

Developing an Advanced and Adaptive Framework of

Honeypots for Efficient Deception for ZigBee IOT

Environments

MSc Research Project

Master of Science in Cyber Security

Shashank Basavaraju

Student ID: 22241817

School of Computing

National College of Ireland

Supervisor: Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Shashank Basavaraju

Student ID:

22241817

Programme:

Master Of Science in Cybersecurity

Year:

2023-2024

Module:

Practicum Part2

Supervisor:

Michael Prior

Submission Due

Date:

12th August 2024

Project Title:

MSc Research Project Part 2

Word Count:

6875 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Shashank Basavaraju

Date:

11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Developing an Advanced and Adaptive Framework of

Honeypots for Efficient Deception for ZigBee IOT

Environments

Shashank Basavaraju

Student ID: 22241817

Abstract

Cyber threats continue to be one of the most persistent security concerns in modern

digital settings. This study deals with these issues using honeypots, integrated with an

intrusion detection system that uses deep learning. Utilizing them to entice potential

attackers into the open to demonstrate their methods, captured traffic is analysed

using a GRU-based deep learning model to find intrusion attempts. The hardware

setup comprises ESP32 microcontrollers connected with DHT11 sensors to achieve

the environmental data, XBee modules for communication, OLED displays for data

visualization, and a CC2531 ZigBee sniffer for packet analysis. In action, the

honeypot captures and preserves the traffic within a controlled environment, where

the attackers lead themselves unknowingly to reveal their strategies. Tools like hping3

and Hydra are used to test their attacks to understand the attacker procedure. This

framework is coming with lots of advantage on the front of the identification and

mitigation of the threat on cyberspace through being proactive. Since the model

integrates CNN for feature extraction and GRU for sequence analysis, it is feature-

rich to detect any sophisticated pattern of attacks. In addition to that, the tricking

nature of the honeypot will help in the early detection of the threats to be attacked and

will further enhance the overall cybersecurity defence against the dynamic threat

landscapes. The CNN-GRU model is trained using custom datasets created by

Wireshark achieved an amazing level of 94% testing accuracy for distinguishing

malicious traffic.

1 Introduction

1.1 Background

Cyber threats are those attacks or events that may impair computer systems and gain

unauthorized access to them. Targeting critical assets in industries, governments and

personal networks, new types of threats are born again every year. These threats

continue to change in new and improved breeds, making the task of being able

discover them that much harder. One example is The Mirai botnet identified back in

2016, belonging to a family of malware that find deprived IoT devices and employ

them to hold out enormous DDoS attacks within any large network. After Mirai, the

attackers created its iterations like Persirai to boost their malicious operations while

remaining undetectable. Botnet incidents escalated significantly after the introduction

of Mirai (Javadpour et al., 2024). Two common practices used in cybersecurity to

2

defend against these threats are intrusion detection and honeypots. Intrusion Detection

Systems are tools or applications used to monitor networks as well as systems and

they inspect everything that passes from an entity within a different one, in particular

the suspicious activities signs like unsanctioned unauthorized access requests of data

thefts or even protocol breaches. They are required to detect new categories of attacks

(both known and unknown) from internal and external sources. Network Intrusion

Detection Systems (NIDS), on the other hand, are unlike traditional firewalls and are

installed at a strategic location in your network to actively monitor all traffic as it

comes in. Including those that detect malicious network behaviour and any use of a

computer in an unauthorized or unwanted manner; IDSs detect active threats

continuously and prevent attackers from successfully attacking the network (Wanjau,

Wambugu, and Oirere, 2022). IDSs are categorized into host-based IDS (HIDS) and

network-based IDS (NIDS), depending on what they monitor. HIDS observes and

analyses activities on the system (such as a computer or server) where it's installed. It

focuses on monitoring the system's behaviour and current state. In contrast, NIDS

monitors network traffic to detect attacks coming through network connections. It is

deployed within networks to scrutinize traffic passing through specific devices. NIDS

systems can be implemented as hardware or software and typically feature two

network connections: one for monitoring network conversations and another for

transmitting detection reports (Abdallah, Eleisah, and Otoom, 2022).

Figure (1): Architecture of an Intrusion Detection System (Wang, Wang and Xie, 2022)

The Figure (1) shows the architecture of an Intrusion Detection System (IDS).

Network data flows from the internet through a firewall and router before being

monitored by the IDS. The IDS analyses this network data and communicates

findings to an administrator, who oversees the process. A server supports data storage

and additional processing needs.

Honeypots are great for drawing attackers in, and learning how they operate to help

gain an edge defensively. Many organizations have been deploying these kinds of

systems In order to improve their security programs and obtain visibility into more

frequent types of attacks as a result. Honeypots provide defenders with information on

the attacks that are being launched against their system (Zielinski and Kholidy, 2022).

Honeypot systems are the main defence to stop or timely detect attacks and malicious

activities. By providing specifics regarding both intrusion behaviours as well as

system activities, and the techniques employed by malicious individuals, they help to

enhance detection speeds in identifying threats along with response times of dealing

3

with inbound attacks. Therefore, honeypots work by deploying real systems to capture

and study an adversarial behaviour efficiently (Titarmare, Hargule and Gupta, 2019).

Figure (2) shows how the honeypot operates. It displays two types of traffic: normal

traffic and attack traffic. When traffic reaches the load balancer, it is directed to the

Web Application Firewall (WAF). If the traffic is identified as an attack, it is routed to

the clone server honeypot. This honeypot mimics a real server but is designed to trap

and analyse malicious activities. On the other hand, normal traffic proceeds to the real

server for legal interactions.

Figure (2): Overview of Honeypot Operation (CyberSRC, 2024)

1.2 Problem Definition

IDS and honeypots have been crucial for minimizing damage from cyber-attacks.

However, cyber criminals have evolved their tactics over time. Today's IDS systems

often struggle to keep up with these sophisticated attacks (Ozkan-Okay et al., 2021).

As malicious activities continue to grow in complexity, current security measures are

proving inadequate. IDS works on the idea that intruders behave differently from

legitimate users, but distinguishing between normal and abnormal behaviour isn't

always clear-cut(Ashiku and Dagli, 2021). Over time, attackers have become adept at

identifying honeypots systems designed to lure and trap attackers. Once recognized,

attackers typically stop wasting effort on them, reducing the defender's ability to

gather useful information. Effective honeypot systems must now mimic real systems

closely and contain realistic but fake data (M.R. and P., 2022). This approach forces

attackers to spend valuable time attempting to exploit the honeypot, looking for signs

like valid credentials. Deep Neural Networks(DNN) can enhance IDS by learning to

detect both known and new types of network behaviours, including those that haven't

been identified before. This capability helps identify intruders and lowers the chances

of a system being compromised (Ashiku and Dagli, 2021). In this study proposes an

intelligent IDS using DNN for real-time intrusion detection, alongside an advanced

honeypot that evades detection by attackers, is proposed. This combined approach

aims to enhance cybersecurity by improving detection accuracy and resistance against

evolving cyber threats.

4

The study has the following research question:

How does the security system consisting of the honeypot integrated with deep

learning methods to effectively trick and detect attacks in IoT environments?

The aim of the project is to create and evaluate a honeypot framework for ZigBee IoT

services. The objectives of the study are:

1. Build a micro controller setup for capturing temperature and humidity.

2. Setting up ZigBee communication between XBee modules and ESP32 and

connect a ZigBee sniffer tool to a PC for packet sniffing and analysis.

3. Train a deep learning model using GRU architecture on the custom dataset for

real-time intrusion detection.

4. Create a honeypot that captures ZigBee traffic and stores data packet files.

5. Design a landing webpage to display captured data and simulate attacks using

tools like hping.

6. Integrate the trained deep learning model into the system to detect and classify

attacks.

The novelty of the system proposed here is that it combines a honeypot with real-time

intrusion detection using deep learning. This setup not only tricks attackers but also

quickly identifies and analyses their actions. By capturing detailed data and using

smart models, the system provides a stronger defence against cyber threats in ZigBee

IoT environments.

Section 1 of the report introduces the project, explaining IDS, honeypots, and the

system being developed. Section 2 covers related work in the field. Section 3 explains

the methods used in the study. Section 4 provides the specifications for the different

components of the study. Section 5 describes the final implementation of the system.

Section 6 discusses the evaluation of the study's results. Section 7 offers the

conclusion and suggestions for future improvements.

2 Literature review

This part of the literature review explores past research, and the difficulties faced. It

looks at older machine learning and deep learning methods used for spotting attacks,

paying attention to the usual approaches used and tools like Snort and Suricata. The

main aim of this study is to improve how attacks are detected by using newer, smarter

deep learning methods that can detect attacks more accurately and quickly.

2.1 Machine learning and Deep learning methods

Looking at different types of connected intrusion detection systems that use machine

learning methods, as discussed in the study by (Abdallah, Eleisah, and Otoom, 2022).

It utilizes four prominent datasets: KDD’99, NSL-KDD, CICIDS2017, and UNSW-

5

NB15. Emphasizing the importance of feature selection, the study highlights how

selecting the right features can significantly enhance performance. To address data

imbalance, the study employs various sampling approaches to ensure more accurate

and representative results. The study employs various supervised learning algorithms,

with Random Forest and Deep Neural Networks (DNN) frequently emerging as the

most effective. These algorithms achieve high classification performance, with

accuracy rates up to 99.7% and low false positive rates (FPR) of 0.005%. This

indicates their robustness in identifying and classifying intrusions accurately, making

them suitable for practical implementation in real-world scenarios. However, the

study also acknowledges certain limitations. One significant challenge is the

requirement for substantial computational resources. Large datasets necessitate the

use of deep learning techniques for optimal performance, which can be resource-

intensive and time-consuming. This limitation highlights the need for more efficient

algorithms and hardware to manage extensive data effectively.

A comprehensive analysis of Network Intrusion Detection System techniques utilizing

Machine Learning, focusing on signature-based, anomaly-based, and hybrid detection

methods, was conducted in the study by (Aziz, Siddiqi, 2021). It uses datasets like

KDD99 and UNSW-NB15 to evaluate various ML approaches, including Support

Vector Machine (SVM), Decision Trees, Neural Networks, and others. Results

indicate that models like J48 and Random Forest outperform others, achieving high

accuracy in detecting various types of attacks such as DOS, Probe, U2R, and R2L.

These models demonstrate robust performance, with Random Forest often cited for its

high accuracy and low false positive rates. However, the study does not provide

specific performance metrics, making it challenging to quantify the exact

improvements offered by these models. A notable strength of the study is its

exploration of multiple machine learning techniques and their application to intrusion

detection. By comparing different methods, the study offers valuable insights into

which algorithms are most effective under various conditions. The use of well-known

datasets like KDD99 and UNSW-NB15 ensures that the findings are grounded in

widely recognized benchmarks. However, the study has some limitations. One

significant limitation is the need for standardized datasets. The lack of consistency in

datasets can hinder the ability to generalize findings across different network

environments. Another challenge is adapting to the evolving nature of cyber-attacks.

As attackers develop new methods, NIDS must continuously adapt to maintain

effectiveness, a task that is inherently complex and resource intensive. Additionally,

the study did not explore Recurrent Neural Networks (RNN) such as Gated Recurrent

Units (GRU). GRUs could potentially offer advantages in processing sequential data

and improving the accuracy of intrusion detection systems. By not considering GRUs,

the study misses an opportunity to evaluate a powerful method that could enhance

performance, especially in handling time-series data common in network traffic.

Machine learning algorithms and feature selection techniques to analyse network

traffic and detect intrusions were discussed in the study by (Malhotra and Sharma,

2019). Utilizing the NSL-KDD dataset, which consists of 125,973 instances with 41

attributes, the study evaluates the performance of 10 popular ML algorithms using

WEKA. Additional methods include Wrapper and Filter methods for feature selection

and discretization to transform numeric data into nominal data. Results indicate that

the Random Forest classifier achieves the highest accuracy of 99.91% with a model

6

building time of 191 seconds. The Random Tree classifier presents a good balance of

accuracy (99.76%) and speed (3.24 seconds), making it a viable option for real-time

applications. The study's findings underscore the importance of feature selection in

enhancing the performance of ML models in intrusion detection. The use of Wrapper

and Filter methods for feature selection highlights the study's methodological rigor.

Wrapper methods evaluate the performance of a subset of features based on a specific

algorithm, while Filter methods assess features independently of the algorithm. These

approaches help in identifying the most relevant features, thereby improving the

model's accuracy and efficiency. The study acknowledges some limitations. One

notable limitation is the potential performance variability across different datasets.

The results obtained using the NSL-KDD dataset may not be directly applicable to

other datasets, which could affect the generalizability of the findings. This highlights

the need for further research to validate the models across diverse datasets.

Machine learning techniques to analyse and interpret data across various fields, such

as computer vision, stroke identification, credit card fraud detection, e-learning

systems, cybersecurity, marketing, and more, were discussed in the study by (Kok, S.

et al,2019). It utilizes data from diverse sources tailored to the specific requirements

of each domain, ensuring a comprehensive approach to problem-solving. Advanced

analytics, deep learning algorithms, and quantum-inspired techniques are also

employed to enhance the predictive capabilities and reliability of the models. The

results of the study are significant, with various models achieving notable accuracy

rates. However, the study does not specify the numerical values or indicate which

model outperforms the others. This omission makes it difficult to determine the

relative performance of different models. A common limitation across these studies is

the potential for overfitting, where models perform exceptionally well on training data

but fail to generalize to new, unseen data.

Machine learning algorithms, specifically Random Forest and Support Vector

Machine, focusing on feature selection using Recursive Feature Elimination, were

examined in the study by (Patgiri et al., 2018). The NSL-KDD dataset, renowned for

its cleanliness and 41 features per dataset, was utilized for analysis. Various feature

selection techniques, including filter, wrapper, and embedded methods, were applied

to identify informative and independent features. Results showed that before feature

selection, Random Forest outperformed SVM, but after RFE, SVM demonstrated

superior performance for most attack types. The study presented confusion matrices

and accuracy percentages for each model and attack type. A notable limitation of the

study was the time-consuming nature and performance degradation observed when

using all features, underscoring the importance of feature selection in enhancing

model efficiency and accuracy. However, the study did not explore neural network

models, representing a significant limitation. Neural networks, particularly deep

learning models, have shown promising results in intrusion detection systems due to

their ability to capture complex patterns in data.

Examining various machine learning algorithms for Intrusion Detection System

classification, utilizing the KDD-99 and NSL-KDD datasets to assess performance in

accuracy, detection rate, and false alarm rate, was the focus of the study by (Rama

Devi and Abualkibash, 2019). The datasets contain network traffic instances with

features categorized as Basic, Traffic, and Content, with attacks classified into four

7

types: DOS, R2L, U2R, and Probe. Supervised learning algorithms like Logistic

Regression, K Nearest Neighbour, Decision Tree, Support Vector Machine, Random

Forest, AdaBoost, Multi-Layer Perceptron , and Naive Bayes, alongside unsupervised

techniques like K-means and the Apriori Algorithm, were employed in the study.

Results highlight the Random Forest algorithm's superior performance, achieving an

accuracy of 99.7% with a false alarm rate of 3.2% on the NSL-KDD dataset,

outperforming other models.

Machine learning and deep learning techniques were employed to develop Intrusion

Detection Systems for IoT networks, with a focus on comparing various ML

approaches, as discussed in the study by (Baich et al., 2022). The NSL-KDD dataset,

comprising 148,517 records with 14 features, served as the basis, covering binary and

multiclass intrusion scenarios. The study utilized feature selection methods like

Pearson correlation and Fisher score, along with feature extraction via Principal

Component Analysis (PCA). Notably, the Decision Tree with Fisher score emerged as

the top-performing model, boasting a remarkable 99.26% accuracy and swift 0.4

seconds prediction time. However, the study faces limitations, primarily stemming

from the NSL-KDD dataset's lack of representation of real-world network

environments. The study did not incorporate real-time testing, which is essential for

evaluating the performance of IDS in dynamic IoT environments where network

conditions and threats continuously evolve. Real-time testing could provide valuable

insights into the IDS's responsiveness and effectiveness in detecting emerging threats

promptly.

2.2 Intrusion Detection Using Snort And Suricata

The use of Snort for intrusion detection and digital forensics analysis was discussed in

the study by (Olutayo, 2022). Data for this study came from various academic sources

focusing on cyber forensics, intrusion detection, and network analysis. Using a mix of

different methods, the study linked security events to find and examine unusual

activities in the network. The results showed that a model combining data mining and

forensic techniques worked the best. However, the study has a drawback as it didn't

do its own practical testing and depended on data from other scholarly sources.

The analysis of how well Snort and Wireshark work for analysing network traffic was

discussed in the study by (Jain & Anubha, 2021).They used Snort to capture live data

packets, which then checks these packets against known signatures and sends an alert

if it doesn't find a match. The captured data is then analysed in detail using Wireshark.

The findings show that Snort and Wireshark are effective tools for network traffic

analysis. Snort helps by detecting and alerting users about potential attacks, while

Wireshark provides a detailed look at the captured packets. However, a limitation is

that there might be times when an attack happens and no alert is generated, which

could lead to missed detection and response opportunities.

Examining how well Suricata can detect various Indicators of Compromise was

discussed in the study by (Raharjo and Salman, 2023). The research is split into two

stages: design and testing. It describes the testing environment, how the dataset is

created, the scenarios used, and the performance measures. They created a dataset of

one million IoC parameters, including IPReps, HTTP, DNS, SSL JA3, and MD5

8

Hash, by changing network traffic data packets. Suricata was then used to detect these

IoC parameters in five different scenarios. The results show that Suricata can identify

rules for all IoC types, performing best with HTTP and SSL JA3. The study also notes

that there isn't a straightforward link between the number of rules and the detection

probability. However, the research acknowledges some limitations, such as issues

with the testing environment and scenarios, no alerting system, and not using other

tools like Snort or Wireshark.

2.3 Summary

The below tables summarize the studies analysed:

Study Dataset Model And

Approach

Conclusions Drawbacks

Abdallah, Eleisah,

and Otoom, (2022)

KDD’99, NSL-

KDD,

CICIDS2017, and

UNSW-NB15

Random Forest (RF)

and Deep Neural

Networks (DNN),

emphasizes feature

selection and

sampling approaches

to address data

imbalance

Achieves high

performance with

accuracy rates up to

99.7% and low false

positive rates (FPR)

of 0.005%.

Demonstrates

robustness in

identifying and

classifying

intrusions

accurately.

Requires substantial

computational

resources and time

consuming

Aziz, Siddiqi,

(2021)

KDD99 and

UNSW-NB15

Support Vector

Machine (SVM),

Decision Trees, and

Neural Networks.

Focused on

Signature -based,

anomaly-based and

hybrid-based

detection methods

Models J48 and RF

outperforms others,

achieving high

accuracy in

detecting attacks

such as DOS,

Probe, U2R, and

R2L, with high

accuracy and low

false positive rates.

Since the study

deals with

sequential data

could have explored

into Recurrent

Neural Networks

like GRU which is

good ay handling

sequential data

Malhotra and

Sharma, (2019)

NSL-KDD dataset Employed 10

Machine Learning

Algorithms using

WEKA. Uswd

Wrapper and Filter

Techniques for

feature selection and

discretization.

RF achieved

classified achieved

99.91% accuracy

with a model

building time of 191

seconds, hence

making it suitable

for real-time

application.

The study's findings

may not generalize

across different

datasets,

necessitating further

research for

validation.

Patgiri et al.,

(2018)

NSL-KDD dataset RF and SVM,

Focusses on feature

selection using

Recursive Feature

Elimination(RFE)

along with filter,

wrapper, and other

embedded methods

Before feature

selection, Random

Forest outperformed

SVM, but after

applying RFE,

SVM demonstrated

superior

performance for

most attack types.

The study highlights

the time-consuming

nature and

performance

degradation when

using all features.

Rama Devi and

Abualkibash,

KDD-99 and NSL-

KDD

K-Nearest

Neighbour (KNN),

The Random Forest

algorithm

Limitation of the

study is its reliance

9

(2019) Decision Tree,

Support Vector

Machine (SVM),

Random Forest,

AdaBoost, Multi-

Layer Perceptron

(MLP), and Naive

Bayes

demonstrates

superior

performance,

achieving an

accuracy of 99.7%

with a false alarm

rate of 3.2% on the

NSL-KDD dataset,

outperforming other

models.

on the KDD-99 and

NSL-KDD datasets,

which, while

commonly used,

may not fully

represent the

diversity of real-

world network

environments and

evolving attack

types.

Baich et al., (2022) NSL-KDD dataset Decision Tree and

other Machine

learning algorithms.

Applied feature

selection methods

like Pearson

correlation, Fisher

score and feature

extraction through

PCA

The Decision Tree

model achieved a

99.26% accuracy

and a prediction

time of 0.4 seconds.

These results

highlight the

model's potential

effectiveness for

accurate and

efficient intrusion

detection in IoT

networks.

Could have

explored the options

of deep learning

models which

would have helped

achieve better

results and faster

computation.

Olutayo, (2022) Used data from

various academic

sources and cyber

forensics , IDS and

network analysis.

The study employed

a mix of different

methods to link

security events and

identify unusual

activities in the

network, focusing on

digital forensics for

analysis

The study found

that a model

combining data

mining and forensic

techniques yielded

the best results for

identifying and

examining unusual

network activities.

This approach

showed promise in

enhancing security

event detection and

analysis

A drawback of the

study was its

reliance on data

from other scholarly

sources without

conducting its own

practical testing.

This limitation may

affect the direct

applicability and

validation of the

findings in real-

world network

environments.

Table (1): Summary table of the Machine Learning literature studies

Study Method Analysis Drawbacks

Jain & Anubha, (2021) Examined effectiveness of

Snort and Wireshark in

terms of analysing them

against known signatures

to detect potential attacks.

Wireshark used for deep

packet analysis.

Snort effectively detected

and alerted users about

potential attacks.

Wireshark offered

comprehensive insights

into captured packets,

aiding in detailed network

traffic analysis.

Possibility of Snort failing

to generate alerts for

certain attacks, potentially

leading to missed

detection and response

opportunities in some

scenarios

Raharjo & Salman,

(2023)

The study designed a

testing environment,

created a dataset of one

million IoC parameters

including IPReps, HTTP,

DNS, SSL JA3, and MD5

Hash, and tested

Suricata's performance in

detecting these parameters

The study demonstrated

that Suricata successfully

identified rules for all IoC

types, with particularly

strong performance in

detecting HTTP and SSL

JA3 parameters. However,

the study noted that the

number of rules did not

Limitations of the study

included issues with the

testing environment and

scenarios used, the

absence of an alerting

system to notify of

detected IoCs in real-time,

and the study's focus

solely on Suricata without

10

across different scenarios. straightforwardly correlate

with detection probability

comparing its

performance against other

tools like Snort or

Wireshark.

Table (2): Summary table of the reference literature studies

From the above tables it can be understood that none of the studies proposed a system

that uses honeypots and machine learning together for real-time intrusion detection.

Instead, they relied on existing datasets for training and prediction. In contrast, this

study introduces a system that integrates real-time detection using deep learning and

honeypot techniques, consolidated within a web application for administrators to

easily access detailed information.

3 Research Methodology

This research project introduces an innovative approach to enhancing security in

ZigBee IoT environments through the development of an advanced and adaptive

framework of honeypots. Using ESP32 as the main microcontroller, the framework

integrates various hardware components such as DHT11 sensors, XBee modules,

OLED displays, and the CC2531 Zigbee sniffing tool for robust packet analysis and

data capture. The software part involves training a deep learning model on the IoT20

dataset to recognize and classify attack patterns, crucial for the honeypot's detection

capabilities.

Figure (3): System Workflow for Honeypot-based Zigbee Network Intrusion Detection

The workflow shown in Figure (3) represents a Zigbee network intrusion detection

system using a honeypot and machine learning. It begins with a Zigbee sniffer

capturing network traffic, which is then configured into a honeypot website designed

to attract attackers. When attackers visit this decoy website, their activities are logged.

These logs are subsequently displayed on an admin page, providing administrators

11

with detailed insights into the attackers' behaviours and methods. The final step

involves analysing these logs using machine learning algorithms to identify and

classify the types of attacks. This systematic approach enables continuous monitoring

and analysis, improving the security and resilience of IoT systems using Zigbee

networks.

3.1 Data Fetching from DHT11

The DHT11 sensor is popular for measuring temperature and humidity because it is

simple, affordable, and easy to use (Ztt1 et al., 2022). It can measure temperatures

ranging from 0°C to 50°C with an accuracy of ±2°C and humidity levels from 20% to

90% relative humidity with an accuracy of ±5%. The sensor provides a digital output,

which simplifies its integration with microcontrollers and other digital systems.

Operating with low power, it is suitable for battery-powered applications. In this study

data fetching from the DHT11 sensor involved connecting it to the ESP32

microcontroller to retrieve temperature and humidity readings. During the

development phase, challenges related to library compatibility and integration were

encountered, requiring troubleshooting to ensure reliable data acquisition. The ESP32,

developed by Espressif Systems, is a powerful, versatile, and cost-effective

microcontroller that has gained popularity among hobbyists, developers, and

engineers, particularly for Internet of Things applications (Hübschmann, 2020).

3.2 Data Transmission via Zigbee Using XBee Modules

The XBee S2C 802.15.4 module is a robust and versatile wireless communication

device designed for low-power, low-data-rate applications. It operates on the IEEE

802.ex15.4 standard, which forms the basis for Zigbee networks, offering reliable and

secure communication over short distances (digi.com, 2024). The XCTU software is

used to configure the XBee module. During the configuration process, there were

some difficulties in setting up the module properly, requiring troubleshooting to

ensure the correct settings for the application. Once configured, the data from the

ESP32 module is transmitted to the XBee module serially. The ESP32 handles the

data processing and then sends it to the XBee for wireless transmission. This ensures

that the data is sent efficiently and accurately. On the receiving end, another XBee

module receives the transmitted data, which is then sent serially to another ESP32

module. The ESP32 on the receiving side processes the data and displays it on an

OLED screen. The communication is serial, ensuring a straightforward and reliable

transfer of data. By overcoming the initial configuration challenges, the system is now

capable of efficiently transmitting and displaying sensor data. This makes it a

practical solution for various applications that require low-power, short-range wireless

communication.

3.3 Packet Sniffing Using Zigbee USB Dongle Plus CC2531

Packet sniffing is performed between the communication of the ESP32 modules using

the Zigbee USB Dongle Plus CC2531. The packet sniffer, provided by Texas

Instruments, is used to analyse the data being transmitted. During this stage, a key

challenge was finding the proper matching frequency to accurately capture the

packets. Once this issue was resolved, the packet sniffer was able to intercept and log

12

the data exchanged between the XBee modules. The sniffed data is then exported as a

log file for further analysis. This log file provides detailed insights into the data

packets, helping to understand the communication flow and diagnose any potential

issues. By addressing the frequency matching challenge, the system can now

effectively monitor and analyse the wireless communication between the ESP32

modules. This step is crucial for verifying the correct operation and performance of

the Zigbee network.

3.4 Training Deep Learning Model

3.4.1 Dataset Collection

The dataset for this project was custom-created using Wireshark to capture network

traffic. Key features extracted from Wireshark include time, source, destination,

protocol, length, and type (DDoS or normal). This process involved significant effort

and time, especially in accurately labelling the data as either normal or indicative of a

DDoS attack. The main difficulty faced during this phase was the time-consuming

nature of data extraction and ensuring the accuracy of the captured features to create a

reliable dataset for training the deep learning model.

3.4.2 Dataset Pre-processing

Getting the data ready is a key step before training a deep learning model. This means

cleaning up the raw data and changing it into a format that the model can easily

understand and learn from (Roy et al., 2019). In this project, preprocessing began

with the removal of unwanted features to streamline the dataset. The selected features

for analysis are Time, Protocol, Length, and type (DDoS or normal). Features such as

Source, Destination, and Info were removed because they could introduce noise and

redundancy, potentially leading to overfitting without contributing significantly to the

model's ability to detect network anomalies. During preprocessing, label encoding

was performed on the Protocol and type columns. This step converts categorical data

into numerical format, making it compatible with the deep learning model. Label

encoding ensures that the model can interpret these features correctly, enhancing its

ability to learn from the data and improve its predictive accuracy. One of the

challenges faced during preprocessing was ensuring that the encoding was consistent

and correctly applied, as any discrepancies could result in misinterpretation by the

model and affect its performance.

3.4.3 Model Creation, Compiling And Training

Deep learning works really well for tasks like image recognition, NLP, and running

self-driving systems. By learning from large amounts of data, deep learning models

can identify intricate patterns and make accurate predictions, making them powerful

tools in modern AI applications (Santosh, Das and Ghosh, 2022). In this study, a

Convolutional Neural Network combined with a Gated Recurrent Unit model is used.

The CNN is adept at extracting features from input data, making it ideal for

recognizing patterns within network traffic. The GRU, a type of recurrent neural

network, is effective in handling sequential data and learning long-term dependencies,

making it well-suited for time-series analysis in network traffic. The advantages of

using a CNN-GRU model include its ability to automatically detect significant

13

features in the data and its proficiency in learning from sequential patterns, which are

common in network traffic. This combination enhances the model's ability to detect

and classify network anomalies accurately (Adryan Fitra Azyus, Sastra Kusuma

Wijaya and Mohd Naved, 2023). The model in the study was created using the

TensorFlow library, which provides a flexible and comprehensive framework for

building and training deep learning models. The CNN layers identify patterns in the

spatial aspects of the input data, while the GRU layers capture temporal dependencies.

After defining the model architecture, it is compiled with the Adam optimizer, known

for its efficiency and capability to handle sparse gradients. This compilation prepares

the model for training, setting the stage for optimizing its parameters to achieve the

best performance on the given dataset. Finally, the model was trained with five epochs

and then saved for future use. One of the challenges faced during compilation was

managing shape issues, which required careful adjustment of the model’s input and

output dimensions to ensure compatibility across all layers.

3.5 Honeypot Creation

A honeypot is a security tool created to identify, divert, or in some way prevent

unauthorized attempts to use information systems (Javadpour et al., 2024). In this

study, a honeypot was used to create a decoy environment that attracts attackers and

captures details of their activities. This helps in understanding attack patterns and

enhancing security measures. The honeypot was created using the Django library,

specifically a library called admin honeypot. A middleware script was developed to

capture and record attack details, which are then displayed in a table for analysis. In

addition to capturing and recording attack details, the middleware script plays a

crucial role in the honeypot setup. Implemented as a Django middleware using the

MiddlewareMixin, it intercepts incoming requests to the web application. The script

tracks client IP addresses and ports from request metadata, using a background thread

to monitor and detect potential distributed denial-of-service attacks. This functionality

helps in identifying patterns of suspicious activity, such as multiple requests from the

same IP within a short timeframe. Detected attacks are logged in real-time to a file,

providing security administrators with immediate visibility and enabling proactive

responses to mitigate threats. One challenge encountered during the setup was dealing

with version issues between Django and the admin honeypot library, which required

careful troubleshooting and adjustments to ensure compatibility.

4 Design Specification

4.1 DHT11

The DHT11 sensor plays a crucial role in this study by gathering environmental data.

It is often utilized for monitoring temperature and humidity levels because it is cost-

effective and reliable. This sensor outputs a digital signal, which makes it compatible

with a wide range of microcontrollers and IoT platforms (Islam et al., 2023).

4.2 ESP32

The ESP32 is a versatile and affordable platform ideal for creating IoT applications.

Developed by Espressif Systems in Shanghai, China, it combines robust features

14

tailored for IoT use. Programming the ESP32 is flexible, supporting multiple

development frameworks and languages. The popular choice is C++, and developers

commonly use tools like the Arduino IDE or PlatformIO to program it (Hercog et al.,

2023).

4.3 XBee

Xbee modules are radio frequency devices that operate based on the 802.15.4

standard, with some being fully ZigBee compliant. Initially developed for military use

due to their vulnerability to interference, these modules now offer open access for

public use. They use Direct Sequence Spread Spectrum technology, which provides

robust wireless communication but requires more bandwidth. Xbee modules enable

easy and dependable wireless serial communication between microcontrollers,

computers, and systems equipped with serial ports (Hercog et al., 2023).

4.4 Zigbee

Zigbee is a wireless technology used for smart devices to communicate within a

Personal Area Network (PAN), facilitating cost-effective, low-power connections for

machine-to-machine (M2M) and Internet of Things (IoT) networks (Linda

Rosencrance, 2017). Task Group 4 oversees ZigBee as part of the IEEE 802.15.4

standard, developed by the Zigbee Alliance. This standardizes the physical and

Medium Access Control layers of the technology's architecture, with ZigBee focusing

on enhancing the upper layers for improved functionality (Ahmed,2023).

4.5 CNN-GRU

A hybrid Convolutional-Recurrent Model combines the strengths of both networks:

the feature extraction ability of convolutional layers and the sequential learning

capability of recurrent computations. This integration enhances its effectiveness

compared to other hybrid models. Specifically, the CNN GRU model leverages

convolutional layers to capture spatial features from input data, while GRU handles

sequential data to learn long-term dependencies. This dual approach enables the

model to effectively analyse complex patterns and make accurate predictions, making

it a robust choice for various tasks in machine learning and artificial intelligence

applications (Jaiswal and Singh, 2022).

5 Implementation

In the implementation phase of this project, the focus is on creating a sophisticated

honeypot framework tailored for ZigBee IoT environments. The main objective is to

develop a robust system that effectively deceives potential attackers while providing

valuable insights into network security threats. Hardware components include the

integration of essential devices like the DHT11 sensor for monitoring temperature and

humidity via ESP32 microcontrollers, XBee modules for ZigBee communication, an

OLED display for visual data representation, and a Zigbee sniffer tool interfacing

with a PC for traffic analysis. On the software side, custom datasets are generated

using Wireshark to simulate network intrusions, which are then pre-processed and

analysed to prepare for training deep learning models. These models, utilizing a GRU

15

architecture, are trained to detect and classify attacks based on the collected data. The

honeypot framework, implemented using Django, consists of two key modules: an

admin interface for detailed traffic analysis presented in tables, and a user interface

displaying real-time sensor data from the DHT11. The honeypot captures and records

network traffic, presenting this data on a landing webpage designed to analyse

potential attackers. Tools such as hping from Kali Linux are employed to simulate

attacks, triggering scripts that gather attacker details. Behind the scenes, machine

learning models continuously analyse captured data, automatically identifying and

reporting potential threats within the web application. This integrated approach

ensures proactive cybersecurity measures within ZigBee IoT networks, leveraging

both hardware and software components to enhance security monitoring and threat

detection capabilities.

6 Result And Evaluation

6.1 Results

Figure (4): Sniffed data

Figure (4) displays the data details captured by the Zigbee USB Dongle Plus CC2531

sniffer tool. It effectively captures and matches frequencies, demonstrating its

capability to monitor and analyse ZigBee network traffic with accuracy. This tool

plays a important role in the project by gathering valuable insights from frequency

data, which are essential for project success.

Figure (5): Training epochs

Figure (5) shows the progress over 5 training epochs The model achieved 95%

accuracy in training and 94% in validation, showing it learned well from the data. The

training loss, which indicates how much predictions deviate from actual values during

training, was 0.2144. Validation loss, which measures performance on new data, stood

16

at 0.5336. These results demonstrate the model's ability to effectively identify

intrusion attempts in real-time in ZigBee IoT settings.

Figure (6): Detection logs on website

Figure (7): Detection logs

Figure (6) shows the detected logs, indicating the IP addresses from which attacks

originate. This visual representation helps to understand where potential threats are

coming from and provides valuable insights into their types and frequency.

Identifying these IP addresses clarifies who is trying to breach the system's security

measures, allowing for proactive responses to protect against such threats effectively.

Figure (8): Admin view of network attack traffic

17

Figure (7) displays the admin view of the traffic details page, presenting data in a

clear table format. It includes key information such as IP addresses, type of the traffic,

and timestamps. This setup, integrated into a Django web application, enables

administrators to monitor network activities effortlessly. By reviewing the recorded

data and timestamps, they can identify both routine traffic patterns and suspicious

activities like potential DDoS attacks, which is essential for effective network security

management.

6.2 Evaluation

The evaluation of the proposed system demonstrates its effectiveness in combining

advanced honeypot technology with deep learning for real-time intrusion detection.

The results indicate that the system successfully enhances cybersecurity by accurately

detecting evolving cyber threats. The objectives set for the study were all successfully

achieved: Objective 1, involving setting up a microcontroller system for

environmental data capture, was successfully accomplished. Objective 2 was also

met, which aimed to set up ZigBee communication between XBee modules and

ESP32 and included using a ZigBee sniffer tool to analyse traffic. Objective 3 aimed

at training a deep learning model using GRU architecture for intrusion detection, and

Objective 4 encompassed developing a functional honeypot to capture and store

ZigBee traffic. Objective 5 integrated this with a web interface for real-time attack

simulation and detection, while Objective 6 successfully integrated the trained deep

learning model into the system to detect and classify attacks. This method uses

honeypots along with advanced intrusion detection to trick attackers and quickly

analyse and respond to their actions, making ZigBee IoT environments more secure.

The research question about “how well the security system combines honeypots with

deep learning to trick and spot attacks in IoT settings?” has been answered. As seen in

Figure (8), the system detects attacks accurately. This visual evidence demonstrates its

ability to quickly recognize potential threats within IoT networks, showcasing its

effectiveness in enhancing cybersecurity. One area where this study falls short is in

the detection of various types of attacks by the deep learning models. While the

system effectively spots some threats, it doesn't catch all possible attack scenarios.

7 Conclusion and future enhancements

The study developed an advanced framework of honeypots designed for ZigBee IoT

environments, aimed at effectively deceiving potential attackers. The hardware setup

included connecting sensors like the DHT11 and XBee modules to the ESP32

microcontroller, alongside an OLED display and a Zigbee sniffer tool linked to a PC.

In the software realm, custom data was generated from Wireshark for intrusion

detection. The project focused on training a deep learning model using GRU

architecture on this dataset, thereby improving real-time intrusion detection

capabilities. The deep learning model achieved a validation accuracy of 94%,

highlighting its effectiveness in identifying potential threats. A honeypot was created

to capture ZigBee traffic, storing data packets for analysis on a dedicated landing

webpage. The honeypot's effectiveness was tested against simulated attacks using

tools like hping on Kali Linux.

18

Future enhancements could include transitioning the system from local deployment to

cloud deployment for enhanced scalability, ensuring it can handle increased data loads

and expand its reach effectively. Also, a future enhancement in the model should

focus on enhancing its detection capabilities to encompass a broader spectrum of

security threats in IoT environments.

References

Abdallah, E.E., Eleisah, W. and Otoom, A.F. (2022) ‘Intrusion Detection Systems

using Supervised Machine Learning Techniques: A survey’, Procedia Computer

Science, 201, pp. 205–212. Available at: https://doi.org/10.1016/j.procs.2022.03.029.

Ahmed, A. (2023) ‘Introduction to Zigbee Technology’. Available at:

https://www.researchgate.net/publication/370208966_Introduction_to_Zigbee_Techno

logy

Alqahtani, H. et al. (2020) ‘Cyber Intrusion Detection Using Machine Learning

Classification Techniques’, in N. Chaubey, S. Parikh, and K. Amin (eds) Computing

Science, Communication and Security. Singapore: Springer, pp. 121–131. Available

at: https://doi.org/10.1007/978-981-15-6648-6_10.

Amal, M.R. and Venkadesh, P. (2022) ‘Review of Cyber Attack Detection: Honeypot

System’, Webology, Volume 19(No. 1), pp. 5497–5514. Available at:

https://doi.org/10.14704/WEB/V19I1/WEB19370.

Ashiku, L. and Dagli, C. (2021) ‘Network Intrusion Detection System using Deep

Learning’, Procedia Computer Science, 185, pp. 239–247. Available at:

https://doi.org/10.1016/j.procs.2021.05.025.

Aziz, A. and Siddiqi, M. (2021) Network Intrusion Detection Techniques using

Machine Learning. Available at: https://doi.org/10.13140/RG.2.2.23174.50248.

Azyus, A.F., Wijaya, S.K. and Naved, M. (2023) ‘Prediction of remaining useful life

using the CNN-GRU network: A study on maintenance management’, Software

Impacts, 17. Available at: https://doi.org/10.1016/j.simpa.2023.100535.

Baich, M. et al. (2022) ‘Machine Learning for IoT based networks intrusion

detection: a comparative study’, Procedia Computer Science, 215, pp. 742–751.

Available at: https://doi.org/10.1016/j.procs.2022.12.076.

Digi XBee® 802.15.4. Available at: https://www.digi.com/products/embedded-

systems/digi-xbee/rf-modules/2-4-ghz-rf-modules/xbee-802-15-4 (Accessed: 10 July

2024).

Hercog, D. et al. (2023) ‘Design and Implementation of ESP32-Based IoT Devices’,

Sensors, 23(15), p. 6739. Available at: https://doi.org/10.3390/s23156739.

‘Honeypot As Service’ CyberSRC. Available at: https://cybersrcc.uk/cybersrc-

honeypot-service/ (Accessed: 29 June 2024).

19

Hübschmann, I. (2020) ‘ESP32 for IoT: A Complete Guide’, Nabto, 28 August.

Available at: https://www.nabto.com/guide-to-iot-esp-32/ (Accessed: 14 June 2024).

Islam, M.R. et al. (2023) ‘Machine learning enabled IoT system for soil nutrients

monitoring and crop recommendation’, Journal of Agriculture and Food Research,

14, p. 100880. Available at: https://doi.org/10.1016/j.jafr.2023.100880.

Jain, G. and Anubha (2021) ‘Application of SNORT and Wireshark in Network

Traffic Analysis’, IOP Conference Series: Materials Science and Engineering,

1119(1), p. 012007. Available at: https://doi.org/10.1088/1757-899X/1119/1/012007.

Javadpour, A., Ja’fari, F., Taleb, T., Shojafar, M. and Benzaïd, C. A comprehensive

survey on cyber deception techniques to improve honeypot performance -

ScienceDirect. Available at:

https://www.sciencedirect.com/science/article/pii/S0167404824000932?via%3Dihub

(Accessed: 18 July 2024).

Kok, S. et al. (2019) ‘A review of intrusion detection system using machine learning

approach’, International Journal of Engineering Research and Technology, 12, pp. 8–

15. Available at:

https://www.researchgate.net/publication/332260496_A_review_of_intrusion_detecti

on_system_using_machine_learning_approach

Mebawondu, J. Olamantanmi et al. (2020) ‘Network intrusion detection system using

supervised learning paradigm’, Scientific African, 9, p. e00497. Available at:

https://doi.org/10.1016/j.sciaf.2020.e00497.

Olutayo, V. (2022) ‘Analysis of Digital Forensics in the Implementation of Intrusion

Detection using Snort’, 07, pp. 100–107. Available at:

https://www.researchgate.net/publication/360808614_Analysis_of_Digital_Forensics_

in_the_Implementation_of_Intrusion_Detection_using_Snort

Ozkan-Okay, M. et al. (2021) ‘A Comprehensive Systematic Literature Review on

Intrusion Detection Systems’, IEEE Access, 9, pp. 157727–157760. Available at:

https://doi.org/10.1109/ACCESS.2021.3129336.

Patgiri, R. et al. (2018) ‘An Investigation on Intrusion Detection System Using

Machine Learning’, in 2018 IEEE Symposium Series on Computational Intelligence

(SSCI). 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp.

1684–1691. Available at: https://doi.org/10.1109/SSCI.2018.8628676.

Prachi, Malhotra, H. and Sharma, P. (no date) ‘Intrusion Detection using Machine

Learning and Feature Selection’, International Journal of Computer Network and

Information Security, 11(4), p. 43. Available at:

https://doi.org/10.5815/ijcnis.2019.04.06.

Raharjo, D.H.K. and Salman, M. (2023) ‘ANALYZING SURICATA ALERT

DETECTION PERFORMANCE ISSUES BASED ON ACTIVE INDICATOR OF

COMPROMISE RULES’, Jurnal Teknik Informatika (Jutif), 4(3), pp. 601–610.

Available at: https://doi.org/10.52436/1.jutif.2023.4.3.1013.

20

Rama Devi, R. and Abualkibash, M. (2019) ‘Intrusion Detection System

Classification Using Different Machine Learning Algorithms on KDD-99 and NSL-

KDD Datasets - A Review Paper’, International Journal of Computer Science and

Information Technology, 11(03), pp. 65–80. Available at:

https://doi.org/10.5121/ijcsit.2019.11306.

Roy, S. et al. (2019) ‘Pre-Processing: A Data Preparation Step’, in S. Ranganathan et

al. (eds) Encyclopedia of Bioinformatics and Computational Biology. Oxford:

Academic Press, pp. 463–471. Available at: https://doi.org/10.1016/B978-0-12-

809633-8.20457-3.

Santosh, K., Das, N. and Ghosh, S. (2022) ‘Chapter 3 - Deep learning models’, in K.

Santosh, N. Das, and S. Ghosh (eds) Deep Learning Models for Medical Imaging.

Academic Press (Primers in Biomedical Imaging Devices and Systems), pp. 65–97.

Available at: https://doi.org/10.1016/B978-0-12-823504-1.00013-1.

Titarmare, N., Hargule, N. and Gupta, A. (2019). International Journal of Computer

Sciences and Engineering ijcseonline.org. Available at: http://www.ijcseonline.org/

(Accessed: 15 July 2024).

Wang, H., Wei, Q. and Xie, Y. (2022) ‘A Novel Method for Network Intrusion

Detection’, Scientific Programming, 2022(1), p. 1357182. Available at:

https://doi.org/10.1155/2022/1357182.

Wanjau, S.K., Wambugu, G.M. and Oirere, A.M. (2022). Network Intrusion Detection

Systems: A Systematic Literature Review o f Hybrid Deep Learning Approaches.

International Journal of Emerging Science and Engineering (IJESE). Available at:

https://www.ijese.org/portfolio-item/f25300510622/ (Accessed: 9 June 2024).

Zielinski, D. and Kholidy, H.A. (2022) ‘An Analysis of Honeypots and their Impact as

a Cyber Deception Tactic’. arXiv. Available at:

https://doi.org/10.48550/arXiv.2301.00045.

Ztt1, F. et al. (2022) ‘DHT11 Based Temperature and Humidity Measuring System’,

Journal of Electrical Engineering and Electronic Technology, 2022. Available at:

https://www.scitechnol.com/abstract/dht11-based-temperature-andrnhumidity-

measuring-system-20039.html (Accessed: 19 June 2024).

https://doi.org/10.1155/2022/1357182

