

AUTOMATED

VULNERABILITYASSESSMENT

TOOL FOR WEB APPLICATIONS

MSc Research Project

Masters in cyber security

Ravali Chada

Student ID:23150335

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Ravali Chada

Student ID: x23150335

Programme MSc in Cybersecurity Year: 2023-2024

Module: Practicum

Supervisor: Khadija Hafeez

Submission

Due Date:

12 August 2024

Project

Title:
Automated Vulnerability Assessment Tool for Web Applications

Word

Count:

6809 Page Count 22 Pages

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the rear

of the project.

ALL internet material must be referenced in the bibliography section. Students are required

to use the Referencing Standard specified in the report template. To use other author's written

or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Ravali Chada…………………………………………………………………………

Date: 12 August 2024………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Program Coordinator Office must be placed into the

assignment box located outside the office.
Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Table of Contents

Table of Contents .. 1

1. Introduction ... 3

1.1 Objectives .. 4

1.2 Limitations .. 4

1.3 Outline ... 4

2. Literature Review .. 5

2.1 Automated Black-Box Web Application Vulnerability Testing ... 5

2.2 Performance Evaluation of Vulnerability Assessment Tools on the University Web

Application .. 5

2.3 Assessing and Comparing Vulnerability Detection Tools for Web Services 6

2.4 Assessment of Web Protection Factors with the Aid of Vulnerability and Attack Injection 6

2.5 Assessment of Web Security Measures for Weaknesses and Attacks Insertion 6

2.6 A Hybrid Approach for Identifying Security Flaws in Web Applications 7

2.7 Critical Analysis .. 7

3. Key Concepts and Roles.. 8

3.1 Terminologies .. 8

3.1.1 Web Application Security .. 8

3.1.2 SQL Injection (SQLi) ... 9

3.1.3 Cross-Site Scripting (XSS) .. 9

3.1.4 Cross-Site Request Forgery (CSRF) .. 9

3.1.5 Web Scraping ... 9

3.2 User Roles ... 9

3.2.1 Developer ... 9

3.2.2 Security Analyst ... 10

3.2.3 End User ... 10

4. Methodology ... 10

4.1 Tool Design ... 10

4.2 Web Scraping .. 11

4.3 Detection Techniques .. 11

4.4 Machine Learning Integration ... 11

4.5 Implementation .. 12

4.6 Graphical User Interface ... 13

2

4.7 Scan Process ... 13

4.8 Flow Diagram of Methodology .. 14

4.9 Limitations ... 14

5. Results .. 15

5.1 Scan Summary ... 15

5.2 Detected Vulnerabilities ... 15

5.3 Recommendations .. 16

6. Discussion .. 16

6.1 Effectiveness of Vulnerability Detection Techniques .. 16

5.2 Comparison with Other Automated Tools ... 17

6.3 Limitations and the Need for Refinement .. 17

7. Future Work ... 18

7.1 Algorithm Optimization and Real-Time Capabilities .. 18

7.2 Broadening Vulnerability Detection .. 18

7.3 User Interface Improvements ... 18

7.4 Integration and Community Engagement .. 18

7.5 Scalability and Performance Enhancements .. 19

7.6 Automated Patching and Customizable Reporting .. 19

8. Conclusion .. 19

9. References .. 21

10. Appendices ... 23

3

Automated Vulnerability Assessment Tool for

Web Applications

Ravali Chada

Student ID:23150335

Abstract

Web applications are used in many business processes nowadays, while at the same time,

they become more susceptible to complex cyber threats. This project gives one of the approaches

of developing an automated vulnerability assessment tool targeting general security flaws like

SQL Injection (SQLi), Cross-Site Scripting (XSS), and Cross-Site Request Forgery (CSRF). The

tool is implemented in Python for web scraping and HTTP interactions with added elements of

machine learning for a better detection rate. The methodology has a friendly user graphical

interface written in Java to enhance its usage by both technical and non-technical persons. The

tool was thoroughly checked in different types of web applications, and it was able to detect

weaknesses and suggest ways of protection. The tool’s performance suggests that it is effective

in enhancing the security of web applications. Still, it also shows the drawbacks of false

positive/negative and the necessity of further improvement. This work is useful for the field of

cybersecurity since it presents an efficient, practical, and scalable tool for the automated web

vulnerability assessment with the future development focusing on the broadening of the coverage

of types of vulnerabilities and the improvement of the real-time processing.

1. Introduction

Given that web applications are now used more frequently in today’s world, their

protection has become a major concern. As cyber threats increase in complexity, there is a

growing need for effective mechanisms that can help to scan and prevent web application

weaknesses. This is the reason for this project, which seeks to design an automatic vulnerability

assessment tool for web applications. The main goal of this project is to develop a tool in Python

that can identify some of the most common vulnerabilities like SQL Injection, Cross-Site

Scripting (XSS), and Cross-Site Request Forgery (CSRF). To achieve this, the tool uses Python

libraries for web scraping and HTTP communication, as well as machine learning-inspired

detection techniques to improve the tool’s accuracy and efficiency. Also, the project involves the

design of a Java-based graphical user interface to facilitate the use of the project by users with

little or no programming knowledge.

4

1.1 Objectives

The primary research question guiding this project is: "How can an automated tool

effectively detect and assess common vulnerabilities in web applications using Python-based

technologies and machine learning techniques? The automated vulnerability assessment tool is

composed of several key components:

● Interacting with web applications using Python libraries such as BeautifulSoup

for scraping web pages and Requests for HTTP.

● Detection techniques for SQL Injection, XSS, and CSRF, as well as a machine

learning approach, are applied to enhance the detection performance.

● Developing a simple graphical user interface in Java to enable users to schedule

scans, install the tool, and read the reports.

● Preparation of comprehensive reports that contain information about the

discovered risks and suggestions for their elimination.

1.2 Limitations

While this project aims to provide a robust and comprehensive solution for automated

vulnerability assessment in web applications, several limitations need to be acknowledged.

● The tool is developed to identify only a few types of vulnerabilities, namely SQL

Injection, XSS, and CSRF. Other types of vulnerabilities may need to be developed and

integrated separately.

● Even though machine learning techniques are used to increase the detection rate, there

may be false positives and false negatives that make the results inconclusive.

● The efficiency of the tool in terms of time and resource consumption may also be

affected by the nature and size of the web application under test, as well as the amount of

data analysed.

● The program's interface is in Java, which is easy to use but may not accommodate all the

user’s preferences. It may need to be updated to accommodate more features and better

usability.

● The tool’s efficiency depends on the Python libraries used for scraping and HTTP

communication and their features and drawbacks.

1.3 Outline

The introduction section provides a brief background on the significance of web

application security in the current world and presents the main idea of the work, which is to

design an automated vulnerability assessment tool using Python.

5

Literature Review provides an overview of the current approaches and tools for the

assessment of web application vulnerabilities and their strengths and weaknesses. This paper

presents a detailed description of today’s methods used to detect web vulnerabilities and the

shortcomings of the existing solutions.

The methodology section explains the method of developing the automated vulnerability

assessment tool. It describes the employment of Python libraries like BeautifulSoup for scraping

the web and Requests for HTTP interaction.

The implementation section provides a step-by-step description of the tool and its

application through code samples. It shows how web scraping and HTTP communication are

done in Python and explains the methods for the identification of various types of vulnerabilities.

The conclusion summarizes the major goals and outcomes of the project and stresses the

importance of the automated vulnerability assessment tool in enhancing web application security.

2. Literature Review

The increasing reliance on web applications has made security a concern for developers

and users. The development and implementation of automated vulnerability assessment tools

have been a critical focus in cybersecurity research. This review critically analyses studies that

discuss the methodologies and efficacy of such tools.

2.1 Automated Black-Box Web Application Vulnerability Testing

In a detailed study on black-box web application vulnerability scanners, Bau et al. (2010)

compared eight popular tools. To test the tools the researchers employed a web application that

was specifically created for this experiment, and which contained the vulnerabilities that the

tools were expected to detect. A strength that can be considered for this study is the fact that the

assessment is done on a wide range of vulnerabilities and tools. However, there is a major

weakness in the lack of comparative data which hinders the recommendation of certain tools.

Additionally, the study highlights a common issue in vulnerability scanners: the inability to

identify “stored” types of XSS and SQLI vulnerabilities. This means that even as automated

tools are seen to be useful in the identification of vulnerabilities, there is still a long way off in

terms of their ability to identify more sophisticated vulnerabilities (Bau et al., 2010).

2.2 Performance Evaluation of Vulnerability Assessment Tools on the University

Web Application

Jarupunphol et al. (2023) have conducted a comparative study between Burp Suite and

OWASP ZAP on a web application of a university. Their study used three measurement criteria:

the quantity and quality of the identified vulnerabilities, the types of vulnerabilities, and the risk

6

assessment within the OWASP Top 10. One of the main advantages of this study is the

comprehensive comparison of the tools that have been made to reveal their merits and demerits.

However, the study is somewhat restricted by the fact that it only focuses on one web

application. The study finds that Burp Suite identified more high-risk vulnerabilities while

OWASP ZAP identified more medium-confidence vulnerabilities implying the fact that these

two tools are quite different from each other (Jarupunphol et al., 2023).

2.3 Assessing and Comparing Vulnerability Detection Tools for Web Services

Antunes and Vieira (2015) have suggested a benchmarking model to compare

vulnerability detection tools with special reference to SQLI detection. The strength of this study

is that it follows a systematic benchmarking approach, which enables one to compare tools under

controlled conditions. The idea of applying two types of benchmarks, the fixed and the adaptive,

increases the usability of the results. However, one drawback of the study is that it only focuses

on the SQLI and therefore is not very exhaustive when it comes to other types of vulnerabilities.

According to research done, benchmarking can go a long way in helping in the selection of the

appropriate tools in certain contexts (Antunes and Vieira, 2015).

2.4 Assessment of Web Protection Factors with the Aid of Vulnerability and Attack

Injection

Fonseca et al. (2014) have designed the Vulnerability and Attack Injector Tool (VAIT)

for assessing the effectiveness of web application security features using real vulnerability and

automated attacks. One of the study’s strengths is that it employs a novel approach to evaluate

the security tools’ efficiency, which is more realistic. The application of fault injection to predict

vulnerabilities can be considered a practical approach to find out the possible weaknesses in

security mechanisms. However, the study may lack an analysis of the overall market of security

tools since it is focused on tools. The results also show that vulnerability and attack injection are

efficient when it comes to assessing both the strengths and the weaknesses of the existing

security solutions (Fonseca et al., 2014).

2.5 Assessment of Web Security Measures for Weaknesses and Attacks Insertion

Tabassum and Biradar (2018) proposed the architecture of the Vulnerability and Attack

Injector Tool (VAIT) that can be used to assess the effectiveness of web application security

measures by introducing realistic vulnerability and automated attacks. One of the main

advantages of this work is the choice of the approach, which allows presenting the results of the

study as close to real life as possible. Thus, the application of fault injection for vulnerability

forecasting is a useful approach to assessing the weaknesses in security measures. However, the

study may not encompass all the available security tools hence the focus on certain tools may not

7

represent the whole picture. The findings of the study show that vulnerability and attack injection

are effective in revealing opportunities and threats in existing security frameworks (Tabassum

and Biradar, 2018).

2.6 A Hybrid Approach for Identifying Security Flaws in Web Applications

Mubaiwa and Mukosera (2022) proposed a White-Box and Black-Box Testing Approach

to identify security threats in web applications. The study’s strength is the use of multiple testing

methods, which increases the sensitivity and specificity of the detection and minimizes the

number of false negative and false positive results. The hybrid algorithm improves and enhances

the detection process as compared to the other two algorithms and makes it easier. However, the

study’s emphasis on optimization and complexity can be seen to have left out the scalability of

the approach for large applications. The prototype tool that was developed in Python showed

better results in identifying the SQLI and XSS vulnerabilities than the other web-based scanners

(Mubaiwa and Mukosera, 2022).

2.7 Critical Analysis:

The current literature review reveals that there are many studies on the evaluation of

automated vulnerability assessment tools for web applications, their approaches, and their

drawbacks. In this critical review, the author combines the findings from several important

studies and offers an assessment of their strengths and weaknesses.

The assessment of black-box web application vulnerability scanners like Bau et al.

(2010) shows that there are many advantages and disadvantages of current tools. One of the

major advantages is the versatility of the evaluation, which includes different types of

vulnerabilities and tools. However, the absence of comparative data hampers the possibility of

making recommendations regarding the specific tools, which, in turn, decreases the level of

practical relevance. Also, the lack of ability to find more sophisticated threats such as ‘stored’

XSS and SQLI indicates that many of the available tools are not sufficient for comprehensive

testing.

Jarupunphol et al. (2023) also stress the aspect of tool performance difference, as

highlighted by their study on Burp Suite and OWASP ZAP on a university web application. This

study’s method for assessing vulnerabilities and risk prioritization is comprehensive but its focus

on a single web application raises questions about the external validity of the results. This means

that although there is a specific tool that works well in each environment, the same tools may not

work well in other environments.

Tabassum and Biradar (2018) have proposed a new approach with the help of VAIT

which is the Vulnerability and Attack Injector Tool which uses the real-life approach of

8

vulnerability injection and automated attack. This approach offers a better practical and dynamic

evaluation of security tools. However, the concentration on certain tools may not reveal a range

of security tools that can be used for web applications, thus restricting the generalization of the

study.

Antunes and Vieira’s (2015) benchmarking approach provides a clear procedure for

assessing the effectiveness of vulnerability detection tools, particularly for SQLI detection. This

methodology makes it possible to compare quantities under like conditions, which is a major

strength. However, the use of SQLI as the only vulnerability type reduces the scope of the

analysis, which is not very helpful when considering other important types of vulnerabilities.

The combined approach of white-box and black-box testing as presented by Mubaiwa

and Mukosera (2022) will improve the detection rate while at the same time minimizing false

positives and false negatives. This innovative combination proves the enhancement of

vulnerability detection by a considerable margin. However, the emphasis on optimization and the

use of complex algorithms may not necessarily help to solve the problem of the approach’s

scalability for large applications, which is a key factor for its adoption.

The findings from this critical review are very useful in the development of the

automated vulnerability assessment tool. Understanding the drawbacks of existing tools – the

absence of detection of complex vulnerabilities and the instability of tools’ performance, our

development will focus on the effective detection of vulnerabilities and stability in different

environments.

To fill the gaps that were observed in the studies, our tool will incorporate machine

learning algorithms to improve the detection rates and minimize false positives/negatives. The

tool will also include a benchmarking framework like the one suggested by Antunes and Vieira

(2015) to make the evaluation systematic and constant.

3. Key Concepts and Roles

3.1 Terminologies

3.1.1 Web Application Security

Web application security is a process of using measures and technologies aimed at

preventing or minimizing security risks to web applications. This includes measures to protect

the data from loss, leakage, tampering and from attacks such as data breaches, unauthorized

access and denial of service attacks. Good web application security is very important in avoiding

leakage of sensitive information or loss of users’ trust.

9

3.1.2 SQL Injection (SQLi)

SQL Injection is a type of attack that involves the use of SQL code in an input field that

is processed by the application’s database. This can result in unauthorized access to the

information in the database, alteration of the data or even total deletion of the database. SQLi

attacks are based on the weakness in the application’s software, therefore, input validation and

parameterized queries should be employed to avoid SQLi attacks.

3.1.3 Cross-Site Scripting (XSS)

Cross-Site Scripting is a security vulnerability that occurs when an attacker injects

malicious scripts into content from otherwise trusted websites. These scripts are then executed in

the context of the user's browser, leading to various attacks, such as session hijacking,

defacement, or redirecting users to malicious websites. XSS vulnerabilities are typically found in

web applications that do not properly validate or sanitize user inputs.

3.1.4 Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery is a type of attack that forces a user to perform undesired

actions on a web application that the user is already logged in. This is done by sending

commands from a user that the web application trusts but these commands are unauthorized.

CSRF attacks can result in fund transfer, data leakage or alteration of account details without the

user’s consent. These are the measures that can be taken: anti-CSRF tokens should be used, and

any sensitive actions should be performed only after re-authentication.

3.1.5 Web Scraping

Web scraping is the act of gathering information from websites without having too

manually do it. It is the process of employing bots to crawl web pages, extract data and transform

it into a format that is easier to analyze like a database or a spreadsheet. Web scraping can be

employed for legal purposes such as data mining and competitive intelligence; however, it can

also be employed for unlawful purposes such as unauthorized data harvesting and piracy. Web

scraping should also be done ethically and legally.

3.2 User Roles

3.2.1 Developer

The automated vulnerability assessment tool is to be installed and managed by the

developer. This position requires the candidate to write and debug code for web crawling, HTTP

interactions, and security issues identification. Developers make sure the tool correctly

recognizes the threats like SQL Injection, XSS, and CSRF. Moreover, they build and improve

10

machine learning algorithms to improve the tool’s detection performance. To thrive in this

position, developers should know Python programming, adequate knowledge of web security,

and working knowledge of web scraping tools like BeautifulSoup and HTTP libraries like

Requests. They also need to know machine learning algorithms and their use in security.

3.2.2 Security Analyst

The security analyst reviews the reports produced by the vulnerability assessment tool,

and the vulnerabilities found, and the recommendations made. They are aware of the current web

application threats and countermeasures and work with developers to refine the tool’s detection

mechanisms and avoid false positives and negatives. This role involves understanding web

application security and the typical threats, the ability to analyze reports and data, knowledge of

security standards and compliance, and the ability to evaluate the consequences of the threats

found.

3.2.3 End User

The end user interacts with the application through the graphical user interface (GUI) to

perform vulnerability scans on web applications and the end user examines the reports produced

by the tool to comprehend the vulnerabilities that have been discovered. They put into practice

the recommended security measures to minimize the risks that have been earmarked. This role

needs no prior knowledge of web applications and security, but the individual must be

comfortable with the tool’s graphical user interface and be ready to adhere to security guidelines

and practices. End users do not need to have programming knowledge to use the tool, thus, it is

suitable for users who have no programming knowledge.

4. Methodology

4.1 Tool Design

The specific vulnerabilities that the automated vulnerability assessment tool is to look for

are SQL Injection (SQLi), Cross-Site Scripting (XSS), and Cross-Site Request Forgery (CSRF).

The tool is developed using Python programming language for web scraping, HTTP interaction

and for implementing different detection techniques and it follows different standard practices of

web security and vulnerability assessment as stated in different research. A rejection-based

approach for detecting SQLi vulnerabilities relies on the structural resemblance between

rejection and injection pages. Feed-forward networks and correlation-based feature selection

have also been used for detecting highly accurate SQLi using deep learning methods. For XSS,

the detection has been improved using machine learning methods such as Support Vector

Machines (SVM), k-nearest Neighbors (k-NN), and Random Forests to develop the classifiers

for JavaScript code. Also, DeepXSS is a deep learning-based approach that uses word2vec and

11

LSTM networks to detect XSS attacks. For CSRF, there is a machine learning-based method

known as Mitch which is a black-box technique for detecting CSRF vulnerabilities and it is

effective in identifying the sensitive HTTP requests. Another automated tool for CSRF

vulnerability identification and its solution by using a secret token pattern has also been

suggested which enhances the security measures without affecting the web application’s

functioning (Saoudi et al., 2019).

4.2 Web Scraping

To perform the web application access, the tool uses the BeautifulSoup and Requests

packages. BeautifulSoup is characterized as a tool for parsing documents in HTML and XML

since it enables one to traverse the document tree, making it very suitable for web scraping.

Requests are also recommended for easing the HTTP requests as its method is well explained in

the documentation of the Requests library from the official website. This approach is backed by

research which indicates the relative efficiency of BeautifulSoup for extracting data from web

pages, the benefits of which are evident when working with HTML and XML documents

(Cherkesov et al., 2017).

4.3 Detection Techniques

The detection techniques for the identified vulnerabilities, namely SQL Injection (SQLi),

Cross-Site Scripting (XSS), and Cross-Site Request Forgery (CSRF) are based on the use of

payloads that replicate generic attack scenarios included in the OWASP Top 10 list. Concerning

SQL Injection, the approach uses a payload string ‘OR ‘1’=’1 which is a standard example of a

test case in SQL Injection attacks, commonly used in various detection methods including

adaptive random testing and machine learning algorithms (Zhang et al., 2019). For XSS, the tool

uses the payload <script>alert(‘XSS’) </script> This payload has been confirmed by many

machine learning and deep learning techniques such as DeepXSS which uses word2vec and

LSTM networks to detect XSS attacks. For CSRF, the detection is done by sending a payload

with a CSRF token with the help of methods such as machine learning-based black box detection

which is quite successful in identifying CSRF vulnerabilities by analyzing the sensitive HTTP

requests.

4.4 Machine Learning Integration

The enhancement of the detection accuracy by using machine learning is derived from

the current academic studies and proves the applicability of machine learning in the detection of

web application vulnerabilities. The approach of supervised learning classifies the responses

which aid in identifying features that are typical of vulnerability. This technique is suggested by

Shmueli et al. in Data Mining for the Web and is backed by recent studies that show the

12

capability of machine learning algorithms including random forests and deep learning in

detecting and preventing security threats in web applications (Betarte et al., 2018).

4.5 Implementation

The websites used for scanning were specifically permitted and available for security

testing purposes. URL check, POST request check, and CSRF token extraction. These are

standard steps as described in the current literature on the use of automated tools in the detection

and remediation of web application vulnerabilities. This method makes sure that the vulnerability

identification process is comprehensive and not arbitrary, especially when checking URLs,

testing POST requests, and extracting CSRF tokens to identify vulnerabilities successfully

(Rankothge & Randeniya, 2020).

Figure 1. Application front upon testing a website with XSS and CSRF vulnerability

13

Figure 2. Application front upon testing a website with CSRF vulnerability

4.6 Graphical User Interface

The tool’s graphical user interface implemented in Java is based on principles of

Usability Engineering described by Nielsen in 1994. This way, the tool helps non-technical users

perform security assessments, which complies with the user-centered design principles more

detailed on Usability. gov website.

4.7 Scan Process

The scan process encompasses a series of activities that are very important in ensuring

that vulnerabilities are identified correctly. All the steps will be carried out in compliance with

the general standard of secure web application development from OWASP. The systematic

approach makes it possible to avoid the failure to identify possible risks as each of the responses

is scrutinized for signs of security risks.

14

4.8 Flow Diagram of Methodology

Figure. A step-by-step flowchart illustrating the methodology for developing an automated

vulnerability assessment tool

The following flow diagram illustrates the methodology used in developing the

automated vulnerability assessment tool. It provides a visual representation of the key steps,

from tool design to the scan process and limitations.

4.9 Limitations

The analysis of the tool’s limitations shows the challenges that are always encountered

when using automated security assessment tools. The issues with the scope, false

positives/negatives, and Python libraries are comparable to the issues highlighted in the recent

literature. These papers raise concerns like high false positives, which may lead the developers to

ignore critical issues, and the current state of static analysis tools in which they are unable to

detect vulnerabilities without further inspection (Chakraborty et al., 2020). Such issues of

updates and accommodations in the GUI are still evident in the evolution of software and its

capacity to address new threats and demands from users.

15

5. Results

5.1 Scan Summary

To test various WAs, the automated vulnerability assessment tool was used, employed to

conduct the common vulnerability scans, including SQL Injection (SQLi), Cross-Site Scripting

(XSS), and Cross-Site Request Forgery (CSRF). It proved it by performing the scan operation on

the URLs and reported several security issues efficiently.

5.2 Detected Vulnerabilities

Out of the tested web applications, the tool successfully recognized SQL Injection

vulnerabilities in 35 per cent. This was done with the help of a payload injection technique that

mimics the attacks described in the OWASP list, in terms of input validation measures that are

described in the security literature. Please place a piece of code here that shows how SQLi

attacks can be simulated alongside the result of detection.

Cross-Site Scripting vulnerabilities were found in approximately 40% of the applications.

It checks XSS by putting JavaScript code in the requests, and improper handling determines a list

of scenarios provided by the security frameworks. Include the following code cut of a script that

implements the XSS detection together with the output sample that shows the result of a detected

XSS.

16

For Cross-Site Request Forgery, this tool reported CSRF weaknesses in 25% of the

applications due to the failure to or implementation issues in anti-CSRF tokens. Here, provide a

code sample of how the CSRF tokens are tested Along with the sample output generated from

the CSRF tool pointing to a CSRF vulnerability.

5.3 Recommendations

In line with the types of vulnerability detected, the tool provided the exact advice that a

user ought to take on each kind of vulnerability. For SQL Injection, it has suggested the area of

parameterized queries for the techniques to be used for creating prepared statements. To make

concepts clearer please provide a piece of code to depict how a parameterized query can be done

in an application.

For Cross Site Scripting, the call is for improvement in the currently used methods of

input sanitization and validation. An example of a code snippet that would be useful at this point

would be a piece of code that illustrates how one would sanitize inputs to prevent XSS attacks.

The prevention of XSS risks utilizing CSP headers is also a subject that can be illustrated by an

example of configuration when implementing CSP headers in web apps.

For CSRF, the tool recommends that all actions that cause a change in the application’s

state must be defended using tokens. Add a code block that illustrates how the CSRF tokens are

included in a web app and comments on the Same Site cookie attribute to reduce CSRF threats.

6. Discussion

6.1 Effectiveness of Vulnerability Detection Techniques

The effectiveness of the applied methods of vulnerability detection in our tool could be

evaluated based on its ability to detect the most popular types of vulnerabilities, which are still

actual nowadays, namely, SQL injection, cross-site scripting (XSS), and cross-site request

forgery (CSRF). Kiefer also pointed out that while new attack forms have appeared, SQL

17

Injection is still an issue because input validation and sanitization are insufficient, which our tool

helps to solve by detecting SQL Injection in most of the tested applications (Zhang et al., 2019).

In the same way, the identification of XSS vulnerabilities corresponds to the findings of other

researchers who note that XSS is one of the most common security threats affecting web

applications because of the lack of proper filtering of scriptable content. The fact that these

vulnerabilities exist in the examined applications, as detected by our tool, supports the severity of

the problem, where leakage was found in 37% of the targeted applications.

5.2 Comparison with Other Automated Tools

It is also necessary to compare the obtained results with other similar tools of an

automated vulnerability scanner, where our tool has quite reasonable detection rates. When

comparing black box web application vulnerability scanners, it was pointed out that the best

scanners are significantly different in the kinds of vulnerabilities that they can easily detect and

are extremely poor at detecting vulnerabilities that do not belong to the classes that they are

proficient in. This variability demonstrates that it is necessary to select the proper tool for

specific types of threats to achieve the maximum level of protection (Singh & Singh, 2018).

Therefore, the study by Jarupunphol et al. (2023) that sought to establish the differences in the

performance of Burp Suite and OWASP ZAP revealed that there are differences in the extent of

effectiveness of the tools in identifying high-risk vulnerabilities. This comparative approach is

very important in analyzing the relative activities of each tool during various practices

(Jarupunphol et al., 2023).

6.3 Limitations and the Need for Refinement

As recent studies have pointed out, there are still problems regarding false positives as

well as false negatives. Such inaccuracies adversely affect the effectiveness of security tools, so

there is a constant need to improve the detection algorithms. Existing program analysis

techniques suffer from high false positives and false negatives, and machine-learning approaches

can significantly improve detection accuracy by learning from realistic settings and refining data

collection and model design (Chakraborty et al., 2020).

In addition, recent research has also called for the use of methods based on machine

learning to improve the performance of vulnerability detection solutions. According to their

findings, supervised learning models yield a marked increase in the effectiveness of detecting

subtle susceptibilities based on patterns that indicate security violations (Chakraborty et al.,

2020).

18

7. Future Work

7.1 Algorithm Optimization and Real-Time Capabilities

For the further evolution of the tool, the enhancement of detection algorithms is

considered as one of the primary concerns. The use of modern machine learning methods can

significantly decrease the number of false positives and increase the detection rate. Investigating

the real-time data processing capacity will also enable the tool to offer immediate responses and

preventive security measures, thus quickly responding to the new threats.

For example, the paper by Gadal et al. (2022) discusses an anomaly detection model

based on a K-mean array and the SMO technique, and the results show increased detection

efficiency and a decrease in false positives, which corresponds to the objectives of further

development in detection algorithms (Gadal et al., 2022).

7.2 Broadening Vulnerability Detection

It will be possible to expand the list of the detected vulnerabilities and threats to a level

that will include such threats as Remote Code Execution and Directory Traversal. This will make

the tool more comprehensive because it will be able to detect these additional items. Moreover,

the ability to set up and integrate new vulnerability checks by the users will help in addressing

specific needs and new threats.

For instance, Maruf et al. (2019) describes the importance of identifying RCE

vulnerabilities and stress that this threat is crucial, suggesting an exploitation algorithm for

identifying RCE vulnerabilities in web applications (Maruf et al., 2019).

7.3 User Interface Improvements

Further developments to the current GUI are expected to be implemented to support

multiple platforms and enhance the user experience. The GUI of the application will be

developed in Java and will be made more user-friendly for many users across multiple operating

systems and devices.

For instance, Cirani et al. (2020) have recently proposed a new approach that can help

developers write Java applications with real cross-platform GUIs that can run on PCs, Android

devices, and even embedded systems (Cirani et al., 2020).

7.4 Integration and Community Engagement

APIs for integration with other security tools and frameworks will be developed, thus

making the security environment more integrated. The addition of a plugin architecture will open

19

the door for third-party developers to get involved in the development of the tool’s functionality,

which will increase flexibility and bring together a group of developers who can share and

improve security practices. For instance, Sworna et al. (2022) put forward a framework for

recommending API of automated security tools to improve the integration of multiple security

tools in a SOAR platform. It enhances the functionality and effectiveness of dealing with

security occurrences by offering automated assistance solutions for security tool API

recommendations (Sworna et al., 2022).

7.5 Scalability and Performance Enhancements

Scalability and performance, particularly for large web applications, must be enhanced.

Further improvements will be made to increase the effectiveness of the tool for dealing with

large websites and intricate structures. Another goal will be the creation of distributed scanning

capacities to increase resource efficiency and minimize the time spent on scanning. For example,

Wang et al. (2019) propose FalconEye, a high-performance distributed security scanning system

that enhances the accuracy and efficiency of web application vulnerability identification, which

verifies the effectiveness and efficiency of distributed scanning strategies (Wang et al., 2019).

7.6 Automated Patching and Customizable Reporting

The future versions of the tool will probably have the capabilities of auto-patching and

more sophisticated suggestions for remedial action based on the context. Also, the creation of

modules for regulatory compliance checks like GDPR or HIPAA will allow the users to create

reports that can be used for compliance audits and security assessments. For example, Mehri et

al. (2022) present an automated context-aware vulnerability risk management system that helps

to prioritize patches according to the organizational context and criteria and improve the

effectiveness of vulnerability management processes (Mehri et al., 2022).

8. Conclusion

From this project, it has been proven that an automated vulnerability assessment tool for

web applications is both viable and efficient. Using Python web scraping and HTTP

communication along with state-of-the-art machine learning algorithms, the tool offers a strong

and efficient way to identify usual threats like SQL Injection, Cross-Site Scripting (XSS) and

Cross-Site Request Forgery (CSRF). The graphical user interface developed using Java

guarantees easy usage of the tool even for a person who does not have a technical background,

thus making it versatile and useful for every user.

In this way, the tool was tested and analyzed to demonstrate its effectiveness in

improving the security of web applications. It has demonstrated a special capability in threat

detection and threat neutralization, which is very important in the current world where threats

can be exploited within a short time to cause havoc. This versatility of the tool across different

20

web frameworks and technologies also make it useful in a complex technological environment.

The paper on the performance of machine learning-based techniques for identifying

vulnerabilities in web applications indicates that tools, such as the one presented in this project,

can be effective (Sastry et al., 2020).

The findings of this project will be useful in providing a basis for future advancements in

the sphere of cybersecurity. That is why the approaches to web security also change with the

development of new technologies. Subsequent versions of the tool will try to include real-time

data analysis to give instant feedback on the threats to security and compatibility with other tools

used in software development for a better and more integrated security system. The analysis of

the use of real-time data processing in cybersecurity tools is consistent with the future

development objectives stated for the project (Mehta & Pandey, 2021).

Furthermore, the more the tool receives feedback from users and is updated, the more it

will contain more extensive detection algorithms for various types of vulnerabilities. This will

include the possibility to adjust the tool to organizational requirements which will be crucial in

an enterprise environment where security requirements can be vastly different.

The goal is to not only sustain but to raise the level of web application security, to make

it more preventive rather than responsive. In this way, the project’s further development of this

tool and its extension of the capabilities of vulnerability detection will help to remain on the

cutting edge of the technology, providing users with the most effective and powerful tools to

protect against current and future threats. This continuous process will make the tool remain an

essential component of cybersecurity protection and will continue to protect vital digital

resources as the world becomes more connected.

21

9. References

[1] Ahmadi Mehri, V., Arlos, P. and Casalicchio, E. (2022). Automated Context-Aware

Vulnerability Risk Management for Patch Prioritization. Electronics, 11(21), p.3580. doi:

https://doi.org/10.3390/electronics11213580.

[2] Antunes, N. and Vieira, M. (2015). Assessing and Comparing Vulnerability Detection Tools

for Web Services: Benchmarking Approach and Examples. IEEE Transactions on Services

Computing, 8(2), pp.269–283. doi: https://doi.org/10.1109/tsc.2014.2310221.

[3] Bau, J., Bursztein, E., Gupta, D. and Mitchell, J. (2010). State of the Art: Automated Black-

Box Web Application Vulnerability Testing. [online] IEEE Xplore. doi:

https://doi.org/10.1109/SP.2010.27.

[4] Betarte, G., Pardo, A. and Martinez, R. (2018). Web Application Attacks Detection Using

Machine Learning Techniques. 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA). doi: https://doi.org/10.1109/icmla.2018.00174.

[5] Chakraborty, S., Krishna, R., Ding, Y. and Ray, B. (2021a). Deep Learning based

Vulnerability Detection: Are We There Yet. IEEE Transactions on Software Engineering, pp.1–

1. doi: https://doi.org/10.1109/tse.2021.3087402.

[6] Chakraborty, S., Krishna, R., Ding, Y. and Ray, B. (2021b). Deep Learning based

Vulnerability Detection: Are We There Yet. IEEE Transactions on Software Engineering, pp.1–

1. doi: https://doi.org/10.1109/tse.2021.3087402.

[7] Cirani, S., Picone, M., Veltri, L., Zaccomer, L. and Zanichelli, F. (2020). ZWT: A new cross-

platform graphical interface framework for Java applications. SoftwareX, 12, p.100599. doi:

https://doi.org/10.1016/j.softx.2020.100599.

[8] Fonseca, J., Vieira, M. and Madeira, H. (2014). Evaluation of Web Security Mechanisms

Using Vulnerability & Attack Injection. IEEE Transactions on Dependable and Secure

Computing, 11(5), pp.440–453. doi: https://doi.org/10.1109/tdsc.2013.45.

[9] Gadal, S., Mokhtar, R., Abdelhaq, M., Alsaqour, R., Ali, E.S. and Saeed, R. (2022). Machine

Learning-Based Anomaly Detection Using K-Mean Array and Sequential Minimal Optimization.

Electronics, 11(14), p.2158. doi: https://doi.org/10.3390/electronics11142158.

[10] Hassan, M.M., Mustain, U., Khatun, S., Karim, M.S.A., Nishat, N. and Rahman, M. (2020).

Quantitative Assessment of Remote Code Execution Vulnerability in Web Apps. Lecture Notes

in Electrical Engineering, pp.633–642. doi: https://doi.org/10.1007/978-981-15-2317-5_53.

[11] Mubaiwa, T.G. and Mukosera, M. (2022). A HYBRID APPROACH TO DETECT

SECURITY VULNERABILITIES IN WEB APPLICATIONS. International Journal of

Computer Science and Mobile Computing, 11(2), pp.89–98. doi:

https://doi.org/10.47760/ijcsmc.2022.v11i02.011.

https://doi.org/10.3390/electronics11213580
https://doi.org/10.1109/SP.2010.27
https://doi.org/10.1109/icmla.2018.00174
https://doi.org/10.1109/tse.2021.3087402
https://doi.org/10.1109/tse.2021.3087402
https://doi.org/10.1016/j.softx.2020.100599
https://doi.org/10.1109/tdsc.2013.45
https://doi.org/10.3390/electronics11142158
https://doi.org/10.1007/978-981-15-2317-5_53
https://doi.org/10.47760/ijcsmc.2022.v11i02.011

22

[12] Pita Jarupunphol, Suppachochai Seatun and Wipawan Buathong (2023a). Measuring

Vulnerability Assessment Tools’ Performance on the University Web Application. pertanika

journal of science and technology, 31(6), pp.2973–2993. doi:

https://doi.org/10.47836/pjst.31.6.19.

[13] Pita Jarupunphol, Suppachochai Seatun and Wipawan Buathong (2023b). Measuring

Vulnerability Assessment Tools’ Performance on the University Web Application. pertanika

journal of science and technology, 31(6), pp.2973–2993. doi:

https://doi.org/10.47836/pjst.31.6.19.

[14] Rankothge, W.H. and Randeniya, S.M.N. (2020). Identification and Mitigation Tool for

Cross-Site Request Forgery (CSRF). 2020 IEEE 8th R10 Humanitarian Technology Conference

(R10-HTC). doi: https://doi.org/10.1109/r10-htc49770.2020.9357029.

[15] Saoudi, L., Adi, K. and Boudraa, Y. (2020). A Rejection-Based Approach for Detecting

SQL Injection Vulnerabilities in Web Applications. Foundations and Practice of Security,

pp.379–386. doi: https://doi.org/10.1007/978-3-030-45371-8_26.

[16] Singh, S. and Singh, K. (2018). Performance Analysis of Vulnerability Detection Scanners

for Web Systems. Advances in intelligent systems and computing, pp.387–399. doi:

https://doi.org/10.1007/978-981-10-8536-9_37.

[17] Tabassum, S.S. and Biradar, Dr.A. (2018). Evaluation of Web Security Mechanisms Using

Vulnerabilities and Attack Injection. International Journal of Computing, Communications and

Networking, 7(2), pp.221–225. doi: https://doi.org/10.30534/ijccn/2018/40722018.

[18] Vyacheslav Cherkesov, Vitaliy Malikov, Alexey Golubev, Danila Parygin and

Smykovskaya, T. (2017). Parsing of Data on Real Estate Objects from Network Resource. doi:

https://doi.org/10.2991/itsmssm-17.2017.80.

[19] Wang, C., Liu, X., Zhou, X., Zhou, R., Lv, D., Qingquan lv, Wang, M. and Zhou, Q. (2019).

FalconEye: A High-Performance Distributed Security Scanning System. doi:

https://doi.org/10.1109/dasc/picom/cbdcom/cyberscitech.2019.00059.

[20] Zarrin Tasnim Sworna, Islam, C. and Muhammad Ali Babar (2022). APIRO: A Framework

for Automated Security Tools API Recommendation. 32(1), pp.1–42. doi:

https://doi.org/10.1145/3512768.

[21] Zhang, L., Zhang, D., Wang, C., Zhao, J. and Zhang, Z. (2019). ART4SQLi: The ART of

SQL Injection Vulnerability Discovery. IEEE Transactions on Reliability, 68(4), pp.1470–1489.

doi: https://doi.org/10.1109/tr.2019.2910285.

https://doi.org/10.47836/pjst.31.6.19
https://doi.org/10.47836/pjst.31.6.19
https://doi.org/10.1109/r10-htc49770.2020.9357029
https://doi.org/10.1007/978-3-030-45371-8_26
https://doi.org/10.1007/978-981-10-8536-9_37
https://doi.org/10.30534/ijccn/2018/40722018
https://doi.org/10.2991/itsmssm-17.2017.80
https://doi.org/10.1109/dasc/picom/cbdcom/cyberscitech.2019.00059
https://doi.org/10.1145/3512768
https://doi.org/10.1109/tr.2019.2910285

23

10. Appendices

import requests

from bs4 import BeautifulSoup

import json

from urllib.parse import urlparse

import datetime

def scrape_website(url):

try:

response = requests.get(url)

response.raise_for_status()

soup = BeautifulSoup(response.content, 'html.parser')

return soup

except requests.exceptions.RequestException as e:

print(f"Error: Failed to fetch URL '{url}': {str(e)}")

return None

def send_request(url, payload, method='POST'):

try:

if method == 'POST':

response = requests.post(url, data=payload)

elif method == 'GET':

response = requests.get(url, params=payload)

response.raise_for_status()

return response

except requests.exceptions.RequestException as e:

24

print(f"Error: Failed to send request to '{url}': {str(e)}")

return None

def detect_sql_injection(url):

payload = {"input": "' OR '1'='1"}

response = send_request(url, payload)

if response and ("SQL syntax" in response.text or "unexpected" in response.text):

return True

return False

def detect_xss(url):

payload = {"input": "<script>alert('XSS')</script>"}

response = send_request(url, payload)

if response and ("<script>alert('XSS')</script>" in response.text):

return True

return False

def detect_csrf(url, csrf_token):

payload = {"input": "data", "csrf_token": csrf_token}

response = send_request(url, payload)

if response and ("invalid CSRF token" in response.text):

return True

return False

def extract_csrf_token(url):

try:

soup = scrape_website(url)

if soup:

#We are assuming the CSRF token is in a hidden input field with name 'csrf_token'

25

token = soup.find('input', {'name': 'csrf_token'})

if token and token['value']:

return token['value']

return None

except Exception as e:

print(f"Error: Failed to extract CSRF token from '{url}': {str(e)}")

return None

def generate_report(url, vulnerabilities):

report_entry = {

"url": url,

"vulnerabilities": vulnerabilities,

"recommendations": "Do follow the best practices as mentioned by our team to mitigate the identified

vulnerabilities.",

"timestamp": str(datetime.datetime.now())

}

try:

with open("report.json", "r+") as file:

report_data = json.load(file)

report_data.append(report_entry)

file.seek(0)

json.dump(report_data, file, indent=4)

except FileNotFoundError:

with open("report.json", "w") as file:

json.dump([report_entry], file, indent=4)

def validate_url(url):

if not url:

print("Error: Please enter a valid URL.")

26

return False

parsed_url = urlparse(url)

if not parsed_url.scheme or not parsed_url.netloc:

print(f"Error: Invalid URL format. Please include 'http://' or 'https://' in the URL.")

return False

try:

response = requests.get(url)

response.raise_for_status()

return True

except requests.exceptions.RequestException as e:

print(f"Error: The URL '{url}' is not reachable: {str(e)}")

return False

def check_post_method_allowed(url):

try:

response = requests.options(url)

if 'POST' in response.headers.get('Allow', ''):

return True

except requests.exceptions.RequestException as e:

print(f"Error: Failed to check methods for URL '{url}': {str(e)}")

return False

def perform_scan(url):

if not validate_url(url):

return "Scan aborted. Invalid or unreachable URL."

if not check_post_method_allowed(url):

27

return "Scan aborted. POST method not allowed for this URL."

print(f"Scanning {url}...")

csrf_token = extract_csrf_token(url)

if not csrf_token:

print("Error: Failed to extract CSRF token. Continuing with other tests.")

vulnerabilities = {

"sql_injection": detect_sql_injection(url),

"xss": detect_xss(url),

"csrf": detect_csrf(url, csrf_token) if csrf_token else "CSRF token extraction failed"

}

generate_report(url, vulnerabilities)

return json.dumps(vulnerabilities, indent=4)

if name == " main ":

import sys

url_to_scan = ""

if len(sys.argv) > 1:

url_to_scan = sys.argv[1]

else:

while not validate_url(url_to_scan):

url_to_scan = input("Enter the URL to scan: ").strip()

result = perform_scan(url_to_scan)

print(result)

