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Developing an Advanced and Adaptive Framework of 

Honeypots for Efficient Deception for ZigBee IOT 

Environments 

Shashank Basavaraju 

Student ID: 22241817 

Abstract 

Cyber threats continue to be one of the most persistent security concerns in modern 

digital settings. This study deals with these issues using honeypots, integrated with an 

intrusion detection system that uses deep learning. Utilizing them to entice potential 

attackers into the open to demonstrate their methods, captured traffic is analysed 

using a GRU-based deep learning model to find intrusion attempts. The hardware 

setup comprises ESP32 microcontrollers connected with DHT11 sensors to achieve 

the environmental data, XBee modules for communication, OLED displays for data 

visualization, and a CC2531 ZigBee sniffer for packet analysis. In action, the 

honeypot captures and preserves the traffic within a controlled environment, where 

the attackers lead themselves unknowingly to reveal their strategies. Tools like hping3 

and Hydra are used to test their attacks to understand the attacker procedure. This 

framework is coming with lots of advantage on the front of the identification and 

mitigation of the threat on cyberspace through being proactive. Since the model 

integrates CNN for feature extraction and GRU for sequence analysis, it is feature-

rich to detect any sophisticated pattern of attacks. In addition to that, the tricking 

nature of the honeypot will help in the early detection of the threats to be attacked and 

will further enhance the overall cybersecurity defence against the dynamic threat 

landscapes. The CNN-GRU model is trained using custom datasets created by 

Wireshark achieved an amazing level of 94% testing accuracy for distinguishing 

malicious traffic. 

1 Introduction 

 

1.1 Background 

Cyber threats are those attacks or events that may impair computer systems and gain 

unauthorized access to them. Targeting critical assets in industries, governments and 

personal networks, new types of threats are born again every year. These threats 

continue to change in new and improved breeds, making the task of being able 

discover them that much harder. One example is The Mirai botnet identified back in 

2016, belonging to a family of malware that find deprived IoT devices and employ 

them to hold out enormous DDoS attacks within any large network. After Mirai, the 

attackers created its iterations like Persirai to boost their malicious operations while 

remaining undetectable. Botnet incidents escalated significantly after the introduction 

of Mirai (Javadpour et al., 2024). Two common practices used in cybersecurity to 
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defend against these threats are intrusion detection and honeypots. Intrusion Detection 

Systems are tools or applications used to monitor networks as well as systems and 

they inspect everything that passes from an entity within a different one, in particular 

the suspicious activities signs like unsanctioned unauthorized access requests of data 

thefts or even protocol breaches. They are required to detect new categories of attacks 

(both known and unknown) from internal and external sources. Network Intrusion 

Detection Systems (NIDS), on the other hand, are unlike traditional firewalls and are 

installed at a strategic location in your network to actively monitor all traffic as it 

comes in. Including those that detect malicious network behaviour and any use of a 

computer in an unauthorized or unwanted manner; IDSs detect active threats 

continuously and prevent attackers from successfully attacking the network (Wanjau, 

Wambugu, and Oirere, 2022). IDSs are categorized into host-based IDS (HIDS) and 

network-based IDS (NIDS), depending on what they monitor. HIDS observes and 

analyses activities on the system (such as a computer or server) where it's installed. It 

focuses on monitoring the system's behaviour and current state. In contrast, NIDS 

monitors network traffic to detect attacks coming through network connections. It is 

deployed within networks to scrutinize traffic passing through specific devices. NIDS 

systems can be implemented as hardware or software and typically feature two 

network connections: one for monitoring network conversations and another for 

transmitting detection reports (Abdallah, Eleisah, and Otoom, 2022). 

 

Figure (1): Architecture of an Intrusion Detection System (Wang, Wang and Xie, 2022) 

The Figure (1) shows the architecture of an Intrusion Detection System (IDS). 

Network data flows from the internet through a firewall and router before being 

monitored by the IDS. The IDS analyses this network data and communicates 

findings to an administrator, who oversees the process. A server supports data storage 

and additional processing needs. 

Honeypots are great for drawing attackers in, and learning how they operate to help 

gain an edge defensively. Many organizations have been deploying these kinds of 

systems In order to improve their security programs and obtain visibility into more 

frequent types of attacks as a result. Honeypots provide defenders with information on 

the attacks that are being launched against their system (Zielinski and Kholidy, 2022). 

Honeypot systems are the main defence to stop or timely detect attacks and malicious 

activities. By providing specifics regarding both intrusion behaviours as well as 

system activities, and the techniques employed by malicious individuals, they help to 

enhance detection speeds in identifying threats along with response times of dealing 
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with inbound attacks. Therefore, honeypots work by deploying real systems to capture 

and study an adversarial behaviour efficiently (Titarmare, Hargule and Gupta, 2019). 

Figure (2) shows how the honeypot operates. It displays two types of traffic: normal 

traffic and attack traffic. When traffic reaches the load balancer, it is directed to the 

Web Application Firewall (WAF). If the traffic is identified as an attack, it is routed to 

the clone server honeypot. This honeypot mimics a real server but is designed to trap 

and analyse malicious activities. On the other hand, normal traffic proceeds to the real 

server for legal interactions.  

 

Figure (2): Overview of Honeypot Operation (CyberSRC, 2024) 

 

1.2 Problem Definition 

IDS and honeypots have been crucial for minimizing damage from cyber-attacks. 

However, cyber criminals have evolved their tactics over time. Today's IDS systems 

often struggle to keep up with these sophisticated attacks (Ozkan-Okay et al., 2021). 

As malicious activities continue to grow in complexity, current security measures are 

proving inadequate. IDS works on the idea that intruders behave differently from 

legitimate users, but distinguishing between normal and abnormal behaviour isn't 

always clear-cut(Ashiku and Dagli, 2021). Over time, attackers have become adept at 

identifying honeypots systems designed to lure and trap attackers. Once recognized, 

attackers typically stop wasting effort on them, reducing the defender's ability to 

gather useful information. Effective honeypot systems must now mimic real systems 

closely and contain realistic but fake data (M.R. and P., 2022). This approach forces 

attackers to spend valuable time attempting to exploit the honeypot, looking for signs 

like valid credentials. Deep Neural Networks(DNN) can enhance IDS by learning to 

detect both known and new types of network behaviours, including those that haven't 

been identified before. This capability helps identify intruders and lowers the chances 

of a system being compromised (Ashiku and Dagli, 2021). In this study proposes an 

intelligent IDS using DNN for real-time intrusion detection, alongside an advanced 

honeypot that evades detection by attackers, is proposed. This combined approach 

aims to enhance cybersecurity by improving detection accuracy and resistance against 

evolving cyber threats. 
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The study has the following research question: 

How does the security system consisting of the honeypot integrated with deep 

learning methods to effectively trick and detect attacks in IoT environments? 

The aim of the project is to create and evaluate a honeypot framework for ZigBee IoT 

services. The objectives of the study are: 

1. Build a micro controller setup for capturing temperature and humidity. 

2. Setting up ZigBee communication between XBee modules and ESP32 and 

connect a ZigBee sniffer tool to a PC for packet sniffing and analysis. 

3. Train a deep learning model using GRU architecture on the custom dataset for 

real-time intrusion detection. 

4. Create a honeypot that captures ZigBee traffic and stores data packet files. 

5. Design a landing webpage to display captured data and simulate attacks using 

tools like hping. 

6. Integrate the trained deep learning model into the system to detect and classify 

attacks. 

The novelty of the system proposed here is that it combines a honeypot with real-time 

intrusion detection using deep learning. This setup not only tricks attackers but also 

quickly identifies and analyses their actions. By capturing detailed data and using 

smart models, the system provides a stronger defence against cyber threats in ZigBee 

IoT environments. 

Section 1 of the report introduces the project, explaining IDS, honeypots, and the 

system being developed. Section 2 covers related work in the field. Section 3 explains 

the methods used in the study. Section 4 provides the specifications for the different 

components of the study. Section 5 describes the final implementation of the system. 

Section 6 discusses the evaluation of the study's results. Section 7 offers the 

conclusion and suggestions for future improvements. 

2 Literature review 

This part of the literature review explores past research, and the difficulties faced. It 

looks at older machine learning and deep learning methods used for spotting attacks, 

paying attention to the usual approaches used and tools like Snort and Suricata. The 

main aim of this study is to improve how attacks are detected by using newer, smarter 

deep learning methods that can detect attacks more accurately and quickly. 

2.1 Machine learning and Deep learning methods 

Looking at different types of connected intrusion detection systems that use machine 

learning methods, as discussed in the study by (Abdallah, Eleisah, and Otoom, 2022). 

It utilizes four prominent datasets: KDD’99, NSL-KDD, CICIDS2017, and UNSW-
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NB15. Emphasizing the importance of feature selection, the study highlights how 

selecting the right features can significantly enhance performance. To address data 

imbalance, the study employs various sampling approaches to ensure more accurate 

and representative results. The study employs various supervised learning algorithms, 

with Random Forest and Deep Neural Networks (DNN) frequently emerging as the 

most effective. These algorithms achieve high classification performance, with 

accuracy rates up to 99.7% and low false positive rates (FPR) of 0.005%. This 

indicates their robustness in identifying and classifying intrusions accurately, making 

them suitable for practical implementation in real-world scenarios. However, the 

study also acknowledges certain limitations. One significant challenge is the 

requirement for substantial computational resources. Large datasets necessitate the 

use of deep learning techniques for optimal performance, which can be resource-

intensive and time-consuming. This limitation highlights the need for more efficient 

algorithms and hardware to manage extensive data effectively.  

A comprehensive analysis of Network Intrusion Detection System techniques utilizing 

Machine Learning, focusing on signature-based, anomaly-based, and hybrid detection 

methods, was conducted in the study by (Aziz, Siddiqi, 2021). It uses datasets like 

KDD99 and UNSW-NB15 to evaluate various ML approaches, including Support 

Vector Machine (SVM), Decision Trees, Neural Networks, and others. Results 

indicate that models like J48 and Random Forest outperform others, achieving high 

accuracy in detecting various types of attacks such as DOS, Probe, U2R, and R2L. 

These models demonstrate robust performance, with Random Forest often cited for its 

high accuracy and low false positive rates. However, the study does not provide 

specific performance metrics, making it challenging to quantify the exact 

improvements offered by these models. A notable strength of the study is its 

exploration of multiple machine learning techniques and their application to intrusion 

detection. By comparing different methods, the study offers valuable insights into 

which algorithms are most effective under various conditions. The use of well-known 

datasets like KDD99 and UNSW-NB15 ensures that the findings are grounded in 

widely recognized benchmarks. However, the study has some limitations. One 

significant limitation is the need for standardized datasets. The lack of consistency in 

datasets can hinder the ability to generalize findings across different network 

environments. Another challenge is adapting to the evolving nature of cyber-attacks. 

As attackers develop new methods, NIDS must continuously adapt to maintain 

effectiveness, a task that is inherently complex and resource intensive. Additionally, 

the study did not explore Recurrent Neural Networks (RNN) such as Gated Recurrent 

Units (GRU). GRUs could potentially offer advantages in processing sequential data 

and improving the accuracy of intrusion detection systems. By not considering GRUs, 

the study misses an opportunity to evaluate a powerful method that could enhance 

performance, especially in handling time-series data common in network traffic. 

Machine learning algorithms and feature selection techniques to analyse network 

traffic and detect intrusions were discussed in the study by (Malhotra and Sharma, 

2019). Utilizing the NSL-KDD dataset, which consists of 125,973 instances with 41 

attributes, the study evaluates the performance of 10 popular ML algorithms using 

WEKA. Additional methods include Wrapper and Filter methods for feature selection 

and discretization to transform numeric data into nominal data. Results indicate that 

the Random Forest classifier achieves the highest accuracy of 99.91% with a model 
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building time of 191 seconds. The Random Tree classifier presents a good balance of 

accuracy (99.76%) and speed (3.24 seconds), making it a viable option for real-time 

applications. The study's findings underscore the importance of feature selection in 

enhancing the performance of ML models in intrusion detection. The use of Wrapper 

and Filter methods for feature selection highlights the study's methodological rigor. 

Wrapper methods evaluate the performance of a subset of features based on a specific 

algorithm, while Filter methods assess features independently of the algorithm. These 

approaches help in identifying the most relevant features, thereby improving the 

model's accuracy and efficiency. The study acknowledges some limitations. One 

notable limitation is the potential performance variability across different datasets. 

The results obtained using the NSL-KDD dataset may not be directly applicable to 

other datasets, which could affect the generalizability of the findings. This highlights 

the need for further research to validate the models across diverse datasets.  

Machine learning techniques to analyse and interpret data across various fields, such 

as computer vision, stroke identification, credit card fraud detection, e-learning 

systems, cybersecurity, marketing, and more, were discussed in the study by (Kok, S. 

et al,2019). It utilizes data from diverse sources tailored to the specific requirements 

of each domain, ensuring a comprehensive approach to problem-solving. Advanced 

analytics, deep learning algorithms, and quantum-inspired techniques are also 

employed to enhance the predictive capabilities and reliability of the models. The 

results of the study are significant, with various models achieving notable accuracy 

rates. However, the study does not specify the numerical values or indicate which 

model outperforms the others. This omission makes it difficult to determine the 

relative performance of different models. A common limitation across these studies is 

the potential for overfitting, where models perform exceptionally well on training data 

but fail to generalize to new, unseen data.  

Machine learning algorithms, specifically Random Forest and Support Vector 

Machine, focusing on feature selection using Recursive Feature Elimination, were 

examined in the study by (Patgiri et al., 2018). The NSL-KDD dataset, renowned for 

its cleanliness and 41 features per dataset, was utilized for analysis. Various feature 

selection techniques, including filter, wrapper, and embedded methods, were applied 

to identify informative and independent features. Results showed that before feature 

selection, Random Forest outperformed SVM, but after RFE, SVM demonstrated 

superior performance for most attack types. The study presented confusion matrices 

and accuracy percentages for each model and attack type. A notable limitation of the 

study was the time-consuming nature and performance degradation observed when 

using all features, underscoring the importance of feature selection in enhancing 

model efficiency and accuracy.  However, the study did not explore neural network 

models, representing a significant limitation. Neural networks, particularly deep 

learning models, have shown promising results in intrusion detection systems due to 

their ability to capture complex patterns in data.  

Examining various machine learning algorithms for Intrusion Detection System 

classification, utilizing the KDD-99 and NSL-KDD datasets to assess performance in 

accuracy, detection rate, and false alarm rate, was the focus of the study by (Rama 

Devi and Abualkibash, 2019). The datasets contain network traffic instances with 

features categorized as Basic, Traffic, and Content, with attacks classified into four 
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types: DOS, R2L, U2R, and Probe. Supervised learning algorithms like Logistic 

Regression, K Nearest Neighbour, Decision Tree, Support Vector Machine, Random 

Forest, AdaBoost, Multi-Layer Perceptron , and Naive Bayes, alongside unsupervised 

techniques like K-means and the Apriori Algorithm, were employed in the study. 

Results highlight the Random Forest algorithm's superior performance, achieving an 

accuracy of 99.7% with a false alarm rate of 3.2% on the NSL-KDD dataset, 

outperforming other models.  

Machine learning and deep learning techniques were employed to develop Intrusion 

Detection Systems for IoT networks, with a focus on comparing various ML 

approaches, as discussed in the study by (Baich et al., 2022). The NSL-KDD dataset, 

comprising 148,517 records with 14 features, served as the basis, covering binary and 

multiclass intrusion scenarios. The study utilized feature selection methods like 

Pearson correlation and Fisher score, along with feature extraction via Principal 

Component Analysis (PCA). Notably, the Decision Tree with Fisher score emerged as 

the top-performing model, boasting a remarkable 99.26% accuracy and swift 0.4 

seconds prediction time. However, the study faces limitations, primarily stemming 

from the NSL-KDD dataset's lack of representation of real-world network 

environments. The study did not incorporate real-time testing, which is essential for 

evaluating the performance of IDS in dynamic IoT environments where network 

conditions and threats continuously evolve. Real-time testing could provide valuable 

insights into the IDS's responsiveness and effectiveness in detecting emerging threats 

promptly.  

2.2 Intrusion Detection Using Snort And Suricata 

The use of Snort for intrusion detection and digital forensics analysis was discussed in 

the study by (Olutayo, 2022). Data for this study came from various academic sources 

focusing on cyber forensics, intrusion detection, and network analysis. Using a mix of 

different methods, the study linked security events to find and examine unusual 

activities in the network. The results showed that a model combining data mining and 

forensic techniques worked the best. However, the study has a drawback as it didn't 

do its own practical testing and depended on data from other scholarly sources. 

The analysis of how well Snort and Wireshark work for analysing network traffic was 

discussed in the study by (Jain & Anubha, 2021).They used Snort to capture live data 

packets, which then checks these packets against known signatures and sends an alert 

if it doesn't find a match. The captured data is then analysed in detail using Wireshark. 

The findings show that Snort and Wireshark are effective tools for network traffic 

analysis. Snort helps by detecting and alerting users about potential attacks, while 

Wireshark provides a detailed look at the captured packets. However, a limitation is 

that there might be times when an attack happens and no alert is generated, which 

could lead to missed detection and response opportunities. 

Examining how well Suricata can detect various Indicators of Compromise was 

discussed in the study by (Raharjo and Salman, 2023). The research is split into two 

stages: design and testing. It describes the testing environment, how the dataset is 

created, the scenarios used, and the performance measures. They created a dataset of 

one million IoC parameters, including IPReps, HTTP, DNS, SSL JA3, and MD5 
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Hash, by changing network traffic data packets. Suricata was then used to detect these 

IoC parameters in five different scenarios. The results show that Suricata can identify 

rules for all IoC types, performing best with HTTP and SSL JA3. The study also notes 

that there isn't a straightforward link between the number of rules and the detection 

probability. However, the research acknowledges some limitations, such as issues 

with the testing environment and scenarios, no alerting system, and not using other 

tools like Snort or Wireshark. 

2.3 Summary 

The below tables summarize the studies analysed: 

Study Dataset Model And 

Approach 

Conclusions Drawbacks 

Abdallah, Eleisah, 

and Otoom, (2022) 

KDD’99, NSL-

KDD, 

CICIDS2017, and 

UNSW-NB15 

Random Forest (RF) 

and Deep Neural 

Networks (DNN), 

emphasizes feature 

selection and 

sampling approaches 

to address data 

imbalance 

Achieves high 

performance with 

accuracy rates up to 

99.7% and low false 

positive rates (FPR) 

of 0.005%. 

Demonstrates 

robustness in 

identifying and 

classifying 

intrusions 

accurately. 

Requires substantial 

computational 

resources and time 

consuming 

Aziz, Siddiqi, 

(2021) 

KDD99 and 

UNSW-NB15 

Support Vector 

Machine (SVM), 

Decision Trees, and 

Neural Networks. 

Focused on 

Signature -based, 

anomaly-based and 

hybrid-based 

detection methods 

Models J48 and RF 

outperforms others, 

achieving high 

accuracy in 

detecting attacks 

such as DOS, 

Probe, U2R, and 

R2L, with high 

accuracy and low 

false positive rates. 

Since the study 

deals with 

sequential data 

could have explored 

into Recurrent 

Neural Networks 

like GRU which is 

good ay handling 

sequential data 

Malhotra and 

Sharma, (2019) 

NSL-KDD dataset Employed 10 

Machine Learning 

Algorithms using 

WEKA. Uswd 

Wrapper and Filter 

Techniques for 

feature selection and 

discretization. 

RF achieved 

classified achieved 

99.91% accuracy 

with a model 

building time of 191 

seconds, hence 

making it suitable 

for real-time 

application. 

The study's findings 

may not generalize 

across different 

datasets, 

necessitating further 

research for 

validation. 

Patgiri et al., 

(2018) 

NSL-KDD dataset RF and SVM, 

Focusses on feature 

selection using 

Recursive Feature 

Elimination(RFE) 

along with filter, 

wrapper, and other 

embedded methods  

Before feature 

selection, Random 

Forest outperformed 

SVM, but after 

applying RFE, 

SVM demonstrated 

superior 

performance for 

most attack types. 

The study highlights 

the time-consuming 

nature and 

performance 

degradation when 

using all features. 

Rama Devi and 

Abualkibash, 

KDD-99 and NSL-

KDD 

K-Nearest 

Neighbour (KNN), 

The Random Forest 

algorithm 

Limitation of the 

study is its reliance 
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(2019) Decision Tree, 

Support Vector 

Machine (SVM), 

Random Forest, 

AdaBoost, Multi-

Layer Perceptron 

(MLP), and Naive 

Bayes 

demonstrates 

superior 

performance, 

achieving an 

accuracy of 99.7% 

with a false alarm 

rate of 3.2% on the 

NSL-KDD dataset, 

outperforming other 

models. 

on the KDD-99 and 

NSL-KDD datasets, 

which, while 

commonly used, 

may not fully 

represent the 

diversity of real-

world network 

environments and 

evolving attack 

types. 

Baich et al., (2022) NSL-KDD dataset Decision Tree and 

other Machine 

learning algorithms. 

Applied feature 

selection methods 

like Pearson 

correlation, Fisher 

score and feature 

extraction through 

PCA 

The Decision Tree 

model achieved a 

99.26% accuracy 

and a prediction 

time of 0.4 seconds. 

These results 

highlight the 

model's potential 

effectiveness for 

accurate and 

efficient intrusion 

detection in IoT 

networks. 

Could have 

explored the options 

of deep learning 

models which 

would have helped 

achieve better 

results and faster 

computation. 

Olutayo, (2022) Used data from 

various academic 

sources and cyber 

forensics , IDS and 

network analysis. 

The study employed 

a mix of different 

methods to link 

security events and 

identify unusual 

activities in the 

network, focusing on 

digital forensics for 

analysis 

The study found 

that a model 

combining data 

mining and forensic 

techniques yielded 

the best results for 

identifying and 

examining unusual 

network activities. 

This approach 

showed promise in 

enhancing security 

event detection and 

analysis 

A drawback of the 

study was its 

reliance on data 

from other scholarly 

sources without 

conducting its own 

practical testing. 

This limitation may 

affect the direct 

applicability and 

validation of the 

findings in real-

world network 

environments. 

Table (1): Summary table of the Machine Learning literature studies 

Study Method Analysis Drawbacks 

Jain & Anubha, (2021) Examined effectiveness of 

Snort and Wireshark in 

terms of analysing them 

against known signatures 

to detect potential attacks. 

Wireshark used for deep 

packet analysis. 

Snort effectively detected 

and alerted users about 

potential attacks. 

Wireshark offered 

comprehensive insights 

into captured packets, 

aiding in detailed network 

traffic analysis. 

Possibility of Snort failing 

to generate alerts for 

certain attacks, potentially 

leading to missed 

detection and response 

opportunities in some 

scenarios  

Raharjo & Salman, 

(2023) 

The study designed a 

testing environment, 

created a dataset of one 

million IoC parameters 

including IPReps, HTTP, 

DNS, SSL JA3, and MD5 

Hash, and tested 

Suricata's performance in 

detecting these parameters 

The study demonstrated 

that Suricata successfully 

identified rules for all IoC 

types, with particularly 

strong performance in 

detecting HTTP and SSL 

JA3 parameters. However, 

the study noted that the 

number of rules did not 

Limitations of the study 

included issues with the 

testing environment and 

scenarios used, the 

absence of an alerting 

system to notify of 

detected IoCs in real-time, 

and the study's focus 

solely on Suricata without 
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across different scenarios. straightforwardly correlate 

with detection probability 

comparing its 

performance against other 

tools like Snort or 

Wireshark. 

Table (2): Summary table of the reference literature studies 

From the above tables it can be understood that none of the studies proposed a system 

that uses honeypots and machine learning together for real-time intrusion detection. 

Instead, they relied on existing datasets for training and prediction.  In contrast, this 

study introduces a system that integrates real-time detection using deep learning and 

honeypot techniques, consolidated within a web application for administrators to 

easily access detailed information. 

3 Research Methodology 

This research project introduces an innovative approach to enhancing security in 

ZigBee IoT environments through the development of an advanced and adaptive 

framework of honeypots. Using ESP32 as the main microcontroller, the framework 

integrates various hardware components such as DHT11 sensors, XBee modules, 

OLED displays, and the CC2531 Zigbee sniffing tool for robust packet analysis and 

data capture. The software part involves training a deep learning model on the IoT20 

dataset to recognize and classify attack patterns, crucial for the honeypot's detection 

capabilities.  

 

Figure (3): System Workflow for Honeypot-based Zigbee Network Intrusion Detection 

The workflow shown in Figure (3) represents a Zigbee network intrusion detection 

system using a honeypot and machine learning. It begins with a Zigbee sniffer 

capturing network traffic, which is then configured into a honeypot website designed 

to attract attackers. When attackers visit this decoy website, their activities are logged. 

These logs are subsequently displayed on an admin page, providing administrators 
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with detailed insights into the attackers' behaviours and methods. The final step 

involves analysing these logs using machine learning algorithms to identify and 

classify the types of attacks. This systematic approach enables continuous monitoring 

and analysis, improving the security and resilience of IoT systems using Zigbee 

networks.   

3.1 Data Fetching from DHT11 

The DHT11 sensor is popular for measuring temperature and humidity because it is 

simple, affordable, and easy to use (Ztt1 et al., 2022). It can measure temperatures 

ranging from 0°C to 50°C with an accuracy of ±2°C and humidity levels from 20% to 

90% relative humidity with an accuracy of ±5%. The sensor provides a digital output, 

which simplifies its integration with microcontrollers and other digital systems. 

Operating with low power, it is suitable for battery-powered applications. In this study 

data fetching from the DHT11 sensor involved connecting it to the ESP32 

microcontroller to retrieve temperature and humidity readings. During the 

development phase, challenges related to library compatibility and integration were 

encountered, requiring troubleshooting to ensure reliable data acquisition. The ESP32, 

developed by Espressif Systems, is a powerful, versatile, and cost-effective 

microcontroller that has gained popularity among hobbyists, developers, and 

engineers, particularly for Internet of Things applications (Hübschmann, 2020).  

3.2 Data Transmission via Zigbee Using XBee Modules 

The XBee S2C 802.15.4 module is a robust and versatile wireless communication 

device designed for low-power, low-data-rate applications. It operates on the IEEE 

802.ex15.4 standard, which forms the basis for Zigbee networks, offering reliable and 

secure communication over short distances (digi.com, 2024). The XCTU software is 

used to configure the XBee module. During the configuration process, there were 

some difficulties in setting up the module properly, requiring troubleshooting to 

ensure the correct settings for the application. Once configured, the data from the 

ESP32 module is transmitted to the XBee module serially. The ESP32 handles the 

data processing and then sends it to the XBee for wireless transmission. This ensures 

that the data is sent efficiently and accurately. On the receiving end, another XBee 

module receives the transmitted data, which is then sent serially to another ESP32 

module. The ESP32 on the receiving side processes the data and displays it on an 

OLED screen. The communication is serial, ensuring a straightforward and reliable 

transfer of data. By overcoming the initial configuration challenges, the system is now 

capable of efficiently transmitting and displaying sensor data. This makes it a 

practical solution for various applications that require low-power, short-range wireless 

communication. 

3.3 Packet Sniffing Using Zigbee USB Dongle Plus CC2531 

Packet sniffing is performed between the communication of the ESP32 modules using 

the Zigbee USB Dongle Plus CC2531. The packet sniffer, provided by Texas 

Instruments, is used to analyse the data being transmitted. During this stage, a key 

challenge was finding the proper matching frequency to accurately capture the 

packets. Once this issue was resolved, the packet sniffer was able to intercept and log 
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the data exchanged between the XBee modules. The sniffed data is then exported as a 

log file for further analysis. This log file provides detailed insights into the data 

packets, helping to understand the communication flow and diagnose any potential 

issues.  By addressing the frequency matching challenge, the system can now 

effectively monitor and analyse the wireless communication between the ESP32 

modules. This step is crucial for verifying the correct operation and performance of 

the Zigbee network. 

3.4 Training Deep Learning Model 

3.4.1 Dataset Collection 

The dataset for this project was custom-created using Wireshark to capture network 

traffic. Key features extracted from Wireshark include time, source, destination, 

protocol, length, and type (DDoS or normal). This process involved significant effort 

and time, especially in accurately labelling the data as either normal or indicative of a 

DDoS attack. The main difficulty faced during this phase was the time-consuming 

nature of data extraction and ensuring the accuracy of the captured features to create a 

reliable dataset for training the deep learning model. 

3.4.2 Dataset Pre-processing 

Getting the data ready is a key step before training a deep learning model. This means 

cleaning up the raw data and changing it into a format that the model can easily 

understand and learn from (Roy et al., 2019). In this project, preprocessing began 

with the removal of unwanted features to streamline the dataset. The selected features 

for analysis are Time, Protocol, Length, and type (DDoS or normal). Features such as 

Source, Destination, and Info were removed because they could introduce noise and 

redundancy, potentially leading to overfitting without contributing significantly to the 

model's ability to detect network anomalies. During preprocessing, label encoding 

was performed on the Protocol and type columns. This step converts categorical data 

into numerical format, making it compatible with the deep learning model. Label 

encoding ensures that the model can interpret these features correctly, enhancing its 

ability to learn from the data and improve its predictive accuracy. One of the 

challenges faced during preprocessing was ensuring that the encoding was consistent 

and correctly applied, as any discrepancies could result in misinterpretation by the 

model and affect its performance. 

3.4.3 Model Creation, Compiling And Training 

Deep learning works really well for tasks like image recognition, NLP, and running 

self-driving systems. By learning from large amounts of data, deep learning models 

can identify intricate patterns and make accurate predictions, making them powerful 

tools in modern AI applications (Santosh, Das and Ghosh, 2022). In this study, a 

Convolutional Neural Network combined with a Gated Recurrent Unit model is used. 

The CNN is adept at extracting features from input data, making it ideal for 

recognizing patterns within network traffic. The GRU, a type of recurrent neural 

network, is effective in handling sequential data and learning long-term dependencies, 

making it well-suited for time-series analysis in network traffic. The advantages of 

using a CNN-GRU model include its ability to automatically detect significant 
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features in the data and its proficiency in learning from sequential patterns, which are 

common in network traffic. This combination enhances the model's ability to detect 

and classify network anomalies accurately (Adryan Fitra Azyus, Sastra Kusuma 

Wijaya and Mohd Naved, 2023). The model in the study was created using the 

TensorFlow library, which provides a flexible and comprehensive framework for 

building and training deep learning models. The CNN layers identify patterns in the 

spatial aspects of the input data, while the GRU layers capture temporal dependencies. 

After defining the model architecture, it is compiled with the Adam optimizer, known 

for its efficiency and capability to handle sparse gradients. This compilation prepares 

the model for training, setting the stage for optimizing its parameters to achieve the 

best performance on the given dataset. Finally, the model was trained with five epochs 

and then saved for future use. One of the challenges faced during compilation was 

managing shape issues, which required careful adjustment of the model’s input and 

output dimensions to ensure compatibility across all layers. 

3.5 Honeypot Creation 

A honeypot is a security tool created to identify, divert, or in some way prevent 

unauthorized attempts to use information systems (Javadpour et al., 2024). In this 

study, a honeypot was used to create a decoy environment that attracts attackers and 

captures details of their activities. This helps in understanding attack patterns and 

enhancing security measures. The honeypot was created using the Django library, 

specifically a library called admin honeypot. A middleware script was developed to 

capture and record attack details, which are then displayed in a table for analysis. In 

addition to capturing and recording attack details, the middleware script plays a 

crucial role in the honeypot setup. Implemented as a Django middleware using the 

MiddlewareMixin, it intercepts incoming requests to the web application. The script 

tracks client IP addresses and ports from request metadata, using a background thread 

to monitor and detect potential distributed denial-of-service attacks. This functionality 

helps in identifying patterns of suspicious activity, such as multiple requests from the 

same IP within a short timeframe. Detected attacks are logged in real-time to a file, 

providing security administrators with immediate visibility and enabling proactive 

responses to mitigate threats. One challenge encountered during the setup was dealing 

with version issues between Django and the admin honeypot library, which required 

careful troubleshooting and adjustments to ensure compatibility. 

4 Design Specification 

4.1 DHT11 

The DHT11 sensor plays a crucial role in this study by gathering environmental data. 

It is often utilized for monitoring temperature and humidity levels because it is cost-

effective and reliable. This sensor outputs a digital signal, which makes it compatible 

with a wide range of microcontrollers and IoT platforms (Islam et al., 2023). 

4.2 ESP32 

The ESP32 is a versatile and affordable platform ideal for creating IoT applications. 

Developed by Espressif Systems in Shanghai, China, it combines robust features 
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tailored for IoT use. Programming the ESP32 is flexible, supporting multiple 

development frameworks and languages. The popular choice is C++, and developers 

commonly use tools like the Arduino IDE or PlatformIO to program it (Hercog et al., 

2023). 

4.3 XBee 

Xbee modules are radio frequency devices that operate based on the 802.15.4 

standard, with some being fully ZigBee compliant. Initially developed for military use 

due to their vulnerability to interference, these modules now offer open access for 

public use. They use Direct Sequence Spread Spectrum technology, which provides 

robust wireless communication but requires more bandwidth. Xbee modules enable 

easy and dependable wireless serial communication between microcontrollers, 

computers, and systems equipped with serial ports (Hercog et al., 2023). 

4.4 Zigbee 

Zigbee is a wireless technology used for smart devices to communicate within a 

Personal Area Network (PAN), facilitating cost-effective, low-power connections for 

machine-to-machine (M2M) and Internet of Things (IoT) networks (Linda 

Rosencrance, 2017). Task Group 4 oversees ZigBee as part of the IEEE 802.15.4 

standard, developed by the Zigbee Alliance. This standardizes the physical and 

Medium Access Control layers of the technology's architecture, with ZigBee focusing 

on enhancing the upper layers for improved functionality (Ahmed,2023). 

4.5 CNN-GRU 

A hybrid Convolutional-Recurrent Model combines the strengths of both networks: 

the feature extraction ability of convolutional layers and the sequential learning 

capability of recurrent computations. This integration enhances its effectiveness 

compared to other hybrid models. Specifically, the CNN GRU model leverages 

convolutional layers to capture spatial features from input data, while GRU handles 

sequential data to learn long-term dependencies. This dual approach enables the 

model to effectively analyse complex patterns and make accurate predictions, making 

it a robust choice for various tasks in machine learning and artificial intelligence 

applications (Jaiswal and Singh, 2022). 

5 Implementation 

In the implementation phase of this project, the focus is on creating a sophisticated 

honeypot framework tailored for ZigBee IoT environments. The main objective is to 

develop a robust system that effectively deceives potential attackers while providing 

valuable insights into network security threats. Hardware components include the 

integration of essential devices like the DHT11 sensor for monitoring temperature and 

humidity via ESP32 microcontrollers, XBee modules for ZigBee communication, an 

OLED display for visual data representation, and a Zigbee sniffer tool interfacing 

with a PC for traffic analysis. On the software side, custom datasets are generated 

using Wireshark to simulate network intrusions, which are then pre-processed and 

analysed to prepare for training deep learning models. These models, utilizing a GRU 
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architecture, are trained to detect and classify attacks based on the collected data. The 

honeypot framework, implemented using Django, consists of two key modules: an 

admin interface for detailed traffic analysis presented in tables, and a user interface 

displaying real-time sensor data from the DHT11. The honeypot captures and records 

network traffic, presenting this data on a landing webpage designed to analyse 

potential attackers. Tools such as hping from Kali Linux are employed to simulate 

attacks, triggering scripts that gather attacker details.  Behind the scenes, machine 

learning models continuously analyse captured data, automatically identifying and 

reporting potential threats within the web application. This integrated approach 

ensures proactive cybersecurity measures within ZigBee IoT networks, leveraging 

both hardware and software components to enhance security monitoring and threat 

detection capabilities. 

6 Result And Evaluation 

6.1 Results 

 

Figure (4): Sniffed data 

Figure (4) displays the data details captured by the Zigbee USB Dongle Plus CC2531 

sniffer tool. It effectively captures and matches frequencies, demonstrating its 

capability to monitor and analyse ZigBee network traffic with accuracy. This tool 

plays a important role in the project by gathering valuable insights from frequency 

data, which are essential for project success.  

 

Figure (5): Training epochs 

Figure (5) shows the progress over 5 training epochs The model achieved 95% 

accuracy in training and 94% in validation, showing it learned well from the data. The 

training loss, which indicates how much predictions deviate from actual values during 

training, was 0.2144. Validation loss, which measures performance on new data, stood 
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at 0.5336. These results demonstrate the model's ability to effectively identify 

intrusion attempts in real-time in ZigBee IoT settings. 

 

Figure (6): Detection logs on website 

 

Figure (7): Detection logs 

Figure (6) shows the detected logs, indicating the IP addresses from which attacks 

originate. This visual representation helps to understand where potential threats are 

coming from and provides valuable insights into their types and frequency. 

Identifying these IP addresses clarifies who is trying to breach the system's security 

measures, allowing for proactive responses to protect against such threats effectively. 

 

Figure (8): Admin view of network attack traffic 
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Figure (7) displays the admin view of the traffic details page, presenting data in a 

clear table format. It includes key information such as IP addresses, type of the traffic, 

and timestamps. This setup, integrated into a Django web application, enables 

administrators to monitor network activities effortlessly. By reviewing the recorded 

data and timestamps, they can identify both routine traffic patterns and suspicious 

activities like potential DDoS attacks, which is essential for effective network security 

management. 

6.2 Evaluation 

The evaluation of the proposed system demonstrates its effectiveness in combining 

advanced honeypot technology with deep learning for real-time intrusion detection. 

The results indicate that the system successfully enhances cybersecurity by accurately 

detecting evolving cyber threats. The objectives set for the study were all successfully 

achieved: Objective 1, involving setting up a microcontroller system for 

environmental data capture, was successfully accomplished. Objective 2 was also 

met, which aimed to set up ZigBee communication between XBee modules and 

ESP32 and included using a ZigBee sniffer tool to analyse traffic. Objective 3 aimed 

at training a deep learning model using GRU architecture for intrusion detection, and 

Objective 4 encompassed developing a functional honeypot to capture and store 

ZigBee traffic. Objective 5 integrated this with a web interface for real-time attack 

simulation and detection, while Objective 6 successfully integrated the trained deep 

learning model into the system to detect and classify attacks. This method uses 

honeypots along with advanced intrusion detection to trick attackers and quickly 

analyse and respond to their actions, making ZigBee IoT environments more secure. 

The research question about “how well the security system combines honeypots with 

deep learning to trick and spot attacks in IoT settings?” has been answered. As seen in 

Figure (8), the system detects attacks accurately. This visual evidence demonstrates its 

ability to quickly recognize potential threats within IoT networks, showcasing its 

effectiveness in enhancing cybersecurity. One area where this study falls short is in 

the detection of various types of attacks by the deep learning models. While the 

system effectively spots some threats, it doesn't catch all possible attack scenarios.  

7 Conclusion and future enhancements 

The study developed an advanced framework of honeypots designed for ZigBee IoT 

environments, aimed at effectively deceiving potential attackers. The hardware setup 

included connecting sensors like the DHT11 and XBee modules to the ESP32 

microcontroller, alongside an OLED display and a Zigbee sniffer tool linked to a PC. 

In the software realm, custom data was generated from Wireshark for intrusion 

detection. The project focused on training a deep learning model using GRU 

architecture on this dataset, thereby improving real-time intrusion detection 

capabilities. The deep learning model achieved a validation accuracy of 94%, 

highlighting its effectiveness in identifying potential threats. A honeypot was created 

to capture ZigBee traffic, storing data packets for analysis on a dedicated landing 

webpage. The honeypot's effectiveness was tested against simulated attacks using 

tools like hping on Kali Linux. 
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Future enhancements could include transitioning the system from local deployment to 

cloud deployment for enhanced scalability, ensuring it can handle increased data loads 

and expand its reach effectively.  Also, a future enhancement in the model should 

focus on enhancing its detection capabilities to encompass a broader spectrum of 

security threats in IoT environments. 
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