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                                                         Abstract 
 

 

      A puzzle that remains unresolved for many years is how to factorise large semi-prime 

numbers used in the RSA algorithm in polynomial time. Ransomware and processes that 

involve key exchanges and digital signatures use the RSA algorithm. A ransomware 

attack, particularly in the operational technology (O.T.) industry, can have terrible 

consequences. Therefore, it is crucial to test the RSA algorithm continually. Because of 

this, it is necessary to establish a solution for obtaining a decryption key should a 

business come under attack. Although there are often additional security measures in 

place, any weakness in the chain may result in the downfall of a company. Many 

researchers have achieved factorisation of large semi=prime numbers. However, there is 

ongoing regular reporting from researchers about the inability to factorise these semi-

prime numbers in the same time frame regardless of the size of N. The DERMOT  

solution presented here quickly eliminates many numbers as prime factors of a semi-

prime number. The factorisation of a 100-digit number was attempted and the first six 

digits matched correctly. Using this algorithm significantly reduces the range of numbers 

to be tested and can be easily implemented with Python.  

 
 

Keywords:   

RSA, Factorisation, Operational Technology (O.T.), Polynomial Time, Decryption, Ransomware. 

 
 

1 Introduction 
 

According to Erwin Schrödinger, "The task is not so much to see what no one has yet seen but to think 

what nobody has yet thought, about that which everybody sees" (Pech, 2006). This quote recalls an 

unresolved problem that many have encountered but which remains unresolved. It is not the 

factorisation of large semi-primes that perplexes the cryptography community. Instead, it is the inability 

to factorise large semi-prime numbers into their prime factors in polynomial time. But before delving 

into the details of achieving such a task, the background to this problem and its importance in 

cryptography is discussed.  

1.1 Background 

One popular asymmetric (public-key) cryptographic algorithm is RSA, named after its three founders, 

Ron Rivest, Adi Shamir, and Len Adleman (Easttom, 2021). Integer factorisation of large semi-prime 



 
 
 

2 
 

 

numbers into two prime factors forms the basis of the RSA algorithm. The complexity of the RSA 

algorithm is due to its ability to act as a one-way function (Katz and Lindell, 2020). In other words, it is 

easy to multiply two numbers together but considerably more challenging to determine what those two 

numbers are when only provided with their product. (Wang, 2022) (Sabani et al., 2022) (Nemec et al., 

2017), (Park, H.B. et al., 2021) (Easttom, 2021), (Katz and Lindell, 2020), (Joshi et al., 2023).  

 

The importance of the RSA algorithm is due to its role in the key exchange and authenticating processes 

(Park, H.B., Sim, B.Y., and Dong-Guk Han, D.G. 2021) (Katz and Lindell, 2020). (The mathematical 

processes of generating keys for key exchange and signing messages, together with worked examples, 

are described in-depth in sections 4.1 and 4.2 in the configuration manual). To understand how key 

exchange works, consider a hypothetical situation. Suppose Aoife wants to send Seán an encrypted 

message. Seán generates a public key and a private key. Aoife obtains Seáns public key and uses this 

key to encrypt the message. Aoife then sends the message to Seán. Seán decrypts the message with his 

private key. The advantage of this process is that only a person with access to Seán's private key can 

read the message. Unlike the RSA key exchange process used in encryption schemes, the public key is 

needed for verifying signatures while the private key is used for signing. In this situation, if Aoife wants 

to send Seán a message she generates the RSA public key and private keys. Aoife sends her public key 

to Seán and calculates the signature (s) by encrypting a message (x) with her private key. Aoife appends 

the message x with the signature s and sends the appended message to Seán. Seán receives the signed 

message and decrypts it using Aoife’s public key. 

 

The RSA public-key cryptosystem is computationally slow and expensive but widely used. The RSA 

algorithm is considerably slower than symmetric algorithms and therefore is often used in conjunction 

with a symmetric algorithm such as Advanced Encryption Standard (AES) which is used in banking. 

Ultimately the overall purpose of RSA is to ensure the confidentiality, integrity, availability, and 

authenticity of data. 

1.2 Motivation for this research and potential beneficiaries 
 

Weak encryption algorithms can lead to ransomware attacks, but sometimes ransomware uses the RSA 

algorithm. When businesses suffer a ransomware attack, it’s not just the business that suffers. Our 

nation loses considerable finances. According to the IBM X-Force Threat Intelligence Index Report 

2024, the most frequent ransomware detected by X-Force were Blackcat, CLOP, Lockbit, Blackbasta, 

and Royal (IBM, 2024). These ransomwares use the RSA algorithm as part of the encryption process 

(MSSP Research Lab, 2024),  (SentinelOne, 2024), (Santos, Bunce, and Galiette, 2023), (Stephen, 

2023), (Elsad, 2022), (Emisoft,  2021) (Cyware, 2019). Creating an algorithm that can factorise semi-

prime numbers into their prime factors provides an opportunity to recover the decryption key when 

impacted by a ransomware attack.  

 

Another motivational factor is the various people which could benefit from such a solution. This 

research could benefit anyone requiring a decryption key, such as law enforcement or businesses 

dealing with a ransomware attack. Creating an algorithm that allows the factorisation of large semi-

primes means businesses that fall victim to a ransomware attack can regain access to their data and 

systems and minimise downtime. Researchers in academia whose work requires accuracy and precision, 

can use this process when dealing with small calculations or calculations of significant size. Other 

beneficiaries may include any business interested in testing its security. It may also be of particular 
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interest to those obliged to tighten security measures in preparation for a new European Union (E.U.) 

regulation, which comes into effect on January 17th, 2025. The new legislation called the Digital 

Operational Resilience Act (DORA) requires financial institutions and their third-party service 

providers to have policies that guarantee data confidentiality, integrity, availability, and authenticity 

(CIAA). By performing tests using the prime factors of N, businesses can determine the implications of 

using RSA numbers of various lengths concerning the encryption scheme that a company has in place. 

This solution may benefit those in the operational technology (O.T.) industry who prefer not to update 

their software due to possible implications with O.T. equipment. The O.T. industry can use this solution 

as part of a recovery simulation exercise. Use cases from business and academic perspectives are 

provided in section 6.2 of this document.  

1.3 Gap in literature and contribution to the scientific literature 
 

       Although researchers have studied the RSA algorithm extensively, there appears to be a lack of research 

content about demonstrating computationally efficient ways for integer factorisation (Wang, 2022). 

Semi-prime numbers comprising up to two hundred and fifty decimal digits have been factorised, 

although outside of polynomial time (Katz and Lindell, 2020). In polynomial time, the computation 

steps required to factorise N into its semi-prime factors grow at a predictable rate rather than 

exponentially. This research aims to contribute to the scientific literature by using a new approach to 

reduce computational time for factorisation of large semi-prime numbers and discuss applications in the 

O.T. industry.  

1.4 The research question  
 

The aim of this research is to design a software solution with a fast factorisation time of semi-prime 

numbers and discuss how someone can use it in the O.T. industry. Creating a unique algorithm that can 

factorise large semi-primes, resulting in a faster decryption time, is the primary goal of this research. 

The main objective is to test the theory that there are alternative approaches to resolving the problem of 

factorising a semi-prime number of 100 digits or more in polynomial time. Specifically, the research 

aims to answer the question: How can a decryption key be recovered quickly during a ransomware 

attack that employs the RSA algorithm? There were three main research objectives: 

 

Objective 1: Create a unique algorithm to reduce the computations required to factorise a semi-prime 

number.  

Objective 2:  Implement the algorithm with suitable software.        

Objective 3:  Provide use cases to demonstrate how someone can apply the solution in the O.T. 

industry. 

 

1.4.1 Assumptions 

The research assumes that sources of information on previous RSA factorisations have published the 

correct prime factor. The accuracy of the results was validated using multiple sources and software 

tools. 

 

1.4.2 Inclusion and Exclusion Content. 
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A list of requirements is provided in section 1 in the configuration manual. This forms the inclusion 

criteria. The algorithm provided in this paper excludes the process of changing the binary form of N to 

an equivalent decimal number. Well-known factorisation methods and the use of a quantum 

computer are also excluded.     

1.5 Structure of the report 
 

Section 2 looks at a review of the literature. Section 3 describes the research methodology for obtaining 

suitable information and the evaluation process to determine if the proposed solution is appropriate. 

Section 4 contains the design specification and a description of the algorithm. Section 5 discusses the 

software used and development of the solution. Section 6 includes the most relevant results in support 

of the research question and the main objectives. 

 

2     Literature Review   
 

2.1 The RSA algorithm 
 

The RSA algorithm uses a public key for encryption and private keys for decryption (Easttom, 2021). 

Section 4.1 in the configuration manual contains an example of calculating the private and public keys. 

The algorithm provided in the configuration manual can be applied when one person wants to send 

another a message. For example, suppose Aoife intends to communicate with Seán; Aoife needs Seán's 

public key to do this. Seán then uses his private key to decrypt the message.  

 

Generation of the encryption keys involves multiplying two large prime numbers, p and q, which results 

in N, a semi-prime number. Phi n is then calculated to establish how many numbers from one to N are 

coprime (two numbers with no common factors, e.g. eight and nine) to N. Phi n is commonly known as 

Euler's totient function. For prime factor p, this is one less p because p is a prime number with only two 

prime factors: itself and one. Therefore, all other numbers from one to ‘p minus one’ are coprime. The 

same applies to prime factor q. The public exponent (encryption) key (e) is then selected and must 

satisfy the rule that the greatest common denominator of e and phi n equals one. The private 

(decryption) key is then calculated using the formula d x e ≡ 1 mod Φ(n). 

 

2.2 Factorisation of semi-prime numbers 

 

2.2.1 The RSA factoring challenge 

 

RSA encryption and decryption are based on modular exponentiation, and obtaining the prime factors 

of N has remained an enigma until now. In 1991, the RSA factoring challenge was established to 

encourage research in computational number theory. Participants were offered monetary prizes to 

promote research in this field. The smallest semi-prime provided (RSA-100) consisted of one hundred 

decimal digits and was successfully factorised1. Some methods used to factorise RSA semi-primes 

successfully were the quadratic sieve and general number field sieve.  

 
1 https://www.rsa.com/ 
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These methods are not used in this research and are not discussed here. What is relevant to this research 

is that the methods used were time-consuming, so another solution was required. To put this statement 

into context, it took Benjamin Moody 73 days in 2009 to factorise a 512-bit key (Easttom, 2021). In 

2020, the RSA-250 semi-prime number was factorised into its prime factors using the number field 

sieve algorithm, and it took approximately 2700 CPU core years.  

 

2.2.2 Squaring N 

 

Many researchers recently proposed various factorisation methods for RSA semi-primes. In 2021, 

Overmars and Venkatraman proposed a solution for factorising large semi-prime numbers (Overmars 

and Venkatraman, 2021). The authors demonstrated that semi-prime numbers were factorised using the 

Brahmagupta-Fibonacci principle to reduce four Pythagorean quadruples to two triples. A Pythagorean 

quadruple consisted of four integers in total: three unequal integers and semi-prime number N. Each 

integer was squared, and the sum of the three integers squared resulted in N squared (g2 + h2 + i2) = N2. 

The authors successfully showed that the sum of three squares resulted in the factorisation of a semi-

prime. However, a limitation to this method was that the number of viable solutions increased as N 

increased. One such case study provided by the authors was N, which is equal to a three-digit number. 

Overmars and Venkatraman discovered forty-five possible sums of squares with eleven possibilities, 

leading to the factorisation of the semi-prime. Whilst this was a solution for small N, RSA sometimes 

involves semi-primes consisting of 4096 binary digits. Overmars and Venkatraman’s work lies in deep 

contrast with the fundamental basis of my solution. Interestingly, their methodology involves the 

squaring of N, which I think is problematic due to the issue of storing large numbers. For this reason, a 

different approach is used in this research, which involves the immediate reduction of N.  

 

2.2.3 The reduction of N 

 

Inan used a method to approximate RSA prime factors using the square root of N (Inan, 2022). The 

advantage of this approach was that it resulted in the immediate reduction of N. Inan found the distance 

of p from the square root of N (ΔX) and the distance of q from the square root of N (ΔY). The distance 

in the ΔY direction was 5% to 15% longer than in the ΔX direction, and so ΔX was investigated further. 

ΔX, in this case, was the distance from the square root to the bigger prime factor of N. Inan ran the 

program multiple times and calculated the mean value of each run. Results showed a high probability of 

correctly matching the first to the fourth digit, but the disadvantage of this approach was that it was rare 

to match beyond the fifth digit. In my opinion this was a helpful method because one of the primes will 

always be less than or equal to the square root of N. For example, consider two primes, p and q. Let p 

equal 13 and q equal 17. Their product N is equal to 221. The square root of 221 is 14.87. p, which has 

a value of 13, is less than the square root of N (14.87). Now, consider two numbers with a more 

extensive range between them. For example, p is equal to 307, and q is equal to 701. N is equal to 

215207. The square root of N is equal to 463.90. p has a value of 307, which is less than the square root 

of N. This method was a practical starting point for achieving the objectives of this research.  

 

Next, consider the length of the square root of N, which is approximately half the number of digits of N. 

For RSA 250, the square root is a 125-digit number. In the case of RSA-155, the semi-prime was 

factorised into two prime numbers consisting of 78 digits. Successful factorisation was achieved, 

although the method used took 3.7 months, using 300 computers (Cavallar et al., 2000). Nonetheless, 
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two essential facts have been established. First, one of the prime factors of N will always be less than or 

equal to the square root of N, and second, the length of p and q will always be half the length of N or 

close to half the size of N.  

 

2.2.4 Software for implementing a solution. 

 

Another consideration for the design process was what software to choose for implementing the 

solution. Rodriguez, Castang, and Vanegas (2021) chose Python as their software choice and imported 

the time library to evaluate the processing time of an RSA algorithm. The authors implemented their 

algorithm on a Windows 64-bit operating system containing an Intel core i5-10210U central processing 

unit and eight gigabytes of random-access memory. The prime numbers tested were four, eight, and ten 

bits, so the processing time was also small. A memory overflow occurred when using prime numbers 

consisting of 12 bits. Flynn (2021) also obtained overflow errors in Python when using logarithms 

(logs) and semi-prime factorisation in Python. The author also found that too many iterations were 

required using the log method. The decryption key was not calculated using this method.  

 

However, it is essential to remember that logs were initially generated to make calculations easier. Do 

not underestimate the power of logs. Bellos (2020) reminded readers that logs were the reason Johannes 

Kepler, a German astronomer, could calculate Mars's orbit. The formula for calculating the log of A 

multiplied by the log of B is equal to the log of A plus the log of B. This provides an opportunity to 

simplify multiplication problems into addition. To apply the equation to find the prime factors of a 

semi-prime number, let A equal p (prime one) and B equal q (prime two). The log of p and the log of q 

added together results in the log of N. Using logs can be beneficial for obtaining an initial 

approximation. However, the disadvantage of using logs is that they increase the number of steps 

required to obtain prime factors. It is for that reason that it is better to perform calculations in decimal 

form.  

 

It is not Python that is the issue (certainly for factorising semi-prime numbers less than one hundred 

digits) but the strategy that has been applied. Python2 is a very powerful language. It is very useful for 

performing calculations. It does have some issues, for example, not immediately returning an answer 

when factorising a 10-digit number. However, the Decimal module in Python allows the multiplication 

of two possible prime factors to determine if the result is the original semi-prime number.  

Also, instead of trying to obtain all factors for a number in Python, many numbers can be eliminated 

first. For example, all even numbers are not prime. Obtaining the first few digits of p and q will 

eliminate another large portion of numbers.  

 

2.3 Primality tests 

 

Once factors have been determined, the next step is to ensure that the factors are prime numbers. Many 

methods exist for testing whether a number is a prime number or not. Eratosthenes sieve (Easttom, 

2021) is an accurate way to determine if a number is prime. Using this method, all numbers that are 

divisible by two, three, five, and seven are eliminated, and the remaining numbers are prime. This is too 

impractical, though, when dealing with large numbers. Too many computations are required.  

 
2https://www.python.org/ 
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Another well-known technique for primality testing is Fermat's little theorem. Consider an integer n. p 

is prime if np minus n returns an integer (Easttom, 2021). Nowadays, however, there are useful software 

tools available, such as tools from Wolfram Alpha3 or SageCell4. These software tools can handle 

numbers of significant sizes.  

 

2.4 Summary 
 

For many years now, those who have analysed RSA numbers have considered it computationally 

infeasible to factorise semi-prime numbers of 100 digits or more into their prime factors in polynomial 

time. Two main tasks are necessary to find prime factors: determine the factors of the semi-prime 

number (factorisation of the semi-prime number) and determine if the factors obtained are prime or not 

(primality tests). Both tasks have been achieved, but according to many authors, not in polynomial 

time. Various methods have been tried and tested, including the squaring of N, the initial reduction of 

N, and the use of logs. Python is a popular choice for the implementation of solutions, but issues such as 

memory overflow errors often occur. Online tools such as Sage Math or WolframAlpha are available to 

check if a number is prime or not. 

 

Two important facts were established when reviewing the literature: one prime will always be less than 

or equal to the square root of N, and the number of digits for p and q is often half or close to half of the 

number of digits contained in N. This is a good starting point for establishing a solution. 

 

 

3   Research Methodology 
 

The research methodology was evaluated based on how the approach taken met the research objectives.  

 

3.1 Requirements Analysis: Methodology 
 

To write the plan, I first wrote a list of requirements. (The requirements specification is provided in  

Section 1 in the configuration manual). Once a gap in research was found and the research objectives 

decided, the requirements list was updated to include additional requirements. For example, the list was 

updated to include software that can perform computations with large numbers.  

 

3.2 Requirements Analysis: Evaluation 
 

The requirements list was assessed by ensuring the plan for the solution included the pre-determined 

requirements and any additional requirements necessary to complete the task.  

 

3.3 Research Question and Objectives: Methodology 
 

Cryptography was selected as the broad topic to focus on. Then, a list of possible sources of where to 

find information on Cryptography was written.  

 
3https://www.wolframalpha.com/ 
4https://sagecell.sagemath.org/ 
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Sources of information included journals from reputable databases, cryptography books, and company 

websites available to the public, including annual threat reports from cybersecurity organisations. Each 

database was searched according to various search terms (examples of searches are provided in 

Appendix A in the configuration manual). Folders with the different database names were created and 

saved on My Desktop. All journals of interest found in a particular database were saved into the folder 

with its matching database name (See Section 2 in the Configuration manual). The abstracts of the 

selected journals were read, and papers containing relevant abstracts were selected. These papers were 

then read in further detail while searching for future work or gaps in research. The journals deemed 

useful were put into a folder named Useful on My Desktop. At this point, gaps that had the potential to 

be measured and implemented as an ICT solution were considered. Then, a mind map of things that can 

be measured was created. (Refer to section 3 in the configuration manual).  

 

One gap that arose consistently throughout the literature from researchers in various disciplines was the 

inability to factorise RSA semi-prime numbers in polynomial time on a single modern computer. 

Having decided to focus on this topic, areas where this research could be useful were identified. As a 

result, the focus of the research was narrowed to focusing on ransomware in the O.T. industry. This led 

to the formation of a research question: How can a decryption key be recovered quickly in the event of 

a ransomware attack that employs the use of the RSA algorithm? This research focuses specifically on 

the factorisation of semiprime numbers to gain advantage in the decryption process. The ethics of this 

research question and the essential requirements of the research were considered. Having established 

that the research question satisfied the main requirements of the project, three essential aspects of the 

research were established, which formed the research objectives.  

 

Once the objectives were decided, a list of tasks and subtasks needed to achieve each objective was 

constructed. For example, for research objective one, there were two main tasks: create a unique 

algorithm and factorise a semi-prime number using a single computer for both tasks. There are two sub-

tasks involved in factorising a semi-prime: finding factors of a very large number and determining if 

these factors are prime numbers. These tasks were added to the list of requirements in the configuration 

manual.  

 

The best approach to selecting a suitable semi-prime number to factorise is to select one that had 

already been factorised. This was the approach taken to determine if the proposed algorithm would 

work. The factors obtained could be compared with the factors obtained from the known factorised 

semi-prime number. By entering 'RSA factors' into a Google search engine, the ‘RSA Factoring 

Challenge’ with a list of RSA semi-prime numbers and their factors was discovered. The smallest RSA 

semi-prime number provided with its prime factors was RSA-100, a 100-digit number. This was 

selected as my starting point and added to the requirements list. However, the selection of a 100-digit 

number is for an initial assessment of the suitability of the proposed algorithm. It is important to 

establish if the algorithm works for a 100-digit number before attempting a much larger number. In 

terms of the research objectives, selecting a 100-digit semi-prime number is suitable for implementation 

with software. It is important to note that many semi-prime numbers nowadays are using numbers 

containing more than 100 digits.  

 

An exploration of the literature was then carried out to determine factorisation methods and primality 

tests that have been used to avoid the repetition of previous attempts. The requirements formed the 
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inclusion criteria. Previously used methods of factorisation formed the exclusion criteria as well as the 

process for changing the binary semi-prime number to its digital equivalent. 

 

3.4 Research question: Evaluation 
 

The research question was evaluated in terms of the research requirements. The initial question 

considered was: Is this research ethical? It is important that hackers cannot solve this factorisation 

problem. However, it is essential for this reason that this research is ongoing to demonstrate that 

alternative solutions are put in place immediately. There is also an additional benefit to those affected 

by ransomware. If this factorisation can be achieved, then the process of obtaining a decryption key 

may be accelerated. Is the research based on a genuine problem that exists? The answer is yes because 

this problem has been attempted by many researchers over a long period. To make the research unique, 

I decided to focus on a solution that can be applied to the O.T. industry. Is the research based on an ICT 

solution, and is it measurable? Yes, the algorithm can be implemented in Python. The measurement of 

interest is how many steps are required to factorise a semi-prime number. Is it software that can be used 

in the O.T. industry? Yes, Python can be used on multiple operating systems and has an unofficial build 

for Android and iOS. Does the proposed work make a significant contribution to research? The solution 

provides an alternative approach to solving a problem long pursued by researchers. The approach taken 

is discussed in terms of balancing equations. Does the research cover aspects from various disciplines? 

Yes, the research includes Cryptography, Mathematics, responding to a ransomware incident in the O.T. 

industry, Computer Programming, and Research in Computing. The algorithm is a unique combination 

of decimals and logs which can be implemented on a single computer. The method for obtaining results 

(the DERMOT algorithm) is explained in detail and can be easily reproduced by other researchers so 

the results can be verified.  

 

The process from collecting data to analysing data and obtaining results is discussed in-depth. Any 

person with access to a regular computer can easily reproduce the results via Python. The main 

requirement of the research was to create a unique solution to factorise large semi-prime numbers, 

which may assist in the fast decryption of RSA-based ransomware in the O.T. industry. Using results 

from the RSA factoring challenge meant that the accuracy of results from the algorithm proposed here 

was verified.  

 

3.5 Research Objective 1: Evaluation 
 

Time to respond to an incident is most important when a ransomware attack is carried out on the O.T. 

industry. This is because systems that are impacted may result in serious injury or death. Therefore, 

recovering a decryption key should be done as quickly as possible. Obtaining the decryption key is 

possible if one of the prime factors (p or q) used to obtain semi-prime number N is known. Therefore, 

the first objective was to design a unique algorithm that minimises the number of computations required 

for the factorisation of a semi-prime number. A search for RSA factors was performed to obtain an 

appropriate size semi-prime number. This resulted in finding the RSA factoring challenge. As the 

smallest number provided was 100 digits, this number was chosen as the minimum number to test. 
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3.6 Research Objective 2: Evaluation 
 

To achieve the second objective of implementing an Information and Communications Technology 

Solution (ICT) solution with suitable software, a search of the literature review was performed. This led 

to the discovery of various software applications that were used by researchers. A Google search using 

the words ‘software for calculating large numbers’ was also conducted. Python, R and Sage Math were 

chosen to investigate further. Each of these were compared with each other (Refer to Section 5 in the 

configuration manual).  

 

 Calculations with R were completed due to some familiarity with this programming language. A table 

of prime numbers (refer to section 5.1.2 in the configuration manual) was generated, but limitations 

were found when calculating larger numbers (refer to section 5.1.6 in the configuration manual). Other 

software was investigated, and three other potentially useful options were found: namely Python, Sage 

Math, and Wolfram Alpha. Sage Math builds on R, Python, and other software and is very powerful and 

suitable for tasks dealing with calculations involving large numbers.  

 

However, I chose to use Python because many researchers had previously used Python, and it was 

important to be able to verify claims made by other researchers. Also, Python is free to download and 

has lots of documentation. Having decided to test Python's suitability, three necessary tasks were 

recognised. First, establish if Python is easy to use and easy to learn. This was accomplished by writing 

code to do some calculations. Indeed, Python is easy to use, easy to learn, readable, and can be easily 

maintained. Second, software was checked to ensure that calculations with numbers of at least 100 

digits (the smallest RSA semi-prime number factorised and published on the Wikipedia website) could 

be accomplished. This was found to be the case. Third, to ensure the reliability of the software, the 

accuracy of computations was verified. While performing many calculations with Python, some issues 

were discovered, but there were also ways to overcome those issues. For example, the Decimal module 

is required to maintain the accuracy of numbers. To test the accuracy of the software, the log of various 

numbers was calculated and then their corresponding inverse logs to ensure that the original numbers 

were obtained.  

 

To validate the results, the capabilities of online calculators were also investigated to ensure accuracy 

and precision were not affected during computation. What was found was most online calculators 

cannot return accurate results when performing computations with numbers of 100 digits or more. 

However, one big number calculator5 that was tested was found to be useful (section 5.5 in the 

configuration manual). To test its capabilities, a 100-digit number was squared. This calculator was 

used to compare results obtained by also squaring a 100-digit number in Python with results obtained 

using the big-number calculator. The same result was returned. However, further rigorous testing is 

required for significantly larger numbers than those containing one hundred digits. Selecting a second 

software tool minimised the likelihood of error and verified the validity of the results. Satisfied that 

Python is sufficient for achieving the goals of this research and due to its ease of use, Python was 

chosen for writing the algorithm. Examples of Python calculations are contained in section 5.2.1 in the 

configuration manual.  

 
5https://www.calculator.net/big-number-calculator.html 
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The fastest way to determine if a factor is prime or not was then explored. The easiest and fastest 

solution is to use freely available software such as Wolfram Alfra or SageMathCell (section 5.3 and 

section 5.4 in the configuration manual). 

 

3.7 Research Objective 3: Evaluation 
 

Use cases were created for the algorithm to show who can benefit from this solution and how the 

solution can be applied.  

 

3.8 Data Collection: Methodology  
         

A literature review was performed using reputable sources. A folder named ‘Useful’ was created, and 

research papers of interest were added to this folder. Two critical tasks that needed to be done before 

proposing a solution were identified. First, it was essential to become familiar with the work of major 

contributors to the RSA algorithm. Second, a search was carried out to detect if solutions were available 

and avoid repetition of methods already used.  

 

A critical analysis of related works was fulfilled to establish useful contributions that researchers have 

provided and establish potential gaps or improvements that are required. This provided knowledge 

about further avenues to explore or to abandon. The initial stage of the critical analysis began with 

identifying the article title, author(s), date of publication, and name of journal or conference. Focus was 

placed on the research objectives of the article, the methods used by the author(s), and their results in 

terms of the author(s) research objectives while considering the strengths and weaknesses of the 

approach taken. Articles were also assessed in terms of contribution to research. As each article was 

critiqued, it was documented in the reference section. In some cases, articles listed in the reference 

section of selected articles led to the exploration of other articles.  

 

The related works were then analysed in terms of the research question presented in this document and 

how research objectives could be realised. For example, what software did researchers use for 

performing large-number calculations? Is this something that can be learned within the established 

timeframe requirements? Is the software freely available? Can the software be easily attained from a 

reputable source?  
 

 

3.9 Data collection: Evaluation 
 

To evaluate the quality of the data, journals from reputable databases were selected. Research papers 

that did not have well-explained methods and results were excluded. The research papers were also 

evaluated in terms of how they meet the research objectives. The literature review provided knowledge 

of various factorisation methods and primality tests, which was a necessary step towards establishing 

essential knowledge in this area. A critical analysis of the literature also helped to establish if the 

proposed solution would likely work or if similar obstacles that other researchers were presented with 

would be likely. 
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3.10 Designing the Algorithm: Methodology 
 

To design the algorithm, it is necessary first to select appropriate software that can produce accurate 

results. Having selected Python as the software of choice, the software was tested to ensure accuracy 

and precision. The Decimal module was deemed appropriate for this task. Having determined Python's 

suitability, the next step was to select an appropriate method to achieve the research objectives. The best 

method is the one most suitable for meeting the research objectives, which is to factorise a semi-prime 

N in polynomial time. 

 

Once it was determined that suitable software was available, researching how the RSA algorithm works 

was the next step because its purpose is likely to determine how it is designed. The first step in the 

standard multiplication process taught in Irish schools was considered to establish a starting point for 

the calculation. It begins with multiplying the last two digits of two numbers. However, these are the 

two numbers to be determined. Therefore, the best starting point was to figure out an approximation of 

the first digit of either p or q. An approximation of p and q was found as follows: first, the first two 

digits of N were selected. These two digits were named N2 to distinguish between the first two digits 

and the full one-hundred-digit number N. Then, the factors of all numbers less than or equal to N2 were 

established. The highest factor of N2, which can be squared and results in a number less than N2, was 

selected. For example, in the case of RSA 100, the first two digits are fifteen (N2). The square root of 

N2 was calculated to determine which of the factors found are likely to be the first digits of p and q. The 

square root of fifteen equals 3.87. The first digit of the square root of fifteen is three. Therefore, the 

number three is assigned to variable p1. Any number that could be multiplied by p1 and remain less 

than N2 was labelled q1. For example, three multiplied by five is 15. As N2 is equal to 15, five is not 

appropriate. Emphasis is placed on the words less than N2 because as more digits are multiplied, the 

starting digits of p and/or q are likely to increase. When p and q are approximately 50 digits long, the 

first digit of p or q may change. For N equal to 15, if p1 is equal to three and q1 is equal to five, then N2 

may not be equal to 15 when additional digits are added. For example, if three is changed to 35 and five 

is changed to 52, then the first two digits of N will not be 15 because 35 multiplied by 52 equals 1820. 

It is likely, then, that the numbers to consider for p 1 and q1 are one less than the highest number in the 

set of factors obtained above. Therefore, when N2 equals 15, the first digit of q1 is likely to be four as 

p1 is three. Three multiplied by four is less than N2.  

 

Now, with an approximation of the first digit of p and q, the second digit of both numbers was 

calculated using a process of balancing equations. For those working in the chemical industry, this is 

comparable to a chemical compound such as sodium chloride. The equation for the decomposition of 

sodium chloride into its elements is represented as NaCl -> Na + Cl. Similarly, N needs to be separated 

into two prime factors, p and q. Then, apply the chemistry concept: N -> p + q. In the O.T. industry, 

control systems with feedback loops are often employed. The methodology used here also applies a 

similar concept. N is starting with two factors, itself and one. Consider N to be one of these factors and 

assign it to variable q. The variable p then has a value of one. Now, p needs to increase to lie closer to 

the value of the square root. Similarly, q needs to decrease to lie closer to the value of the square root. 

This means that a change (output) in one variable (system) impacts the input to the other variable 

(system). 
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3.11 Designing the Algorithm: Evaluation 
 

RSA is used as a security means. Therefore, someone selecting suitable prime numbers for use needs to 

determine how security can be maximised. If one prime number is considerably less than the other 

prime number, then security is less effective. This is easily proven because if one prime factor is known, 

then the second prime factor is easily obtained by dividing the semi-prime number by the known prime 

factor to give the second prime factor. If a person searching for prime factors tests all numbers up to the 

square root of N and if one of the prime factors is much less than N, then prime factorisation will be 

attained much faster. This does not help maximise security. Therefore, prime factors p and q are likely 

to be closer to the square root of N rather than farther away. Of course, this is not guaranteed. But based 

on this assumption, it makes sense to look for prime numbers close to the square root of N. This means 

that the first digit in p or q is likely to be close to the first digit of the square root of N. Of course, it may 

be equal to the first digit because of the size of the numbers involved. Small numbers were also 

factorised to ensure the approach suggested for balancing equations provides accurate results.  

 

The decimal system was used to ensure accuracy. The process of using logs was useful for helping to 

establish the first few digits. However, using logs adds more computations to the process by obtaining 

logs and inverses of numbers.  

 

3.12 Implementing the algorithm: Methodology 
 

The mpmath module was imported. This was useful for functions such as calculating the square root. 

The decimal module was also imported as this is suitable for decimal numbers. The Decimal class was 

then imported from the decimal module. The getcontext function was imported to set the precision. The 

precision was set to a number greater than the number of digits of N.  

 

The code was then written so that the user could input a number, which is stored in a variable named N. 

The RSA-100 semi-prime number was entered. The process was then repeated using a number 250 

digits in length. The variable type was checked to ensure the number was stored as an integer. The 

initial starting point for separating the number into two factors was to assign known factors of the semi-

prime. Known factors of the semi-prime number are one and the semi-prime number itself. For this 

reason, the numbers one and the semi-prime number were assigned to variables p and q. Each variable 

was then adjusted through a process of multiplication and division to achieve a point where they both 

had the correct first digit. The process of using logs was then used to refine the results.  

 

3.13 Implementing the algorithm: Evaluation 
 

To test the accuracy and precision of Python, calculations were performed, which returned a decimal 

number of 100 digits following the decimal point. Whole numbers were then tested that divide evenly 

and returned no digits after the decimal point. However, the last digit of each semi-prime number is an 

odd number. Obtaining the square root or dividing these numbers by two will result in a decimal 

number, which is not a prime number. Therefore, it is important to identify an appropriate number to 

divide the semi-prime number by. 
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A command was implemented that allows the user to input numbers of various lengths. First, 

the RSA-100 number was entered and assigned to a variable named N. The number of digits in the 

number entered was counted to ensure there was no rounding occurring. The process was then repeated 

for a 250-digit number. The reason a number with 250 digits was chosen was because a number this 

size or larger is more likely to be chosen nowadays for the RSA algorithm.  

 

3.14 Obtaining and Analysing Results: Methodology 
 

To achieve results, each step of the process was carefully planned to ensure that the methodology used 

was the best approach for achieving the research objectives. The algorithm was implemented in Python 

to produce outputs and obtain results. Once the semi-prime number was factorised, the number was 

input into SageCellMath to establish whether it was a prime number. The factors obtained were 

compared with the number provided on the RSA factoring challenge.  

 

3.15 Obtaining and analysing results: Evaluation  

To evaluate the methodology for obtaining and analysing results, it was necessary to ensure that the 

number of operations required to factorise N, and the number of tasks required to determine if p or q is 

prime were predictable with different values of N. This was more important than calculating the time 

taken to obtain a result because various factors influence time. The use of loops in programming is 

likely to impact this goal negatively as a loop uses a counter, and an increase in n will result in 

additional steps.  

 

4    Design Specification 
 

The first step of the process is to run Python. This can be done from the command prompt on a 

Windows machine. 

 

4.1 Word-based description of the algorithm 
 

The quickest solution is to do the calculation using the decimal system. This method is less likely to be 

affected by the butterfly effect due to the transformation of data. Once the prime factors are obtained, 

the result can be changed to binary. For example, consider the random number 15222173, which is the 

product of 3797 multiplied by 4009. (Note: 15222173 is not prime. It is just used for illustration 

purposes). Assign the number to be tested to a variable N. Here, a technique is used that allows the 

software to accept varying values of N. To ensure that the code does not need to be rewritten multiple 

times, the software script is designed so that the user is asked to enter the number to be factorised. Take 

the first two digits of the number N: in this case, the first two digits of N are one and five. Find the 

factors of fifteen other than one and fifteen. The factors of fifteen, excluding one and fifteen, are three 

and five. Because three multiplied by five is exactly fifteen, the highest factor is reduced by one. Now, 

the initial digit of p is three, and the initial digit of q is four. Assuming proper security is implemented, 

both factors will not be equal. The square root is the point at which both factors are equal. One factor 

will always lie above the square root of N, and the other will always lie below the square root of N. 

Therefore, obtain the square root of N to determine the maximum number for one factor (p) and the 

minimum number for the other factor (q). 
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As shown in the screenshot above, p lies below 3901.56, and q lies above 3901.56. To ensure accuracy, 

the number of digits after the decimal point is three times the number of digits contained in N.  

 

The process for determining the second digit of p and q is described in Table 1 below. This displays the 

technique that underlies the implementation of the algorithm: 

          

  p q   
x 3 1 1522  / 3 

x 1.00657462 3 507.3333333 /1.000657462 
x 

1.245700246 3.00197238 507 / 1.245700246 

  3.73955773 406.9999999   
x 10 37.3955773 40.69999999 10 

                                                            

Table 1: Displaying the technique that underlies the implementation 

 

The first digit of p is three, and the first digit of q is four. To obtain the second digit of p and q, take the 

first four digits of N (1522). Divide 1522 by three and assign it to q. Now, multiply p by 3. Now p is 

three, and q is 507.3333333. To obtain a whole number, divide 507.3333333 / 507 = 1.000657462. This 

means that 507.3333333 is divided by 1.000657462 to obtain 507. As a result, the opposite math 

operation is performed on p. p is multiplied by 1.000657462, which results in 3.00197238.  

 

It was established earlier that the first digit of q is four. This means that 507 needs to be reduced to a 

number beginning with four. To change the first digit to four, divide 507 by 407. The result is 

1.245700246. This means 507 needs to be divided by 1.245700246 to obtain 406.9999999. p is 

therefore multiplied by 1.245700246. p is now 3.73955773. To obtain a whole number with two digits, 

3.73955773 is multiplied by 10, and 406.9999999 is divided by 10. Now, the two numbers that are 

remaining are 37.3955773 (p) and 40.69999999 (q). 

 

Comparing this with the original factors 3797 and 4009, the first two digits match. The log of the semi-

prime number is then calculated. This helps to prove the remaining digits because the value of p and q is 

now an addition exercise, but care needs to be taken when carrying over digits due to the addition of 

two digits exceeding ten.  

 
 

5     Implementation        
 

Note: Before implementing the algorithm, it is recommended that some commands be run first to 

ensure the precision is set appropriately.  
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The main goal of the implementation is to provide a solution that is accurate, precise, fast, and 

reproducible. The ideal solution is achieved in polynomial time, i.e. the number of steps required is 

predictable for different values of N. 
 

5.1 Software Requirements 
 

The algorithm was implemented in Python (Version 3.11.9), which was running on a Microsoft 

Windows 11 Home operating system. The machine used was an x64-based P.C. with 8.00 GB RAM 

and an Intel i5 core processor.  

 

5.2 Solution Development 
 

The modules necessary for the implementation of the algorithm include the mpmath and decimal 

modules. The number of digits in N dictates the minimum number at which the precision should be set. 

The user is requested to enter a semi-prime number to be factorised. The variable storing the semi-

prime number is then checked to ensure it is of type integer. The square root of N is then calculated. 

Note the first two digits of N. In the case of RSA-100, the first two numbers of N are 15. The factors of 

the first two digits of N are obtained. This is achieved by running a for loop, which checks the numbers 

from one to N. If N divided by a number returns a result of exactly zero, then the number is a factor. 

(Note: For this to work, the code must be indented as shown in the DERMOT algorithm). Note the first 

two digits of the square root. 

 

In the case of RSA-100, the first digit is three, and the second digit is nine. Treat this as 3.9. Now, the 

value of the square root is close to four. From the factors of 15, select the factors above one and below 

four. Consider this as the first digit of p (p1). Now, take the highest factor from the 15 factors that are 

situated above four. This is five (q1). Multiply p1 by q1 and compare with the first two digits of N. As 

the number is exactly equal to the first two digits of N, the highest factor obtained (q1) is reduced by 

one. This is to account for the fact that N as a whole number has more than two digits. If p1 and q1 

were left as they are with three and five, the first digit and additional digits were added, the result would 

be a number that has a higher which does not have 15 as the first two digits. The highest factor q1 

minus one is four. Now, p1 equals three, and q1 equals four. The factors of N are likely to start with 

three and four. Two variables are then created to accommodate two known factors of N. In the 

procedure, these are shown as variables p and q. As the two known factors of N are one and N itself, 

these are assigned to p and q. p and q are then adjusted by a process of multiplication and division until 

the numbers output match the first digits of p1 and q1. The log of N is then calculated, and through 

reverse addition, the next digits of p and q are obtained. Finding the inverse log helps to ensure the right 

digits are selected.  

 

6    Evaluation 
 

 

6.1 Main findings of the study 
 

6.1.1 The Decimal method for achieving results for RSA-100 
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Note: The full process for obtaining these results is in the associating ICT solution 

(DERMOT algorithm) on page 28 of the accompanying configuration manual. 

 

Results for prime factor p: 

 

 
 

 

 The actual prime factors are  

 

 RSA-100  

 p = 37975227936943673922808872755445627854565536638199 

 q = 40094690950920881030683735292761468389214899724061 

 

The results show that the first six digits of p were successfully matched. If the digits after the decimal 

place are ignored, the last digit in q is 4. The lengths of p and q are approximately half of N. As the last 

digit is four, there is no need to do a primality test. The last digit of N is 9, which means the last digit of 

q should be 1, 3, or 9.  

 

6.2 Implications of Findings 
 

6.2.1 Business perspective 

A ransomware attack in the operational technology (O.T.) industry can have devastating consequences. 

Such an attack may involve an attack on information technology (I.T.) systems controlling the O.T. or 

an attack directly on the O.T. Obtaining a decryption key swiftly is of paramount importance. As well 

as the risks that impact the I.T. industry, the O.T. industry has additional risks. For example, systems 

are often not updated because updating software or rebooting systems can affect processes. Human 

safety is the main concern in the operational technology industry. If a control system exceeds a 

specified value, a safety instrumented system that communicates with the control system brings the 

system to a safe state. Any interference with the threshold level could have varying levels of 

consequences. For example, a change in the level of a chemical system could result in severe burns or 

the death of a person. In the event of a ransomware attack, decryption keys are not always available, as 

new strains often emerge. In this situation, a company in the operational technology industry needs a 

time-focussed solution for finding a decryptor key. Once a ransomware name has been discovered, the 

incident response team can use publicly available decryption tools such as nomoreransom.org6 to obtain 

the decryption key and instructions on how to use it appropriately. However, often, a decryption key is 

not available as new strains of ransomware emerge.  

 

Use Case 1: Application in the Operational Technology (O.T.) industry. 
 

A pharmaceutical manufacturing company is performing a risk assessment. As part of the risk 

assessment, the security of its encrypted devices is tested.  

 
6https://www.nomoreransom.org/en/index.html 
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The company needs a solution for obtaining a decryption key in the event of a ransomware attack. The 

solution needs to be adaptable for Windows and LINUX systems. An attack could result in the wrong 

quantity of chemicals in tablets, which could have dangerous implications for human health. It could 

also result in a chemical explosion, which could result in burns or death. The ideal solution can be used 

anywhere. Because the DERMOT algorithm is implemented in Python it can easily be used anywhere. 

The incident response team can copy the encrypted file and store it on an isolated Windows machine for 

analysis.  

 

RSA is often used in combination with a symmetric key algorithm such as AES. The RSA algorithm is 

often used for key exchange, and AES is used for data encryption. If an RSA algorithm has been used in 

conjunction with AES encryption, the solution presented here (the DERMOT algorithm) , once fully 

established, can be applied. First, search the encrypted file for the AES password. Run the algorithm. 

The output produced is the decryptor key. Use this key to decrypt the AES password into plaintext.  

 

6.2.2 Academic perspective 
 

This algorithm can be used as an example to students in disciplines such as mathematics, chemistry, 

astrophysics, and computers of how to quickly eliminate most numbers between one and N. This can be 

applied where significantly large numbers are used, such as in astrophysics. 
 

Discussion 
 

The algorithm is based on the factorisation of semi-prime numbers using decimals. When refined, it will 

lead to factorisation of semi-primes with a predictable increase in N. The way to achieve this is to 

assign its known factors to two variables representing p and q. The known factors are one and the semi- 

prime number itself.  

          

The key to attaining a result close to the desired outcome is to obtain the factors of the first two digits of 

N. In most cases, the highest factor obtained, excluding one and N itself, should be reduced by one. 

However, this is just an initial estimation. Another limitation of this work is that it is based on a very 

small sample size of just sixteen semi-prime numbers.  

 

The square root is set as the maximum threshold for one prime factor and the minimum threshold for 

the other prime factor. Assuming most prime numbers do lie close to the square root, this suggests that 

the generation of semi-prime numbers is not random. Alternatively, it may be that a specified range is 

pre-determined to enhance security. If the semi-primes were farther away from the square root, then a 

computer that is running a program to factorise the semi-prime would achieve factorisation much faster. 

From a security perspective, this is not a positive outcome if a malicious person is attempting to decrypt 

confidential data.   

 

Having assigned the variables p and q with initial values of one and the semi-prime number itself, p and 

q are then adjusted through a process of multiplication on one variable and division on the other 

variable. Using logs is helpful, but the number of steps required to match a digit can make the time 

taken to obtain prime factors become unpredictable. This is a limitation of this work and identifies the 

need for further investigation. The reason this is an issue is because when trying to decide how the 
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digits in p and q add up to provide a given digit in the log of N, there are a few different possibilities. 

The most suitable arrangement of digits may be achieved on the first attempt or maybe after two, three, 

or four attempts. It also depends on the digit in the log of N. For example: If the log of N contains digit 

one, then the possibilities are (p=0 and q=1), (p=1, q=0) (p=2 and q=9), (p=9 and q=2), (p=3 and q=8), 

(p=8 and q=3), (p=4 and q=7), (p=7 and q=4), (p=5 and q=6), (p=6 and q=5). Additionally, if there is 

one carried over, this means that more combinations are possible. An important aspect then of using 

logs is to carefully consider which number to select for log p and log q. Obtaining the inverse log of 

possible combinations can help with this process.  

 

Having assessed the process, it could be argued that both Flynn (2021) and Bellos made valid points. 

Flynn (2021) claimed too many iterations were required using the log method. This is true if testing all 

odd numbers between one and N. However, the DERMOT algorithm reduces the number of semi-prime 

numbers to be tested by first establishing the first six digits. Then, all digits not matching the first six 

digits can be automatically eliminated. As the RSA semi-primes are extremely large numbers this is a 

significant portion of numbers that are excluded from testing. As Bellos (2010) stated, the reason 

Johannes Kepler was able to calculate the orbit of Mars was due to logs. 

 

Conclusion and future work 
 

The focus of this work was to establish how to speed up the process of recovering a decryption key in 

the event of a ransomware attack that employs the use of the RSA algorithm. The RSA algorithm is 

used in the exchanging of key processes and is often employed with an encryption scheme such as AES. 

To decrypt the AES the RSA decryption key is needed. This key is generated through a process that 

begins with multiplying two prime numbers together to produce a semi-prime number. To speed up the 

process for obtaining the decryption key an alternative approach to the approaches already attempted is 

required. Because the focus is on obtaining the decryption key as quickly as possible, the calculation is 

based on the decimal system and uses logs and inverse logs to refine results.  

 

There were three main objectives. Objective one was to create a unique algorithm to reduce the number 

of computations required for the factorisation of a semi-prime number without the use of a quantum 

computer. The 100-digit number that was attempted was not factorised into its prime factors. However, 

the first six digits were discovered, and the process was applied to small numbers with 100% accuracy. 

With more refinement, this can be achieved without the use of a quantum computer. The second 

objective was to implement the algorithm with suitable software. The DERMOT algorithm was 

implemented with Python, which was 100% suitable for the task. The third objective was to provide use 

cases for the O.T. industry. The main consideration for the O.T. industry is that I.T. is connected to O.T. 

which are often essential services and could have devastating consequences if infected with 

ransomware. Any software updates need to consider the potential implications of connected O.T. For 

that reason, it is recommended to copy the encrypted file and store it on an isolated Windows machine 

for analysis. If an RSA algorithm has been used in conjunction with AES encryption, the DERMOT 

solution presented here can be used to factorise the semi-prime number and the process of recovering 

the decryption key can take place.  

 

This algorithm is undergoing further testing using other semi-prime numbers and the DERMOT 

algorithm is being automated. Other future work could include investigating the role artificial 

intelligence (A.I.) could play in this process. Specifically, an A.I. model trained to identify the next digit 
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of log p and log q based on the digits in the log of N would be helpful. Relevant contributions could 

include an updated survey on O.T. systems impacted by ransomware. 
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