Configuration Manual

MSc Research Project
Master of Science in Cybersecurity

Arpit Dharod
Student ID: x22186964

School of Computing
National College of Ireland

Supervisor: Eugene McLaughlin

\‘
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing
Student Name: Arpit Mukesh Dharod

Student ID: X22186964

Programme: MSc in Cybersecurityccccveeiinenneenenene Year: 2024-25...............
Module: RESEAICH PrOJECL ...t s
Lecturer: Eugene McLaughlin ... s e
Submission Due

Date: 12 AUGUSE 2024ttt

Project Title: HoneyBlow - An enhanced hybrid encryption method for messages

Word Count: 776......iieeeee Page Count: 7.
I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Arpit Mukesh Dharod

Date: 12t August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Arpit Dharod
X22186964

1 Introduction

This configuration manual consists of all the requirements for the setup of the model with the
software, language of programming and libraries. It also contains the steps to setup the required
model is also in this model.

2 System Info

2.1 System Specification

Model: MacBook Air M2 @ macOS Sonoma Version 14.5 (23F79)
Processor: Apple M2 chip (8 core CPU)
Memory: 8 gigabytes

2.2 Tools, Software and Programming Language

Tool: Visual Studio Code Editor.
Software: MacOS Operating System
Programming Language: Python 3.12

3 Installation

The required Python Libraries needs to be installed for performing encryption and decryption
for this model.

= Python Cryptography Toolkit
a. Pycrypto — pip install pycrypto
b. PycryptoDome - pip install PycryptoDome
c. Blowfish — pip install blowfish

4 Implementation

There are multiple Python files used in this model are:
1. honeyencryption.py

blowfish.py

Main.py

bits by bits.py

Aes.py

bl ol S

L. Initially, the main.py which contains all the libraries which are required are
imported.

import hashlib
import random
from pprint import pprint

from

from Crypto.Cipher import Blowfish
from Crypto.Random import _random_bytes
import time

from os import urandom
from Crypto.Cipher import AES
from Crypto.Util.Paddi import pad, unpad

II. After all imports needed. The test file is used for taking input data with all the
inputs for the results of main program model.

###Some random words with different Size bytes used for testing and analysing the Encryption methods.

For Byte Size 7
"Passout"

For Byte Size 10
"MangoBerry"

For Byte Size 12
"Hello_World!"

For Byte Size 15
"Thesis@Semester3 "

For Byte Size 16
MSc_Cybersecurity

For Byte Size 65
"Hello, this is a test sentence to fit approximately sixty-five bytes."

For Byte Size 81
"Sample text that should be around eighty-one bytes long for testing."

For Byte Size 128
“This example is designed to be exactly one hundred twenty-eight bytes, taking into account various characters, including punctuation, spaces, and special characters, to ensure accurate byte siz

For Byte Size 209
"A longer string of characters, spanning over two hundred bytes to reach the specific byte count required, might include diverse punctuation and spaces, depending on the exact encoding.”

For Byte Size 257
A longer and more detailed text example, stretching to approximately two hundred fifty-seven bytes, encompassing various letters, punctuation marks, spaces, and potentially some special charact

For Byte Size 299
“Creating a text block of about two hundred ninety: e bytes olves crafting a detailed passage, whii ludes an array of characters, punctuat marks, and spaces to ensure the exact byte

III. In Honey Encryption the passwords to seeds and seeds to true message is encoded.
As it is referred as most possible secure method of honeyword creation by(Nguyen,
2016; Jordan, 2021)

Generate specific decoy passwords and ma em to seeds and state messag es
passwordsToSeeds [password + trueSeed — 1)] = trueSeed + 1
seedsToMessages [trueSeed + 1] = states["

passwordsToSeeds [password + trueSeed - 2) + "1"] = trueSeed +

seedsToMessages [trueSeed + 2] states[*

passwordsToSeeds [password. lower()] = trueSeed + 3
seedsToMessages [trueSeed + 3] = states['FL']

passwordsToSeeds [password. lower stritrueSeed + 1) + trueSeed + 4
seedsToMessages [trueSeed + 4] = states['TX']

passwordsToSeeds [password.upper()] = trueSeed + 5
seedsToMessages [trueSeed + 5] = states['TN']

passwordsToSeeds [password.upper str(trueSeed + 2) trueSeed + 6
seedsToMessages [trueSeed + 6] = states['WA']

#E m ch bit with the true
cipher . nt(bit) ~ (trueSeed % 2)) f

IV.

As honeyword is created the credential/passwords is encrypted with blowfish
encryption algorithm. The image below shows the blowfish encryption and
decryption algorithm(O, 2024):

import time
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from EF2ET3§?E5ﬁzTﬁEEEETTEEEEEHHE_IEEB?T_HEfault_backend

from E?2ETEE?EEFZTEEEEETTE?IEE?IVes import padding

from 0s import urandom

Key and Initialization Vector generation
key = urandom(16) # Generate a random 16-byte key
iv = urandom(8) # Generate a random 8-byte IV (Initialization Vector)

Creating a Blowfish cipher object
cipher = Cipher(algorithms.Blowfish(key), modes.CBC(iv), backend=default_backend())

Get user input for data encryption
user_input = input("Please enter the data you want to encrypt: ")
data = user_input.encode() # Convert the user input to bytes

Prepare data for encryption (with padding)
padder = padding.PKCS7(64).padder() # 64 bit (8 byte) padding for Blowfish
padded_data = padder.update(data) + padder.finalize()

Encrypting data

print("Blowfish encryption started")

start_encrypt_time = time.time()

encryptor = cipher.encryptor()

encrypted_data = encryptor.update(padded_data) + encryptor.finalize()
end_encrypt_time = time.time()

encrypt_elapsed_time = end_encrypt_time - start_encrypt_time

print(f"Encrypted code: {encrypted_data}")
print(f"Encryption time in seconds: {encrypt_elapsed_time:.6f}")

Decrypting data

start_decrypt_time = time.time()

decryptor = cipher.decryptor()

decrypted_padded_data = decryptor.update(encrypted_data) + decryptor.finalize()
end_decrypt_time = time.time()

decrypt_elapsed_time = end_decrypt_time - start_decrypt_time

Remove padding after decryption

unpadder = padding.PKCS7(64).unpadder()

decrypted_data = unpadder.update(decrypted_padded_data) + unpadder.finalize()
decrypted_string = decrypted_data.decode('utf-8') # Convert bytes to string

After using blowfish encryption and password the time is calculated and converted
into milliseconds making it easy to track the record for the encrypted data(Yin,
Indulska and Zhou, 2017). Using this execution time is calculated and compared
with other techniques:

Blowfish encryption

encTimeStart = timeit.default_timer()

blowfish_encrypted_data, blowfish_key, blowfish_iv = blowfishEncrypt(encrypted_datal'cipher'].encode())
print(f"Blowfish Encrypted Data: {blowfish_encrypted_data}")

Blowfish decryption
blowfish_decrypted_data = blowfishDecrypt(blowfish_encrypted_data, blowfish_key, blowfish_iv)

print(f"Blowfish Decrypted Data: {blowfish_decrypted_data.decode()}")

Display encryption time

encTimeEnd = timeit.default_timer()

encTotalTime = (encTimeEnd - encTimeStart) * 1000 # in milliseconds
print(f"Encryption Total Time: {encTotalTime} ms")

VL

VIL

There are 3 possibilities of decrypting and retrieving messages which are as follows:
i

ii.

iii.
Below is code of dec

Wrong Password: No data will be decrypted and notify user with wrong
password.

Honeyword matched: This will notify user that password used is honeyword
making him know the bogus message.

Correct Password: This will make user display correct message.

pting message:

def honeyDecrypt(password, encrypted_data):

passwordsToSeeds = encrypted_datal'passwordsToSeeds']

seedsTollessages = encrypted_datal]'seedsToiessages { |

cipher = encrypted_datal['cipher']

Function to decode the message from binary
def decode(binary_string):

return ''.join(chr(int(binary_string[i:i+8], 2)) for i in range(@, len(binary_string), 8))

Check if the password is in the dictionary
if password in passwordsToSeeds:

seed = passwordsToSeeds [password]

Decrypt the message (XOR each bit with the seed)
ms = ''.join(str(int(bit) ~ (seed % 2)) for bit in cipher)

Decode the binary message

message = decode(ms)

if seedsToMessages[seed] == message:

| return message, "Correct password"

else:

| return seedsToMessages[seed], "Honeyword detected"

else:

return None, "Wrong password"

The evaluation of the technique is calculated using Avalanche Effect. The code to
calculate Avalanche effect is in bits_by_bits.py (Kyriaskidis, 2018).

def pad(data, block_size):

"""Apply PKCS#7 padding to the data.™"""

padding_len = block_size - (len(data) % block_size)
padding = bytes([padding_len] * padding_len)

return data + padding

unpad(data):

"""Remove PKCS#7 padding from the data."""

padding_len = datal[-1]

if padding_len > len(data):

raise ValueError(*"Padding length is greater than the data length.")
return datal:-padding_len]

blowfish_encrypt(key, iv, plaintext):

Setup Blowfish in CBC mode with the given key and IV

cipher = Cipher(algorithms.Blowfish(key), modes.CBC(iv), backend=default_backend())
encryptor = cipher.encryptor()

Ensure plaintext is padded to a multiple of the block size

padded_plaintext = pad(plaintext, algorithms.Blowfish.block_size)

ciphertext = encryptor.update(padded_plaintext) + encryptor.finalize()

return ciphertext

calculate_avalanche_effect(datal, data2):

"""Calculate the Avalanche Effect as a percentage of bits changed

total_bits = len(datal) x 8 # Total number of bits in one of the data blobs

differing_bits = sum(bin(byte).count('1') for byte in (a ~ b for a, b in zip(datal, data2)))
percentage_change = (differing_bits / total_bits) x 100

return percentage_change

Generate a random key and IV

key = os.urandom(8) # Blowfish key size requirement

iv

os.urandom(8) # IV size for Blowfish is the same as its block size (8 bytes)

VIII. Also, to evaluate and compare the model between AES and blowfish. AES was
implemented for the same(Campos, 2021).

from os import urandom

from Crxgto.cipher import AES
from trxgto.Utl[.Padding import pad, unpad

def enc_aes(password, key, iv):
Generate cipher object
cipher = AES.new(key, AES.MODE_CBC, iv)
Encrypt the message with padding
encrypted_text = cipher.encrypt(pad(password.encode('utf-8'), AES.block_size))
return encrypted_text

dec_aes(enc_password, key, iv):

Decrypt the message

cipher = AES.new(key, AES.MODE_CBC, iv)

decrypted_text = unpad(cipher.decrypt(enc_password), AES.block_size)
return decrypted_text.decode('utf-8")

Example usage:

key = urandom(16) # AES-128 requires a 16-byte key
iv = urandom(16) # IV should also be 16 bytes
password = "mysecretpassword"

print("AES Encryption Started..... "

encrypted = enc_aes(password, key, iv)
print("Encrypted:", encrypted)

decrypted = dec_aes(encrypted, key, iv)
print("Decrypted:", decrypted)

References

Campos, P.T. (2021) ‘AES Implementation in Python’, Quick Code, 13 June. Available at:
https://medium.com/quick-code/aes-implementation-in-python-a82f582f51¢c2 (Accessed: 6
August 2024).

Jordan, K. (2021) ‘Honey Encryption’, smucs, 7 April. Available at:
https://medium.com/smucs/honey-encryption-e56737af081c (Accessed: 6 August 2024).

Kyriaskidis, P. (2018) avalanche-effect-on-Blowfish-/blowfish.py at master -
PantelisKyriakidis/avalanche-effect-on-Blowfish- - GitHub. Available at:
https://github.com/PantelisKyriakidis/avalanche-effect-on-Blowfish-/blob/master/blowfish.py
(Accessed: 10 August 2024).

Nguyen, V. (2016) honey-encryption/main.py at master - victornguyen?75/honey-encryption -
GitHub. Available at: https://github.com/victornguyen75/honey-
encryption/blob/master/main.py (Accessed: 10 August 2024).

O, K. (2024) ‘Python Blowfish Encryption Example’, DevRescue, 14 January. Available at:
https://devrescue.com/python-blowfish-encryption-example/ (Accessed: 31 July 2024).

Yin, W., Indulska, J. and Zhou, H. (2017) ‘Protecting Private Data by Honey Encryption’,
Security and Communication Networks, 2017(1), p. 6760532. Available at:
https://doi.org/10.1155/2017/6760532.

