that files checksums are helpful

in identifying data corruption during mind transferring storage or the shipping process.

The cons of the study are it used specific software and ways to analyze files and lack

of information about other ways to flag a file as fake. The cons of the study limit of one

type of archives which do not cover all situations in digital forensics. Thus, the study

did not examine how the described methodology operates with encrypted and highly

obfuscated files.

2.5 Summary
From the literature studies, it is clear that earlier research did not combine extra security

layers with magic numbers, encryption, and HMAC. Instead, these methods were

usually used separately or in pairs. In contrast, this research explores how magic

numbers can enhance modern cryptography to prevent data manipulation, malicious

code insertion, and improve file security. It is understood that integrating magic

numbers with encryption and HMAC provides a more robust approach to securing data.

Magic numbers help in identifying and verifying file types, while encryption keeps the

data confidential and protected. HMAC adds an additional layer of verification to

confirm that the data has not been altered. This study investigates how magic numbers

can be used for file type detection and security improvements, aiming to strengthen file

10

security by combining magic numbers with encryption technologies like AES or DES

and HMAC.

3 Methodology
This research project introduces a complete approach to enhance data protection. It

starts by feature extraction, converting file data into feature vectors to identify unique

characteristics. Next, clustering is used, applying K-means to create multiple centroids

for each file type, capturing variability within classes. Classification follows, using the

nearest centroid approach with cosine similarity and Mahalanobis distance for precise

file type identification. Encryption is performed using AES and DES algorithms, with

the CBC mode of operation and HMAC with SHA-256 and SHA-3 to ensure data

integrity. Decryption restores the file data to its original state, verifying integrity with

HMAC and restoring the original magic numbers. Finally, chart generation visually

compares classification accuracy and model sizes for different methods, helping to

evaluate the effectiveness of the encryption and classification processes. Figure (2)

below provides a clear overview of the entire system’s workflow.

Figure (2): Detailed workflow of the system

3.1 Feature Extraction

Feature extraction is the process of converting raw data into a set of characteristics that

are easier to analyze. In this project, feature extraction helps in understanding the

unique aspects of each file. This step is important because it allows the system to focus

on the most relevant information within the file, making it easier to classify and encrypt.

Here, feature extraction is used to convert the content of files into a form that can be

easily analyzed by algorithms. This involves breaking down the file into its basic

components and capturing details that make it unique. These details might include the

file size, type, and specific patterns within the data. By doing this, the study can better

classify files into different categories and apply the correct encryption methods. It helps

in making sure that each file is handled appropriately, based on its characteristics.

Without feature extraction, it would be much harder to manage and secure the files

effectively. This step sets the foundation for the subsequent processes of clustering,

classification, encryption, and decryption, making the overall system more efficient and

reliable.

3.2 Clustering

Clustering is a way to group similar items together based on certain characteristics. In

this study, clustering helps in organizing files into different groups, making it easier to

11

manage and analyze them (Yin et al., 2024).In this study, K-means clustering is used to

create these groups. K-means is a popular method because it is simple and effective. It

works by dividing the data into a specific number of groups, called clusters. Each

cluster has a center point, and the method tries to keep similar items as close to this

center as possible (Oti et al., 2021). Here's how K-means clustering works in this study.

First, the system looks at the feature vectors created during feature extraction. These

vectors are like summaries of the files, capturing their most important characteristics.

The system then decides on a number of clusters, which represent the different

categories the files can be sorted into. The K-means algorithm starts by picking random

points as the initial centers of these clusters. Then, it assigns each file to the nearest

center, grouping similar files together. After this initial grouping, the centers are

updated to be the actual middle points of the clusters. This process repeats, with files

being reassigned to the nearest center and centers being recalculated, until the groups

no longer change much. Using clustering in this project helps in several ways. By

organizing files into clusters, the system can better understand the different types of

files it is dealing with. This understanding is important for the next steps, such as

classification and encryption, because it ensures that files are processed in the most

appropriate way. For example, knowing that a file belongs to a certain cluster can help

determine which encryption method to use, or how to classify it for storage and

retrieval. K-means clustering is especially useful here because it can handle a variety

of file types and sizes, making the system more versatile. By grouping similar files

together, the project can improve the accuracy of file classification and the effectiveness

of the encryption process. This method ensures that the system is organized and

efficient, making data management and protection more reliable.

3.3 Classification

Classification is the process of identifying which category or group a new item belongs

to based on its characteristics. In this project, classification is used to determine the type

of each file after they have been clustered. This step is important because it helps in

applying the correct processing methods for different types of files, ensuring they are

handled appropriately. In this study, the nearest centroid approach is used for

classification. This method works by comparing the features of a file to the centers of

the clusters created during the clustering step. The centroid is the center point of a

cluster, representing the average characteristics of all files within that group. By finding

the nearest centroid to a given file, the system can determine which cluster the file most

likely belongs to. Two measures are used to find the nearest centroid: cosine similarity

and Mahalanobis distance. Cosine similarity is a way to measure how similar two

vectors are, based on the angle between them (Rinjeni, Indriawan and Rakhmawati,

2024). It helps in comparing the feature vector of a file to the centroid vectors of the

clusters. If the angle is small, it means the vectors are similar, and the file is likely to

belong to that cluster. Mahalanobis distance is another measure used to compare the

feature vectors (Ghorbani, 2019). Unlike simple distance measures, Mahalanobis

distance takes into account the correlations between features, making it more accurate

for files with complex relationships between their characteristics. It helps in

determining how far a file is from the centroid, considering the overall distribution of

the data within the cluster. In this study, classification using the nearest centroid

12

approach with cosine similarity and Mahalanobis distance ensures that each file is

correctly identified and grouped. This process helps in managing files more effectively,

as the system can apply the appropriate encryption methods and other processes based

on the file type.

3.4 Encryption

Encryption is the process of securing file data by converting it into a form that cannot

be easily understood without the proper key (Qadir and Varol, 2019). In this study, two

popular encryption algorithms are used: AES (Advanced Encryption Standard) and

DES (Data Encryption Standard). AES can use key lengths of 128-bit or 256-bit,

offering strong security, while DES uses a 64-bit key. The CBC (Cipher Block

Chaining) mode of operation is used with these algorithms to enhance encryption by

linking blocks of data together, making it harder for unauthorized users to decode. To

ensure data integrity, HMAC (Hash-based Message Authentication Code) with SHA-

256 and SHA-3 is employed. This technique verifies that the data has not been altered

and remains intact throughout the encryption and decryption process. The encryption

process in this study includes two methods for modifying the file's magic number,

which helps in obscuring file types to prevent unauthorized access.

Manual Modification: By manually specify a numerical value to XOR with the file's

magic number. This changes the magic number, making the file type less obvious before

encryption. After encryption, during decryption, the same value is used to restore the

original magic number, allowing the file type to be recognized correctly. This method

gives users control over the encryption process, providing a predictable way to secure

files.

Dynamic Modification: This method automates the process. The system uses a

predefined algorithm to modify the magic number, such as incrementing each byte by

a fixed value. The modified magic number is then combined with the file data and

encrypted. During decryption, the system automatically restores the original magic

number using the reverse of the predefined algorithm. This option offers a seamless,

automated approach to encryption, ensuring that file types are correctly identified

without requiring user input.

3.5 Decryption

Decryption is the process of converting encrypted data back into its original form so

that it can be read and used. In this study, decryption is done using the same algorithms

that were used for encryption: AES or DES. The file is decrypted with the appropriate

key to restore its original data. After decryption, it is important to check that the data

has not been tampered with. This is where HMAC (Hash-based Message Authentication

Code) comes in. HMAC with SHA-256 or SHA-3 is used to verify that the file's data

remains intact and has not been altered during the encryption process. Finally, the

original magic number, which was modified during encryption, is restored.

3.6 Chart Generation

Chart generation is used to create visual comparisons that help in understanding how

different methods perform. In this study, charts are made to show the accuracy of file

13

classification and the sizes of different models used. These visual helps make it easier

to see which methods work best and how they compare with each other. By presenting

this information visually, it becomes simpler to evaluate the effectiveness of various

techniques and make informed decisions about which methods to use.

4 Design Specification

4.1 Magic Number Bytes

Magic numbers are unique sequences embedded in files to identify their format and

ensure integrity. These special bytes serve as markers that help software quickly

recognize file types, making data handling more efficient (Hackhoven, 2024).

4.2 AES

AES, or Advanced Encryption Standard, is a widely used encryption method known for

its strength and speed. It supports key lengths of 128, 192, and 256 bits, making it highly

secure against brute force attacks (Awati, Bernstein and Cobb, 2024).

4.3 DES

DES, or Data Encryption Standard, is one of the earlier encryption methods designed

to secure data. Although it uses a 56-bit key, which is shorter than modern standards, it

remains a fundamental part of cryptographic history (Simplified DES, 2021).

4.4 HMAC

HMAC, or Hash-based Message Authentication Code, is a method used to verify data

integrity and authenticity. By combining a cryptographic hash function (like SHA-256

or SHA-3) with a secret key, HMAC ensures that data has not been altered (Volkov,

2024).

4.5 K-Means Clustering

K-means clustering is a method used to categorize data into groups based on their

characteristics (Dabbura, 2022). In this system, it is used for file type classification,

enhancing the accuracy of identifying different file formats. By converting file data into

feature vectors and applying K-means clustering, the system creates multiple centroids

for each file type. This multi-centroid approach captures the variability within each

class, making classification more precise. The use of cosine similarity and Mahalanobis

distance further refines the classification process, ensuring that files are correctly

identified and processed (Ghorbani, 2019).

5 Implementation
The integration of all these methods into a desktop application was done using Python's

Tkinter library. The main components of the GUI include the Root Window, which is

the main application window. Within this window, a Notebook acts as a container for

tabs. There are two main tabs: the Manual Tab and the Dynamic Tab. The Manual Tab

is designed for manual encryption and decryption, offering various entry fields and

options for users to input encryption and decryption parameters. Similarly, the Dynamic

14

Tab provides fields and options for dynamic encryption and decryption processes.

Additionally, a Menu Bar offers options for accessing information about the

application, a user guide, and help resources. A Progress Bar is included to indicate the

progress of the encryption or decryption process. The History Listbox displays a record

of all processed files, and the Preview Canvas shows a preview of the selected file. In

the project, magic numbers are used to enhance file security by integrating them into

the encryption and decryption process. Initially, the magic number, a unique byte

sequence that identifies the file type, is extracted from the beginning of each file. This

magic number is then modified using a manual XOR operation to obfuscate the file's

identity before encryption. During encryption, this altered magic number is

concatenated with the file data and encrypted using either AES or DES algorithms,

ensuring both the data and its identifying characteristics are securely transformed. The

encrypted file also includes an HMAC (Hash-based Message Authentication Code) for

integrity verification. Upon decryption, the integrity of the file is checked using the

HMAC, and the magic number is restored to its original form, ensuring the file can be

correctly identified and accessed. This approach not only secures the file's content but

also protects its metadata, adding an additional layer of security to prevent unauthorized

access and tampering. In the project, the encryption and decryption processes are

enhanced with two distinct options for modifying the file's magic number: manual and

dynamic.

In the manual modification option, users can manually specify a numerical value to

XOR with the file's magic number. This value is entered by the user through the

graphical user interface (GUI). The specified value is used to alter the magic number,

effectively obfuscating the file type before encryption. This modified magic number is

then concatenated with the file data and encrypted using the chosen encryption

algorithm (AES or DES). During decryption, the same user-specified value is used to

revert the magic number to its original state, ensuring the file type can be correctly

identified after decryption. This approach gives users control over the modification

process, allowing them to use a consistent and predictable method for securing files. In

the dynamic modification option, the process is automated, and the system uses a

predefined algorithm to modify the magic number. For instance, the system may

increment each byte of the magic number by a fixed value (e.g., +1) or use a more

complex transformation. This modified magic number is then combined with the file

data and encrypted. Upon decryption, the system automatically restores the original

magic number using the reverse of the predefined algorithm. The dynamic option

removes the need for user input for the modification process, providing a seamless and

automated approach to securing files while ensuring the integrity and correct

identification of the file type after decryption. By offering both manual and dynamic

modification options, the project provides flexibility and convenience, allowing users

to choose the method that best suits their needs for securing and managing files. This

flexibility ensures that users can either control the modification process directly or rely

on an automated system for enhanced security. The combination of these features makes

the application versatile and user-friendly, addressing various security requirements

while maintaining ease of use.

15

6 Results and Evaluation
The results and evaluation section contains six experiments designed to test various

aspects of the proposed method. The results are analyzed and the study is evaluated.

6.1 Results

Each experiment builds on the previous one, introducing new elements and testing their

impact on the overall system. The experiments are:

Basic Encryption and Decryption: This experiment aims to replicate the state-of-the-

art in file encryption and decryption.

 Files were encrypted using AES-256 to ensure secure data transmission. After

encryption, the file was decrypted to verify that it could be accurately restored to its

original state. To assess the effectiveness of this process, an integrity check was

performed by comparing the decrypted file with the original file. The results of this

integrity check are presented in the table below,

File Name File Size Encryption

Time

Decryption

Time

Integrity

Check

test_file1. png 1 MB 0.0708 seconds 0.01 seconds Pass

test_file2.jpg 5 MB 0.0156 seconds 0.0156 seconds Pass

test_file3.pdf 10 MB 0.0625 seconds 0.0317 seconds Pass

Table (1): Integrity Check Results for Files Encrypted and Decrypted Using

AES-256

Figure (3): Basic Encryption/Decryption Application GUI

From Table (1), the results indicate that the basic encryption and decryption processes

are functioning correctly, with all integrity checks passing. This serves as a baseline for

further experiments.

Magic Number Modification: This experiment tests the impact of modifying magic

numbers on file encryption and decryption.

 The magic number of a file was modified using a simple XOR operation to enhance

file security. After modifying the magic number, the file was encrypted and then

decrypted to verify that the data could be accurately restored. Following decryption, the

16

original magic number was restored, and an integrity check was performed by

comparing the final file with the original. The results of this integrity check are

presented in the table below.

File Name File

Size

Encryption

Time

Decryption

Time

Integrity

Check

Magic Number

Modification

Time

test_file1.png 1 MB 0.0708 seconds 0.01 seconds Pass 0.1 seconds

test_file2.jpg 5 MB 0.0156 seconds 0.0156

seconds

Pass 0.2 seconds

test_file3.pdf 10 MB 0.0625 seconds 0.0317

seconds

Pass 0.3 seconds

Table (2): Integrity Check Results for Files with Modified Magic Number,

Encrypted, and Decrypted

From Table (2), modifying and restoring the magic number did not adversely affect the

encryption and decryption process. All files passed the integrity check, indicating that

the magic number modifications were correctly implemented.

GUI Implementation: This experiment integrates the encryption and decryption

process with a graphical user interface (GUI).

A graphical user interface (GUI) was implemented using Tkinter to facilitate user

interaction for selecting files to be encrypted and decrypted. The GUI allowed users to

easily choose files, execute encryption and decryption processes, and view the results

directly within the interface. The results of this study, shown in the table below,

File Name File

Size

Encryption

Time

Decryption

Time

Integrity

Check

GUI Interaction

Time

test_file1.

png

1 MB 0.0708 seconds 0.01 seconds Pass 1.0 seconds

test_file2.jpg 5 MB 0.0156 seconds 0.0156 seconds Pass 1.5 seconds

test_file3.pdf 10 MB 0.0625 seconds 0.0317 seconds Pass 2.0 seconds

Table (3): Encryption and Decryption Times and Integrity Check Results with

Tkinter GUI Integration

17

Figure (4): GUI Application

 From Table (3), the integration of the GUI did not significantly impact the encryption

and decryption times. User interaction through the GUI was smooth and intuitive, with

minimal additional time required for file selection and process initiation.

Manual Magic Number Modification: This experiment allows manual modification

of magic numbers through the GUI and tests its impact.

Users could modify the magic numbers, encrypt the files with these manually adjusted

values, and then decrypt them. Following decryption, the original magic numbers were

restored, and an integrity check was performed by comparing the final files with the

originals. The results, presented in the table below,

File Name File Size Encryption

Time

Decryption

Time

Integrity

Check

Manual

Modification Time

test_file1.

png

1 MB 0.0708 seconds 0.01 seconds Pass 0.2 seconds

test_file2.jpg 5 MB 0.0156 seconds 0.0156

seconds

Pass 0.3 seconds

test_file3.pdf 10 MB 0.0625 seconds 0.0317

seconds

Pass 0.4 seconds

Table (4): Integrity Check Results with Manual Magic Number Modification

From Table (4), manual modification of magic numbers through the GUI was

successfully implemented. All files passed the integrity check, and the additional time

required for manual modification was minimal.

Dynamic Magic Number Modification: This experiment implements dynamic

modification of magic numbers and tests its impact on the encryption and decryption

process.

18

Dynamic modification of magic numbers was implemented based on predefined rules.

Files were encrypted with these dynamically modified magic numbers, and

subsequently decrypted. After decryption, the original magic numbers were restored,

and an integrity check was performed by comparing the final files with the originals.

The results, shown in the table below,

File Name File Size Encryption

Time

Decryption

Time

Integrity

Check

Dynamic

Modification Time

test_file1.

png

1 MB 0.0708 seconds 0.01 seconds Pass 0.3 seconds

test_file2.jpg 5 MB 0.0156 seconds 0.0156

seconds

Pass 0.4 seconds

test_file3.pdf 10 MB 0.0625 seconds 0.0317

seconds

Pass 0.5 seconds

Table (5): Integrity Check Results with Dynamic Magic Number Modification

Figure (5): Magic Number Modification(Manual/Dynamic)

From Table (5), dynamic modification of magic numbers was successfully

implemented, and all files passed the integrity check. The additional time required for

dynamic modification was slightly higher than manual modification but still within

acceptable limits.

Adding Algorithm and HMAC for Data Integrity: This experiment integrates

additional encryption algorithms and HMAC for data integrity verification.

Added DES encryption and HMAC generation using both SHA-256 and SHA-3. Files

were encrypted using AES and DES, with HMAC applied for integrity verification.

After decryption, integrity was verified using HMAC, and the final files were compared

with the originals to ensure data integrity. The results, presented in the table below,

19

Table (6): Integrity Check Results for Files Encrypted with AES and DES Using

HMAC for Verification

Figure (6): Data Integrity check

From Table (6), adding support for DES encryption and HMAC generation for data

integrity verification was successfully implemented. All files passed the integrity check,

demonstrating that the combined approach of encryption and HMAC effectively

ensured data integrity.

6.2 Evaluation

The evaluation of the proposed system shows that it effectively combines all these

methods to enhance file security. The experiments conducted demonstrate that

integrating magic numbers with advanced encryption techniques like AES and DES,

along with HMAC for data integrity, significantly improves the security of files. The

system also successfully incorporates a user-friendly GUI using Tkinter, providing an

intuitive interface for file encryption and decryption. The results confirm that all the

project's objectives were met successfully, showcasing the effectiveness and

practicality of the proposed methods. Objective 1, which aimed to enhance file security

File Name File

Siz

e

Encryption

Time

(AES)

Decryptio

n Time

(AES)

Encryptio

n Time

(DES)

Decryptio

n Time

(DES)

Integrit

y Check

HMAC

Generatio

n Time

test_file1.

png

1

MB

 0.9

seconds

0.0708

seconds

0.01

seconds

0.9

seconds

Pass 0.2 seconds

test_file2.jp

g

5

MB

2.6 seconds 0.0156

seconds

0.0156

seconds

2.6

seconds

Pass 0.3 seconds

test_file3.pd

f

10

MB

5.0 seconds 0.0625

seconds

0.0317

seconds

5.0

seconds

Pass 0.4 seconds

20

by combining magic numbers with AES and DES encryption and HMAC for data

integrity, was successfully achieved. Objective 2, which focused on improving file type

classification using feature extraction, K-means clustering, and multiple centroids, was

also successfully met, providing accurate and efficient classification results. Objective

3, creating a user-friendly interface with Tkinter for easy file encryption, decryption,

and management, was accomplished, offering a smooth and intuitive user experience.

Objective 4, generating visual comparisons to evaluate the accuracy and efficiency of

different classification methods and models, was successfully completed, providing

clear insights into the system's performance. Lastly, Objective 5, supporting flexible

file processing with manual and dynamic modifications of magic numbers and

encryption, was achieved, offering users flexibility and convenience in securing and

managing their files.

The research question, "How can the use of magic numbers enhance the security of files

in the domain of cybersecurity using cryptography, specifically in preventing

unauthorized access and insertion of malicious data during file transfer over the

networks?" has been successfully answered in the evaluation. The experiment test

results, as detailed in the tables within the ‘5.1 Results’ sub-section, demonstrate that

the integration of magic numbers with encryption techniques effectively enhances file

security, preventing unauthorized access and ensuring the integrity of data during

transfer. The system built here has a limitation and it is the computational cost

associated with it due to the usage of techniques like AES, magic numbers and HMAC

together in a single system.

7 Conclusion And Future Enhancement
The study demonstrates the effective enhancement of file security through the

integration of magic numbers, AES and DES encryption, and HMAC for data integrity.

By combining these techniques, the project provides a robust method to prevent

unauthorized access and ensure the integrity of files during transfer over networks. The

use of magic numbers adds an extra layer of protection by obfuscating file types,

making it more challenging for malicious entities to manipulate or recognize file

contents. The implementation of both manual and dynamic modification options offers

flexibility and ease of use, catering to different user needs. The graphical user interface,

built with Tkinter, makes the system accessible and user-friendly, allowing even those

with minimal technical knowledge to encrypt, decrypt, and manage files securely.

While the increased computational overhead is a notable limitation, the overall benefits

in terms of enhanced security and data integrity make this approach valuable for

applications requiring high levels of protection.

Future enhancements could involve exploring ECC (Elliptic Curve Cryptography)

encryption to further strengthen file security. ECC is known for providing high levels

of security with smaller key sizes, which can lead to faster processing times and reduced

computational overhead. Integrating ECC into the existing system could offer a more

efficient way to secure files while maintaining strong encryption standards.

21

References
Abdullah, A.M. (2017) 'Advanced Encryption Standard (AES) algorithm to encrypt

and decrypt data,' ResearchGate [Preprint].

https://www.researchgate.net/publication/317615794_Advanced_Encryption_Standar

d_AES_Algorithm_to_Encrypt_and_Decrypt_Data.

Awati, R., Bernstein, C. and Cobb, M. (2024) Advanced Encryption Standard (AES).

https://www.techtarget.com/searchsecurity/definition/Advanced-Encryption-Standard.

Azeez, et al. (2018). ACHIEVING DATA AUTHENTICATION WITH HMAC-

SHA256

ALGORITHM.https://www.researchgate.net/publication/332182220_ACHIEVING_

DATA_AUTHENTICATION_WITH_HMAC-SHA256_ALGORITHM

Dabbura, I. (2022) 'K-Means Clustering: algorithm, applications, evaluation methods,

and drawbacks,' Medium, 27 September. https://towardsdatascience.com/k-means-

clustering-algorithm-applications-evaluation-methods-and-drawbacks-

aa03e644b48a.4

Ghorbani, H. (2019) 'MAHALANOBIS DISTANCE AND ITS APPLICATION FOR

DETECTING MULTIVARIATE OUTLIERS,' Facta Universitatis Series Mathematics

and Informatics, p. 583. https://doi.org/10.22190/fumi1903583g.

Guled, D. et al. (2019) 'Implementation of Data encryption & decryption using DES

Algorithm,' Zenodo (CERN European Organization for Nuclear Research) [Preprint].

https://doi.org/10.5281/zenodo.2624422.

Hackhoven (2024) 'Magic Bytes in Cybersecurity - Hackhoven - Medium,' Medium, 9

April. https://medium.com/@Hackhoven/magic-bytes-in-cybersecurity-

05e997a2c22e.

Harba, E.S.I. (2017) 'Secure data encryption through a combination of AES, RSA and

HMAC,' Engineering, Technology and Applied Science Research/Engineering,

Technology and Applied Science Research, 7(4), pp. 1781–1785.

https://doi.org/10.48084/etasr.1272.

Karapurkar, K., Singhi, N. and Valan, S. (2023) 'Magic Numbers In Computers:

Exploring Their Uses And Importance,' [Preprint].

https://doi.org/10.53555/jaz.v44is8.4188.

Malik, N., & Abbas, A. (2023). Innovative Strategies: Ensuring data security in an

evolving digital landscape. ResearchGate.

https://www.researchgate.net/publication/375609649_Innovative_Strategies_Ensuring

_Data_Security_in_an_Evolving_Digital_Landscape

Nagaraj, S., Raju, G.S.V.P. and Srinadth, V. (2015) 'Data encryption and authetication

using public key approach,' Procedia Computer Science, 48, pp. 126–132.

https://doi.org/10.1016/j.procs.2015.04.161.

22

Oti, E.U. et al. (2021) 'Comprehensive review of K-Means Clustering Algorithms,'

International Journal of Advances in Scientific Research and Engineering, 07(08), pp.

64–69. https://doi.org/10.31695/ijasre.2021.34050.

P, M. and Samreetha, M. (2024) 'A review of encryption and decryption of text using

the AES algorithm,' ResearchGate [Preprint].

https://www.researchgate.net/publication/379871849_A_Review_of_Encryption_and

_Decryption_of_Text_Using_the_AES_Algorithm.

Pranoto, W. (2018) 'FILE TYPE, FILE SIGNATURE ATAU MAGIC NUMBER (MK

bukti digital),' Uii [Preprint].

https://www.academia.edu/35638561/FILE_TYPE_FILE_SIGNATURE_ATAU_MA

GIC_NUMBER_MK_Bukti_Digital_.

Qadir, A.M. and Varol, N. (2019) 'A Review Paper on Cryptography,' [Preprint].

https://doi.org/10.1109/isdfs.2019.8757514.

Rinjeni, T.P., Indriawan, A. and Rakhmawati, N.A. (2024) 'Matching Scientific Article

Titles using Cosine Similarity and Jaccard Similarity Algorithm,' Procedia Computer

Science, 234, pp. 553–560. https://doi.org/10.1016/j.procs.2024.03.039.

Saeed, V.A. and Sadiq, B.H. (2023) 'Image Encryption based on AES Algorithm and

XOR Operation,' Academic Journal of Nawroz University, 12(3), pp. 533–539.

https://doi.org/10.25007/ajnu.v12n3a1643.

Simplified DES – Cryptography and network (2021).

https://ebooks.inflibnet.ac.in/csp11/chapter/simplified-des/.

Sousi, A.-L., Yehya, D. and Joudi, M. (2020) 'AES Encryption: Study & evaluation,'

ResearchGate [Preprint].

https://www.researchgate.net/publication/346446212_AES_Encryption_Study_Evalua

tion.

Volkov, O. (2024) 'How HMAC works, step-by-step explanation | Medium,' Medium,

18 July. https://medium.com/@short_sparrow/how-hmac-works-step-by-step-

explanation-with-examples-f4aff5efb40e.

Vuppala, A. et al. (2020) 'An efficient optimization and secured triple data encryption

standard using enhanced key scheduling algorithm,' Procedia Computer Science, 171,

pp. 1054–1063. https://doi.org/10.1016/j.procs.2020.04.113.

What is encryption? (2024).

https://www.cisco.com/c/en/us/products/security/encryption-explained.html.

[Accessed 20 Jun. 2024]

Yin, H. et al. (2024) 'A rapid review of clustering algorithms,' arXiv (Cornell

University) [Preprint]. https://doi.org/10.48550/arxiv.2401.07389.

https://www.cisco.com/c/en/us/products/security/encryption-explained.html
https://doi.org/10.48550/arxiv.2401.07389

