

Configuration Manual

Enhancing security efficiency through the integration of

Elliptic Curve Cryptography with Audio Steganography

MSc Research Project
Practicum 2

Nishant Bhosale

Student ID: 22227377

School of Computing

National College of Ireland

Supervisor: Khadija Hafeez

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

…Nishant Sandeep Bhosale

Student ID:

22227377

Programme:

MSc In Cybersecurity

Year:

2023

Module:

Practicum 2

Lecturer:

Khadija Hafeez

Submission Due

Date:

12th August 2024

Project Title:

Enhancing security efficiency through the integration of Elliptic Curve

Cryptography with Audio Steganography

Word Count:

…1460………… Page Count: ……12……………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Nishant Bhosale

Student ID: 22227377

1 Introduction

This configuration manual provides a comprehensive guide for the installation, configuration,

and practical usage of the prototype application developed to enhance security efficiency

through the integration of Elliptic Curve Cryptography (ECC) with Audio Steganography.

The manual covers software and hardware requirements, detailed installation instructions,

key generation, encryption-decryption processes, embedding-extraction procedures, practical

usage steps, and performance evaluation.

2 Environment

2.1 Hardware Requirements

• Processor: Intel Core™ i3 or higher (i5 recommended for faster processing)

• RAM: 4 GB or higher

• Storage: Minimum 120 GB HDD (SSD recommended for better performance)

• Graphics: Integrated or dedicated graphics card (NVIDIA GeForce GTX series

recommended)

• Audio Interface: High-definition audio codec, supporting 24-bit/96 kHz playback

• Additional Hardware: Microphone and speakers for audio testing

2.2 Software Requirements

• Operating System: Windows 10 or higher, Ubuntu 20.04 or higher

• Python Version: Python 3.8 or higher

• Required Python Libraries:
o numpy
o matplotlib
o pycryptodome
o wave
o tkinter
o scipy
o cryptography
o psutil

(Install the required packages using pip: pip install numpy matplotlib pycryptodome

wave tkinter scipy cryptography psutil)

• Integrated Development Environment (IDE): PyCharm or Visual Studio Code

• Version Control: Git (for version control, collaboration, and backup)

2

3 Installation Steps

3.1 Python Installation

1. Windows:

o Download the latest version of Python from the official Python website.

o Run the installer and ensure that "Add Python to PATH" is checked before

installation.

o Verify installation by opening Command Prompt and typing python --

version.

2. Ubuntu:

o Open the terminal.

o Run the following commands to install Python:

sudo apt update

sudo apt install python3 python3-pip

o Verify installation by typing python3 --version.

3.2 IDE Installation

• PyCharm:

o Download from the official JetBrains website.

o Follow the installation prompts.

o Open PyCharm and configure it to use the installed Python interpreter.

• Visual Studio Code:

o Download from the official VS Code website.

o Install the Python extension for Visual Studio Code via the Extensions

Marketplace.

3.3 Cloning the Repository

1. Using Git:

o Open the terminal (Command Prompt on Windows, Terminal on Ubuntu).

o Clone the repository containing the project:

git clone https://github.com/your-repository-url.git

o Navigate to the project directory:

cd your-repository-folder

2. Manually Downloading:

o Download the project ZIP file from the repository.

o Extract the contents to a desired location on your system.

3.4 Installing Required Python Libraries

https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/
https://code.visualstudio.com/Download

3

• Navigate to the project directory in your terminal or command prompt.

• Run the following command to install all required dependencies:

pip install -r requirements.txt

4 Key Generation

The system supports both RSA and ECC for key generation. Below are the steps to generate

keys:

4.1 RSA Key Generation

1. Run the RSA key generation script:

python key_gen.py --type rsa --output rsa_keys/

o This will generate RSA public and private keys in the rsa_keys directory.

2. Verify the keys:

o Ensure that private.pem and public.pem files are created in the specified

directory.

(Diagram here: RSA key generation process flow diagram with file outputs)

4.2 ECC Key Generation

1. Run the ECC key generation script:

python key_gen.py --type ecc --curve secp256k1 --output ecc_keys/

o This will generate ECC public and private keys in the ecc_keys directory.

2. Verify the keys:

o Ensure that ecc_private_key.pem and ecc_public_key.pem files are

created in the specified directory.

5 Implementation

5.1 Encryption

5.1.1 RSA Encryption

1. Algorithm: RSA with OAEP Padding

2. Hash Function: SHA-256

3. Process:

o Load the RSA public key from the .pem file.

o Encrypt the plaintext message.

o Save the ciphertext in a binary format.

4

5.1.2 ECC Encryption

1. Algorithm: Elliptic Curve Integrated Encryption Scheme (ECIES)

2. Symmetric Encryption: AES-GCM

3. Process:

o Generate an ephemeral key pair.

o Derive a shared secret using the recipient's public key.

o Encrypt the message using AES-GCM.

o Save the ciphertext along with the ephemeral public key.

5

5.2 Steganography

5.2.1 Embedding the Encrypted Message into Audio

1. Technique: Least Significant Bit (LSB)

2. Process:

o Convert the encrypted message to a binary sequence.

o Embed the binary sequence into the LSB of each audio sample.

o Save the modified audio as a stego audio file.

5.2.2 Extracting the Encrypted Message from Audio

1. Process:

o Load the stego audio file.

o Extract the LSBs to reconstruct the binary sequence.

o Convert the binary sequence back to the encrypted message.

5.3 Decryption

5.3.1 RSA Decryption

1. Process:

o Load the private key.

o Decrypt the ciphertext using RSA.

o Display the plaintext message.

6

5.3.2 ECC Decryption

1. Process:

o Load the recipient's private key.

o Derive the shared secret using the ephemeral public key.

o Decrypt the message.

o Display the plaintext message.

6. Practical Usage Steps

6.1 Running the Application

1. Start the GUI Application:

o In the terminal or command prompt, navigate to the project directory.

o Run the following command to start the application:

7

python app.py

o This will launch the graphical user interface (GUI).

6.2 Using the Encoder

1. Input the Secret Text:

o Enter the secret message in the text box

provided.

2. Choose the Encryption Method:

o Select either RSA or ECC from the dropdown

menu.

3. Encrypt the Message:

o Click on the "Encrypt" button to encrypt the secret message.

o If using RSA, ensure the public key is correctly loaded. For ECC, ensure the

correct curve and public key are selected.

8

4. Embed the Encrypted Message:

o Click on the "Embed" button to embed the encrypted message into the audio

file.

o Specify the number of LSBs to use for embedding (default is 1 LSB).

o After embedding, the stego audio file will be automatically

generated.

9

5. Save the Stego Audio File:

o Click on "Save" to store the stego audio file in the desired directory.

For ECC

For RSA.

10

6.3 Using the Decoder

1. Load the Stego Audio File:

o Click on the “Browse” button to load the stego audio file.

2. Extract the Encrypted Message:

o Click on the “Extract” button to retrieve the encrypted message from the stego

audio file.

For RSA

For ECC

11

3. Decrypt the Message:

o Click on the "Decrypt" button to decrypt the extracted message.

o The original plaintext message will be displayed on the screen.

For RSA

For ECC

12

7. Code Execution

7.1 Running Specific Modules

• Encrypt a Message Using RSA:

python rsa_encrypt.py --message "Your message here" --output

ciphertext.bin

• Decrypt a Message Using ECC:

python ecc_decrypt.py --input ecc_ciphertext.bin --output

plaintext.txt

7.2 Performance Monitoring

• Real-Time Monitoring:

o The application automatically monitors CPU and memory usage during

operations.

o Logs are saved in performance.log.

• Reviewing Logs:

o Open the performance.log file in any text editor to review resource usage

statistics.

o Metrics include execution time, CPU utilization, and memory consumption.

8. Testing and Evaluation

8.1 Performance Metrics

• Execution Time:

o Measure and compare the time taken by RSA and ECC for encryption,

decryption, embedding, and extraction.

• CPU Usage:

o Monitor CPU usage for different operations, ensuring the system remains

within acceptable performance limits.

• Memory Usage:

o Track memory consumption during various operations, particularly during

large file handling.

