

Configuration Manual

MSc Research Project

Masters in Cybersecurity

Ravali Chada

Student ID:23150335

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ravali Chada

Student ID:

23150335

Programme:

MSc Cybersecurity

Year:

2023-2024

Module:

Practicum

Lecturer:

Khadija Hafeez

Submission Due

Date:

12 August 2024

Project Title:

Automated Vulnerability Assessment Tool for Web Applications

Word Count:

1439…………Page Count: 11

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ravali Chada

Date:

12 August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Ravali Chada

Student ID:23150335

1 Integration Instructions

Step 1: Ensure Correct File Placement

1. Directory Structure:

Ensure the directory contains both the

VulnerabilityAssessmentTool.java file and the

consolidated_vulnerability_scanner.py file. The structure should look like

this.

├── VulnerabilityAssessmentTool.java

├── VulnerabilityAssessmentTool.class

└── consolidated_vulnerability_scanner.py

Step 2: Modify Java Code for Python Script Execution

1. Update Python Script Path in Java Code:

o Open the VulnerabilityAssessmentTool.java file in a text editor

or an IDE.

Locate the performScan method. Ensure that the path to the Python script is

correctly specified if the script is not in the same directory. Update the command list as

needed:

private static String performScan(List<String> urls) {

 try {

 List<String> command = new ArrayList<>();

 command. Add("python3");

 command.add("path/to/consolidated_vulnerability_s
canner.py"); // Update this path if necessary

 command.addAll(urls);

 ProcessBuilder pb = new ProcessBuilder(command);

2

 Process process = pb.start();

 BufferedReader reader = new BufferedReader(new
InputStreamReader(process.getInputStream()));

 StringBuilder result = new StringBuilder();

 String line;

 while ((line = reader.readLine()) != null) {

 result.append(line).append("\n");

 }

 return result.toString();

 } catch (IOException e) {

 e.printStackTrace();

 return "Error occurred during scan.";

 }

}

o Save the changes to VulnerabilityAssessmentTool.java.

3

Step 3: Compile and Run the Java Application

1. Compile the Java Code:

o Open a terminal and navigate to the directory containing your Java file.

Compile the Java code using the following command:

javac VulnerabilityAssessmentTool.java

2. Run the Java Application:

Execute the Java application:

java VulnerabilityAssessmentTool

Step 4: Execute Vulnerability Scans Using the Integrated Tool

1. Launch the Java Application:

o After running the VulnerabilityAssessmentTool class, a GUI

window will appear.

2. Input URLs:

In the text field labeled "Website URLs:", enter the URLs you want to scan, separated

by commas. For example:

http://example.com, https://anotherexample.com

https://anotherexample.com/

4

3. Start the Scan:

o Click the "Start Scan" button. The application will validate the URLs and, if

they are valid, pass them to the Python script for scanning.

4. View the Results:

o The scan results will be displayed in the text area within the GUI. A detailed

report will also be saved in a file named report. Json in the current

working directory.

5

Another example:

Step 5: Verify Python Script Execution

1. Check Python Script Execution:

Ensure the Python script is executable by running it directly from the terminal:

python3 path/to/consolidated_vulnerability_scanner.py
http://example.com

o This should return results like those displayed in the Java application's text

area.

6

Step 6: Handle Common Issues

1. Java Application Fails to Start:

o Ensure the JDK is correctly installed and the JAVA_HOME environment

variable is set.

o Verify the Java code is compiled without errors.

2. Python Script Errors:

o Check that all required Python libraries (requests, beautifulsoup4,

json, re) are installed.

Ensure the Python script has execution permissions:

chmod +x path/to/consolidated_vulnerability_scanner.py

3. Invalid URLs:

o The application checks for valid URL formats. Ensure URLs are prefixed with

http:// or https://.

By following these steps, the Java frontend will integrate with the Python backend, enabling

vulnerability scans to be executed from the graphical interface.

2 Usage Guide

Launching the Application

1. Run the Compiled Java Application:

o Open a terminal and navigate to the directory containing the compiled Java

class file (VulnerabilityAssessmentTool.class).

Execute the Java application:

java VulnerabilityAssessmentTool

7

o A graphical user interface (GUI) window titled "Vulnerability Assessment

Tool" will appear.

Input URLs

1. Enter URLs for Scanning:

o In the text field labeled "Website URLs:", enter one or more URLs you wish

to scan for vulnerabilities.

Ensure that the URLs are separated by commas if you enter multiple URLs. For example:

http://example.com, https://anotherexample.com

o URLs must start with http:// or https:// to be considered valid.

Starting the Scan

1. Initiate the Vulnerability Scan:

o After entering the URLs, click the "Start Scan" button below the text field.

o The application will validate each URL. If a URL is invalid, an error message

will be displayed indicating which URL is incorrect.

2. Scan Execution:

o The Java application will call the Python script

(consolidated_vulnerability_scanner.py) for valid URLs to

perform the vulnerability scan.

o A loading message or indicator may be displayed while the scan progresses.

Viewing the Results

1. Results Display:

o Once the scan is complete, the results will be displayed in the text area within

the GUI.

o The text area provides a scrollable view to see the complete output of the scan.

2. Interpreting the Results:

o The results will indicate whether vulnerabilities such as SQL injection, Cross-

Site Scripting (XSS), or Cross-Site Request Forgery (CSRF) were detected for

each URL.

o Each detected vulnerability will be listed with details, including the payload

that triggered the detection.

3. Information Popup:

o A message box will appear informing you that the scan is complete and

instructing you to check the result area and report.json file for detailed

information.

8

4. Detailed Report

1. Accessing the Report:

o A detailed scan results report is saved in a file named report.json in the

current working directory.

o Open this file with any text editor or JSON viewer to see a structured and

detailed account of the vulnerabilities detected.

2. Understanding the Report Format:

o The report.json file contains an array of objects, each representing the

scan results for a specific URL.

o Each object includes the URL, and boolean flags indicating the presence of

vulnerabilities (sql_injection, xss, csrf), and any error messages for

invalid URLs.

9

3.Common Issues and Troubleshooting

1. Java Application Fails to Start:

o Ensure the JDK is correctly installed and the JAVA_HOME environment

variable is set.

o Verify the Java code is compiled without errors.

2. Python Script Errors:

o Check that all required Python libraries (requests, beautifulsoup4,

json, re) are installed.

Ensure the Python script has execution permissions:

chmod +x path/to/consolidated_vulnerability_scanner.py

3. Invalid URLs:

o Ensure URLs are correctly formatted and prefixed with http:// or

https://.

3 Troubleshooting

Java Application Issues

1. Java Application Fails to Start:

o Error Message: java.lang.NoClassDefFoundError

▪ Solution: Ensure the JDK is correctly installed and the JAVA_HOME

environment variable is set.

▪ Steps:

o Check the JDK installation:

java -version

o Set the JAVA_HOME environment variable:

export JAVA_HOME=/path/to/jdk

export PATH=$JAVA_HOME/bin:$PATH

o Error Message: ClassNotFoundException

▪ Solution: Ensure the Java class file is in the correct directory and

compiled without errors.

▪ Steps:

o Compile the Java code:

javac VulnerabilityAssessmentTool.java

o Run the Java application:

java VulnerabilityAssessmentTool

Python Script Issues

1. Python Script Execution Errors:

o Error Message: ImportError: No module named 'requests'

▪ Solution: Install the required Python libraries.

▪ Steps:

10

o Install the necessary libraries:

pip3 install requests beautifulsoup4

o Error Message: Permission denied

▪ Solution: Ensure the Python script has execution permissions.

▪ Steps:

o Set the execute permission for the Python script:

chmod +x
path/to/consolidated_vulnerability_scanner.py

Invalid URLs

1. Error Message: Invalid URL

o Solution: Ensure URLs are correctly formatted and prefixed with http://

or https://.

o Steps:

o Verify the URL format before entering it into the application. URLs should be

in the format:

http://example.com

o https://anotherexample.com

General Application Issues

1. Scan Fails to Start:

o Issue: No output or response when clicking "Start Scan".

▪ Solution: Ensure the paths to the Python script and other resources are

correctly specified in the Java code.

▪ Steps:

o Verify and update the path to the Python script in the performScan method:

command.add("path/to/consolidated_vulnerability_scan
ner.py"); // Update this path if necessary

2. Java Application Freezes or Crashes:

Issue: The application becomes unresponsive during scanning.

o Solution: Ensure the system has sufficient resources and the scanned URLs do

not cause the Python script to hang.

o Steps:

▪ Monitor system resources and terminate any processes consuming

excessive CPU or memory.

▪ Test with a single, known-good URL to verify basic functionality.

3. Unexpected Output or Incomplete Results:

Issue: Scan results are not as expected or incomplete.

o Solution: Check for errors in the Python script output and ensure all necessary

libraries and dependencies are installed correctly.

11

o Steps: Run the Python script directly with a test URL to identify any issues:

python3path/to/consolidated_vulnerability_scanner.py
http://example.com

Detailed Logging

1. Enable Detailed Logging:

Issue: Difficulty diagnosing problems without detailed logs.

o Solution: Add logging to Java and Python code to capture detailed execution

information.

o Steps:

▪ Add logging statements in the Java code to capture key events and

errors.

▪ Modify the Python script to log detailed information about the

scanning process and any encountered issues.

References

[1] Oracle Corporation. (n.d.). *ProcessBuilder (Java Platform SE 11)*. Oracle. Retrieved

August 12, 2024, from

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html

[2] Baeldung, E. (2019). *Execute Python scripts from Java*. Baeldung. Retrieved August

12, 2024, from https://www.baeldung.com/run-shell-command-in-java

[3] GeeksforGeeks. (n.d.). *Java-Python Integration: How to Run Python Code in Java*.

GeeksforGeeks. Retrieved August 12, 2024, from https://www.geeksforgeeks.org/different-

ways-to-execute-python-code-in-java/

[4] Luv2code Blog. (2019). *Running shell commands in Java using ProcessBuilder*.

Luv2code. Retrieved August 12, 2024, from https://www.luv2code.com/2019/10/10/running-

shell-commands-in-java-using-processbuilder/

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html
https://www.baeldung.com/run-shell-command-in-java
from%20https:/www.geeksforgeeks.org/different-ways-to-execute-python-code-in-java/
from%20https:/www.geeksforgeeks.org/different-ways-to-execute-python-code-in-java/
https://www.luv2code.com/2019/10/10/running-shell-commands-in-java-using-processbuilder/
https://www.luv2code.com/2019/10/10/running-shell-commands-in-java-using-processbuilder/

