\ National
Collegeof

Ireland

Exploiting and Preventing DoS attacks via
Race Conditions

MSc Research Project

MSc in Cyber Security

Sahil Das
Student ID: 22211446

School of Computing

National College of Ireland

Supervisor: ~ Mark Monaghan

Student
Name:

Student ID:

Programme

Module:

Supervisor:
Submission
Due Date:

Project
Title:
Word
Count:

"'"l
\ National
Collegeof

[reland

National College of Ireland
MSc Project Submission Sheet
School of Computing

Sahil

22211446, s

MSc in Cyber
SECUNTY it

Practicum......cooceeeeeiieies

Exploiting and Preventing DoS attack via Race
conditions..........cccccevenee.

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Exploiting and Preventing DoS attacks via Race
Conditions

Sahil Das
22211446
Youtube Link:-https://youtu.be/H9ele7ySNg0

Abstract
DoS attacks are a common yet not preventable issue nowadays in the systems and

these can cause severe disruptions in the working procedures of organisations, causing
financial losses on the way too. The data present in the systems sometimes also gets
corrupted due to over processing of the data. One such ignored aspect of how the DoS
arises is via the Race conditions where the timing and sequence of various processes can
be manipulated to crash the system in such a way that the least suspicion arises. By
examining and cloning various race conditions onto web apps we can find out which
techniques were mostly used to leverage the DoS attacks. Through various
comprehensive, simple to understand analysis we will try to figure out how various race
conditions can be leveraged to DoS attacks. Once this aspect is done, various preventive
measures will also be implemented and these measures will also be tested as to which of
them can be the most effective. The proposed solutions include but are not limited to
secure coding practices, tweaking various aspects in the cloud, using secure deployment
measures and so on. The various parameters of effectiveness are measured using tools
such as Prometheus, Grafana and Google Pagespeed.

Keywords:- Race Conditions, DoS attacks, WebApps, Monitoring

1 Introduction

In the given times, the Internet and websites have become an important place for
connectivity and doing business. This has increased the options for performing a bigger cyber
warfare operation ground. One of the most common methodologies used in this case is the
DoS attacks which technically exhausts the resources hence compromising the availability
and reliability of the systems. It makes sense to believe that a denial of service (DoS) occurs
soon after the attack is launched because the attacker wants to be able to access every
connection on the targeted host as soon as possible. It is possible, though, that the server has
already established real, continuing relationships with other clients. Those connections live
until they are broken. As soon as a connection closes, the server releases the related
resources, allowing clients to establish new connections. The attacker's objective is to replace
all of the "just available" connections with malicious ones as a result. While doing so, there
may be a race condition between the attacker and a few other real clients. In the current
scenario of complexity, business logic vulnerabilities are most common victims of Race
conditions. The attacks also happen at various layers of the systems but recently they have
moved more towards the business layer/application layer which are much easier to execute as
compared to other layers of the OSI Model. Business layer DoS attacks are more application
specific and there is not much malicious traffic in the website but in other words it can be
said as more bogus packets are sent to exhaust the systems. Detecting these loopholes needs a

1

better understanding of the web logic. Sometimes the flaws happen due to programming
errors or maybe the lack of implementing a proper deployment measure and so on.
Sometimes the detection of these business logic issues can be a bit difficult and a lot of
automated web scanners won't even recognise them and the reason being a lot of these
automated scanners do not understand the web logic of every single application they scan .
The aim of this research is to focus on the various aspects of race conditions which can be
further leveraged into DoS attacks. Various types of business logic and other types of flaws in
the web application will be listed which can be the starting point for these types of attacks.
Once the ways of these attacks are figured out, then the preventive methods suitable to our
setup will be implemented which can be load balancers, tweaking changes in code, changing
cloud parameters, rate limiting. The various factors of implementing the security measures
will be discussed in detail in the methodology and implementation.

This paper discusses the various aspects of how the race conditions are leveraged into DoS
attacks and what can be the ways those issues can be prevented further. Also various
experiments will be performed on the websites to find out which methods were effective. For
that, tools such as JMeter, Scripts in Python, Turbo Intruder in BurpSuite and a few more will
be used. Apart from that various tools such as Prometheus, Grafana will be deployed in
parallel and connected to the websites or the servers to find out the parameters such as
latency time, time to first byte, number of requests per second, cpu utilisation which can be
used to determine which preventive measures are working effectively, although it is true that
no measure will have the 100 percent capability to prevent the attack but we will try to
improve as much as we can.

2 Related Work

For the above research question I will be going through various other research papers which
will give a brief idea on how various researchers have implemented the things where there
can be the shortcomings and how using my research methodologies I can attempt to fill those
loopholes. These are some of the papers below which were referred

2.1 Automated testing techniques for event driven and dynamically typed
software applications-Christoffer Quist Adamsen

In this paper they talk about various methods of detecting and preventing race conditions in
AJAX and JavaScript web applications. In this case, Adamsen (2018) focuses on various
aspects such as the race error occurrence due to the developers making false assumptions
about a particular business logic. They often find that developers do not take into account the
fact when the users start interacting with an application even before it has fully loaded. In
order to prevent these conditions from happening, the researchers prepare a catalogue-like
thing which contains various repair policies which will be providing a clear idea to the
application on how to perform if any such actions happen. They also tried to implement
policies which can make the application work in a single threaded mode when the race errors
become too huge to handle for the repair policies. They also suggest that concurrent errors are
also much easier for automatic repairs. There are some issues with doing this because while
creating a catalogue for various repair policies they covered only a few aspects of the
business logic errors and they didn't cover the ones which can actually happen on a rare basis.
Also for extreme cases they are trying to switch the application from a multithreaded
environment to a single threaded environment which can also be problematic for the
efficiency of the application because if the application is meant to run multiple functions and
all of a sudden it's only able to do one function then chances are the application can be
rendered useless.

2.2 Detecting JavaScript Races-Erdal Mutlu, Serdar Tasiran, Benjamin
Livshits

Here Mutlu, Tasiran (2015) talk about distinguishing between the benign race conditions and
harmful race conditions. Not all race conditions can be harmful because in some cases due to the
race conditions there can be minor glitches such as slowing down of some user functions or
maybe some minor issues in the Ul Side. Since given the forgiving nature of javascript execution
where a failure in the execution, the event handlers force the schedulers to terminate the current
handler and start a new one. They also focus on the data races which have a persistent state in the
terms of data storage. The data race conditions in this case are achieved via the POST calls to the
server. The major issue in this case is that the authors pre assumed the fact that the minor race
conditions which cause glitches in the UI are not impactful. But in a lot of cases that is not true
because in case of some large web apps it can be conflicting for the users and if due to the
glitches the user could not perform the needed functions, then it can be harmful for the businesses
operating that website as well as the users losing trust in the web app because of low quality
processing.

2.3 Understanding and Detecting Concurrency Attacks- Shixiong Zhao,
Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang, Heming Cui

Wang, Cui, Li (2018) in this case have identified two main features that were further leveraged into
attacks which could have bad consequences. The corrupted memory often resides a long time in the
system memory. Out of 31 cases for concurrency attacks, around 14 were not able to be detected by
the developers. This corrupted memory feature is something which is very hard to detect. Secondly
the inputs that were used to induce the concurrency bugs out of which 12 cases were taken and 10 of
those cases were requiring more subtle and detailed input to conduct the attacks. Of the instances, one
of the Linux instances which had privilege escalation and in order to trigger the memory corruption
only needed two threads which could be crafted. Also to trigger the root privilege a third socket is
required to call the socket() to allocate a SELinux label structuring which needs the kmalloc32()
structure. This structure should be located in the proximity of where the corrupted memory is present.
The main issue was the fact that for the detection of new concurrency attacks with reasonable
scalability it was difficult because the concurrency attacks samples gathered were more generic and in
order to categorise them it was very hard. It was also hard to find the false negatives in this huge
chunk of data also. Also for the valuation of the experimental detection very few datasets were used.

2.4 Race detection for web applications-B. Petrov, M. Vechev, M.
Sridharan, J. Dolby

The researchers in the above case try to formulate a happens-before relation that captures the key
ordering constraints for the most common web platform features. and they also try to define
operations that define atomic execution. They also try to present a logical memory access model for
the applications that abstract away from the implication details. There can be difficulties while
defining the relation paths for happens-before relation because of the very vague specifics and
sometimes browsers have also different levels of compatibility which might cause the specific
parameters to fail. Due to failure of these parameters sometimes it can be difficult to decide whether
the race condition is an actual/legit one or not.

2.5 On Race conditions in web applications-Roberto Paleari, Davide
Marrone, Danilo Bruschi, and Mattia Monga

Paleri, Marrone, Monga(2008), mostly discuss the various types of impacts that a race condition can
have on the website when there are frequent interactions between the website and the relational
databases. They mostly focus on the dynamic detection of the loopholes because of the fact that the
developer mostly ignores the underlying environment of the website which has mostly parallel
execution methods. The main disadvantage of the research in this case was they mostly considered a
single execution path or style for their dynamic detection, they did not take into account how the data
will be retrieved from the backend. Apart from that it also does not take into account any
synchronisation method that the website could take into account for its execution.

3 Research Methodology

This research paper methodology consists of several steps for the implementation of the project which
includes: Setting up the server and its related components, Installing and deploying the application,
Preparing the tools and scripts, Evaluating the applications and applying preventive measures if
possible. For the base methodology I have considered certain aspects from the research paper titled as
Race detection for the web applications-B. Petrov, M. Vechev, M. Sridharan, J. Dolby. The only issue
that came up while implementing certain aspects of the paper was that a lot of the tools and libraries
needed for the applications were obsolete or didn't have any support from the main organisations due
to which installing them or executing them became a tough task. So I had decided to change certain
areas of the methods for more improved and sophisticated testing and evaluation of the system. I also
modified certain aspects of the methodology to perform the attacks on the websites.

In the first step compared to the methodologies of Maranda (2021) which is setting up the server and
its related components which involves mostly selecting the right virtual machine with the needed
specifications. For the case of this thesis, | will be working on mostly AWS where the Linux machines
will be deployed as EC2 Instances and most of them will be attached with some basic features like the
device storage, load balancers and instance health monitoring. The only things which will be manually
configured are the Route Tables, Internet Gateway, I[AM and subnet. Once the setup for the instance
has been done, then I will work on setting up the Kubernetes cluster for the system which will act as
the base for deploying multiple web applications. For that I will be installing Kubernetes using some
bash scripts which contain all the commands and packages including for docker engine that will be
helpful for installing the Kubernetes Engine. Before getting started with that process, first I will create
IAM Roles in AWS for the master and the worker node which in this case will be the EC2 Instances.
The reason for doing so is because this will allow the machines to communicate well with each other
and the apps can operate within restricted boundaries. Once the Kubernetes master and worker node
engines are installed they will be connected with each other using the token which will be created
from the kubeadm join command. Once the installation has been done, the working of kubernetes can
be verified by typing any of the commands such as kubectl get namespaces.

Coming to the second part which consists of installing and deploying the application. The applications
mostly used in this case will be written in django and in order to install the libraries the Dockerfile
will be used which is further containing the libraries and other commands that will help to install the
base system to operate the application. Once the application image has been created then a
deployment and service file will be written in the YAML Format in which the deployment file will be
used to execute the image continuously and also provides a directory with storing the data. The
service file helps to expose the image to the external clients which can be used for communication
between the two parties. Once the images have been mentioned properly in the deployment file and
the proper ports are set, then those yaml files are applied. Also various ingress files are mentioned
depending on the application type for allowing the apps to be accessible from anywhere by just using
a domain name or IP Address.

The third step invoices the creation of scripts in python for testing race conditions. Following the
footsteps of Rothermel (2017), One of the scripts is just a basic testing one where the name of the
host and the other parameters are to be directly edited in the code and the code creates a custom thread
class containing HTTP POST Requests. It creates three instances of the thread to transfer the requests
concurrently. Also a raw request will be constructed. The request line includes POST / HTTP/ 1.1
which means a request will be made to the root directory of the website with HTTP / 1.1 and also
various parameters are also mentioned for starting the thread successfully. In another scenario a
docker image will be deployed locally as well to test the system. which is mostly a simple page which
displays various products. So in this case lets say a product needs to be bought which is more than
twenty bucks so the manual task which can be done in order to buy it sells a product more than two
times which will give enough credits. Knowing the requests which will be used to buy and sell
products. The other features that will be added in this code will be an aspect that one part of the code
will buy the product one time and it will be sold N number of times. Now only a function will be
added which will find the first transaction id and spawn the threads. After executing this script a
section will show up which will display the products bought.

Coming down to the next step which is evaluating and preventing the attacks if possible. For the
evaluating section tools like Apache JMeter will be used for initial testing which will include the
sending of multiple requests at the same time to see how the server handles them. This will give an
idea on how the server handles the initial requests at the same time. There can be chances of server
crash so in order to prevent it a load balancer will be added first and the experiment will be repeated
again. If it doesn't work out, certain parameters in Kubernetes will be modified to prevent the crash.
Apart from the basic JMeter tests various scripts written in python will be tested as well to find out
how the things work out. For instance in the second case the issue in the docker image can be fixed by
adding some changes in the python backend area which involves adding a login verification and also
securing the endpoints of the POST Requests which involve limiting the number of requests.

4 Design Specification

1. Implementation Techniques
e Programming Languages: Python(Django), YAML, JSON.
e Coding methods used: Waterfall and Agile
e Testing: Unit Testing

2. Architecture
System Overview
The system used in this case mostly consists of Self managed Kubernetes Cluster which
mostly consists of AWS EC2 Instances which is covered by Load Balancer for additional
protection for the systems. Alongside on the upper level also VPC is provided which will
help in private communication between two machines. Also within the system Docker
and Kubernetes will be installed which will help to manage various containers in the
system and alongside they all will have an ingress file which will provide external access
to the system.

Data flow

In this case the request is generated from any web browser to the domain where the
request passes through the load balancer and then enters the system where the ingress file
pointed to the container receives it and forwards it to the containers which further provide
the needed content.

Deployment Structure

For the thesis the majority of the deployment is done on AWS. First AWS EC2 Instances
were set up and alongside with it VPC is set up and needed IAM permissions are also
given. Once the setup is done, then certain bash scripts are added in the system which will
install docker and kubernetes automatically and also provision the load balancer as well.

3. Diagram

User —{(§{_») Domain Name of Travstack

[

Elastic Load Balancer(External IP for Ingress Service)

Ingress Resource \

Service 1 Service 2 Service 3
Travelstore Dashboard CDN
Apache Apache \om\

Kubernetes Cluster

Fig 1. Kubernetes Server Architecture

5 Implementation

For the implementation stages mostly the apps were deployed both externally in Kubernetes
and also a local deployment was done in docker which was further tested using various
python scripts. This can be divided into various sections

Experimental Setup:
1. Target Applications: The apps targeted in this case are mostly written in Django
2. Toolset: Apache JMeter, Kuebrnetes , Docker, Burp Suite

Implementation of Exploitation Techniques

The race conditions were mostly identified via manual testing and in certain cases the static
analysis of the code. For most of the cases the requests were manually generated from
different sources such as sending a purchase request to the website from two different virtual
machines. Also different login credentials were used at the same time using various tabs on
chrome as well to see how the website responds. In the case of the simple python app which
was deployed on docker, a manual review of the code was done which helped us to
understand which parts of the code caused the race condition issue.

Development of the Exploit code

Once the working mechanism of the race condition in the code was understood, the needed
POST Requests were also generated using python scripts and also the functions were also
added which kind of mimicked the action of buying one product and selling infinite products.
In the case of other websites a python script was written which will generate various types of
raw requests which can be either GET or POST Requests which will try to perform various
functions on the website at the same time and also the threads will respawn as well.

Implementation of the prevention measures

Code review guidelines: While sending the buy and sell requests, it was intercepted using
Burp Suite which gave the exact area where the issue can be in the code. Using the method
the code was reviewed which showed the loopholes and basically after doing a manual
review the code mechanism was understood and it was clear which snippets needed to be
added to reduce the attack surface. For the other websites which was deployed in production
the tools such as JMeter and python scripts were used to check and find out where the issues
came up as well

Secure coding aspects: In order to secure those areas various snippets were added in python
which were used to cover up the loopholes present in the code. Also the initial protection
measure of adding load balancer worked partially so certain changes were done at the ingress
level of the code and also in the deployment file of the kubernetes which helped to allocate
more resources to the container in order to handle more requests.

Security Testing: Once the needed measures were implemented then again the same set of
tests were run to find out if the loopholes existed or not. For instance in one case there was
one scenario where the website slowed down but it didn't crash completely after the
implementation of the security measure at the cloud level. Also for the code deployed at the
docker level, the same tests were done in two cases: the section that showed items bought
were displaying partial information which indicates that the preventive measures worked
successfully to a certain extent.

You will of course want to discuss the implementation of the proposed solution. Only the
final stage of the implementation should be described.

It should describe the outputs produced, e.g. transformed data, code written, models
developed, questionnaires administered. The description should also include what tools and
languages you used to produce the outputs. This section must not contain code listing or user
manual description.

6 Evaluation

For the evaluation of the attack methods alongside with which protection measures work the best
various methods were tested and their results were recorded along the way on how the application
reacted when the attack happened and what happened to the application when the protection measures
were applied and the attack was re performed.

6.1 Experiment/ Case Study 1

In the first experiment a normal travel website which has a backend that is written in django
was exposed with just a simple load balancer from AWS and it didn't have any other protection. So
initially Apache JMeter was configured to send multiple requests to the website. Initially the website
was able to handle the requests but slowly the website became slow and also showed a 502/503 error
even after allotting a load balancer. This shows the load balancer was not that successful in stopping
the attack but it did slow down the attack rate initially. The race condition execution was successful to
a certain extent.

6.2 Experiment/ Case Study 2

In the second experiment a small shopping website was deployed on docker locally to test
another race condition which was mostly related to time based execution and the buying/selling
requests were intercepted by configuring burp suite with the browser and modifying the
requests accordingly which helped to buy certain products without using extra credits. And now
the exploit was replicated into python code and it did send requests which caused the race
condition to execute and given the fact dockerise library was also added by modifying the
docker image as a protection measure but the same case happened where the race conditions
could not be prevented. In order to improve the protection in certain aspects the working
mechanisms of the code were changed which basically locked the row in the database and
deleted the item from the stock database once the purchase had been done. And again executing
the attack this time the protection measures did work which shows that sometimes it's important
to observe the working mechanism of the code which can be a great way to find the attack
prevention measure.

6.3 Experiment/ Case Study 3

In the third case an admin dashboard login was at our disposal which was related to the travel
website. In order to perform the race condition various valid and invalid logins were considered and a
script in python was designed to perform the same action. The various parameters were collected and
set up accordingly. AWS WAF Protection was added to provide protection against the crashing of the
site .Then the text file containing the username and passwords are included as well. This is similar to
bruteforce but not exactly the same because in this case there is a clear idea as to which passwords are
right or not. Once the script is executed it will show up the error and the successful login attempts and
executing this script in a loop will sometimes cause the page to slow down or sometimes show an
database error due to the fact that there is certain time difference when the requests are sent and also
login page is not coded properly enough to handle the errors. This issue was solved by adding certain
rate limiting logic and again the same experiment was repeated with the modified logic. This time the
website slowed down a bit but didn't crash or gave many errors which shows the logic was the main
issue in the code.

6.4 Experiment/ Case Study 4

In the fourth case the main website was tested for the race condition to gain access to the
admin page. This time a protection measure has been implemented in the ingress file of the
kubernetes deployment for the app and it is just a parameter which basically provides rate
limiting facilities. A python script will be written which will try all the right and the wrong
credentials more or less like a bruteforce attack. When the script is executed it keeps on
blocking the requests concurrently and there is a time when the backend API is unable to
handle the requests but the app is still prevented from crashing due to the presence of the rate
limiting configuration code added in ingress which blocks the requests after a certain
threshold is reached. This shows that in certain cases a proper configuration of the
deployment environment is also important alongside with writing the code keeping the race
conditions in mind.

6.5 Experiment/ Case Study 5

In the fifth experiment the travel website is targeted for DoS via race conditions and this time both the
code has been rectified in a way to handle the multiple requests and also the ingress file parameters
have been added for providing the rate limiting facilities. For additional protection the load balancer
has been configured alongside. This time both the Python script and JMeter will be used

8

simultaneously to see how many requests the system can handle. For doing so the python script is
executed on the virtual machine and the JMeter will be run as usual on the system. But this time the
website slows down a bit but doesn't crash at all. Though this configuration works well it did reduce
the efficiency of the website and also costed a bit high due to the usage of load balancer which may
not be feasible for long run.

6.6 Discussion

Various experiments were conducted on the websites and it was found that the race conditions could
mostly be prevented by a proper coding of the website but in certain cases certain aspects of the cloud
deployment can be changed to provide an additional layer of security in case the code was not
designed correctly. Configuring these additional configurations for the systems can be helpful because
in certain cases it is evident even when the website was tested for DoS attack via the race conditions,
the website did not crash or became unresponsive fully but still it just slowed down a bit. Apart from
that the system was tested by providing a simple load balancer but it did not work that effectively and
the malicious requests were still able to make their way through the system. There were some faults
with the experiments also. The major one is just testing out the website by covering them with load
balancer which kind of hindered the effectiveness of other configurations. Also most of the testing
was focused on one programming language and just one aspect of the race condition which is the DoS
attack whereas in reality a race condition can be used for many other purposes as well. Apart from
that the testing procedures could have been improved by trying to leverage the race condition into
some other form of attacks and also the defence mechanisms could have been more complicated given
there were more resources. The experiment did focus on the coding aspect but the majority focus was
mostly securing on the cloud side assuming the fact that in certain cases the code cannot be changed.
The major improvement that could have been done is adding some detection features which could
have helped to identify the loopholes quickly since in this case majority of the testing and
implementation was black box based.

After analysing the data from the monitoring tools these were the parameters that show how efficient
each defensive measure was. The data measurements were taken from Google PageSpeed and

Prometheus

The table below shows the data for the travel website when the race condition exploits were executed

Defensive Measure Initial Server Response time (in Milliseconds)
Load Balancer 408ms
Kubernetes Parameters 270ms
Changing Code Logic 230ms

Table 1: Response Time

Defensive Measures Latency Time(in Milliseconds)
Load Balancer 113ms
Kubernetes Parameters 99.3ms
Changing Code Logic 82.4ms

Table 2. Latency Time

7 Conclusion and Future Work

The major aspect of exploiting and preventing the attacks was covered in this thesis displaying
various experiments which showed how the attacks happened and how various protection measures
worked depending on the situations. Majority aspects of the question were covered but only the
detection part was not covered extensively. The main findings in the thesis was mostly about various
methods of secure coding which when tweaked can give a good level of protection alongside the
experiments. They also show that sometimes having a good understanding of the deployment systems
would be a good idea since this will also be a blocking point for the attacks which can happen in the
future. This thesis provides an overview on how the attacks can happen, and how the prevention
methods can work or maybe they can be bypassed. This is an important aspect to cover because this
thesis shows a way of how the attacks might evolve and how chaining other loopholes can render the
defence mechanisms useless. The main limitation in this case was the majority of the race conditions
were tested on the website which was coded in django and the testing was mostly done on one
environment which was deployed on Kubernetes and AWS. This just limits the idea of how the race
condition works and there is no guarantee the same methodologies would work. The other limitation
is the majority of the focus was towards leveraging race conditions into a DoS attack which is sure a
huge problem but the only issue in this case is race conditions can be leveraged into other forms of
attacks such as stealing data which was not focused much. Another limitation was the majority of the
detection of the race conditions was done in a manual way which was done for the purpose of
studying each loophole carefully but this process could have been automated to a certain extent.

In terms of future perspective, adding various automated methods of detection of the race conditions
with a high accuracy rate is something I would look for which I wasn't able to implement in the thesis
due to the time restrictions and other factors. Creating an AI Model which will pickup various attack
methodologies including the ones discussed in the thesis and training it accordingly. Apart from the
detection phase certain modules/code snippets could be added which will provide a basic way of
stopping the attack. The reason for extending the project is because detection of the points in the code
is also important to find out where the issues can occur, hence saving a lot of time on the static
analysis.

10

References

Adamsen, C.Q., 2018. Automated testing techniques for event-driven and dynamically typed software
applications.

Mutlu, E., Tasiran, S. and Livshits, B., 2015, August. Detecting JavaScript races that matter. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (pp. 381-392).

Gu, R., Gan, B., Ning, Y., Cui, H. and Yang, J., 2016. Understanding and Detecting Concurrency
Attacks.

ITerpos, b.U., Vechev, M., Sridharan, M. and Dolby, J. (2012). Race detection for web applications.
doi:https://doi.org/10.1145/2254064.2254095.
Poniszewska-Maranda, A. and Czechowska, E. (2021). Kubernetes Cluster for Automating Software

Production Environment. Sensors, 21(5), p.1910. doi:https://doi.org/10.3390/s21051910.

Yu, T., Srisa-an, W. and Rothermel, G., 2017. An automated framework to support testing for
process-level race conditions. Software Testing, Verification and Reliability, 27(4-5), p.e1634.

Paleari, R., Marrone, D., Bruschi, D. and Monga, M., 2008. On race vulnerabilities in web
applications. In Detection of Intrusions and Malware, and Vulnerability Assessment: Sth International
Conference, DIMVA 2008, Paris, France, July 10-11, 2008. Proceedings 5 (pp. 126-142). Springer
Berlin Heidelberg.

11

https://doi.org/10.1145/2254064.2254095

